
OMNIS Studio
Reference

OMNIS Software
September 1998



The software this document describes is furnished under a license agreement. The software may be
used or copied only in accordance with the terms of the agreement. Names of persons, corporations, or
products used in the tutorials and examples of this manual are fictitious. No part of this publication may
be reproduced, transmitted, stored in a retrieval system or translated into any language in any form by
any means without the written permission of OMNIS Software.

© OMNIS Software, Inc., and its licensors 1998. All rights reserved.
Portions © Copyright Microsoft Corporation.

OMNIS® is a registered trademark and OMNIS 5™, OMNIS 7™, and OMNIS Studio are trademarks of
OMNIS Software, Inc.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows 95, Win32, Win32s are registered
trademarks, and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other
countries.

Apple, the Apple logo, AppleTalk, and Macintosh are registered trademarks and MacOS, Power
Macintosh and PowerPC are trademarks of Apple Computer, Inc.

IBM and AIX is a registered trademark and OS/2 is a trademark of International Business Machines
Corporation.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company
Ltd.

Sun, Sun Microsystems, the Sun Logo, Solaris, Java, and Catalyst are trademarks or registered
trademarks of Sun Microsystems Inc.

HP-UX is a trademark of Hewlett Packard.

OSF/Motif is a trademark of the Open Software Foundation.

Acrobat is a trademark of Adobe Systems, Inc.

ORACLE is a registered trademark and SQL*NET is a trademark of Oracle Corporation.

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase
Inc.

INFORMIX is a registered trademark of Informix Software, Inc.

EDA/SQL is a registered trademark of Information Builders, Inc.

CodeWarrior is a trade mark of Metrowerks, Inc.

Other products mentioned are trademarks or registered trademarks of their corporations.



Table of Contents 3

Table of Contents
ABOUT THIS MANUAL.....................................................5

CHAPTER 1—FUNCTIONS ..............................................7

FUNCTIONS..............................................................................8
FILEOPS EXTERNAL FUNCTIONS............................................59
FONTOPS EXTERNAL FUNCTIONS..........................................68

CHAPTER 2—HASH VARIABLES ................................72

ABOUT THE HASH VARIABLES...............................................72
HASH VARIABLES..................................................................72

CHAPTER 3—EVENTS....................................................82

ABOUT THE EVENT CODES....................................................82
EVENT PARAMETERS.............................................................84
FIELD EVENTS.......................................................................85
GRID EVENTS........................................................................86
HEADED LIST BOX EVENTS...................................................87
ICON ARRAY EVENTS............................................................88
KEY EVENTS .........................................................................89
MODIFY REPORT FIELD EVENTS............................................89
MOUSE EVENTS.....................................................................90
SCROLL EVENTS....................................................................91
STATUS EVENTS....................................................................91
TAB PANE AND TAB STRIP EVENTS.......................................91
TREE LIST EVENTS................................................................92
WINDOW EVENTS..................................................................93

CHAPTER 4—METHODS ...............................................95

COMMON...............................................................................96
$ROOT...................................................................................97
GROUP...................................................................................98
OMNIS MODES..................................................................100
OMNIS PREFERENCES........................................................100
PRINTING DEVICES..............................................................101
WINDOW CLASS..................................................................102
MENU CLASS.......................................................................103
TOOLBAR CLASS .................................................................104
REPORT CLASS....................................................................105



4 Table of Contents

TASK CLASS........................................................................106
TABLE CLASS......................................................................106
OBJECT CLASS.....................................................................107
LIST VARIABLE ....................................................................108
EXTERNAL COMPONENTS....................................................113
METHOD LINES....................................................................114
INSTANCE............................................................................114
REPORT INSTANCE...............................................................115
TABLE INSTANCE.................................................................117
WINDOW INSTANCE.............................................................119

CHAPTER 5—COMMANDS .........................................123

ABOUT THE COMMANDS......................................................123
COMMANDS.........................................................................124

CHAPTER 6—EXTERNAL COMMANDS ..................454

EXTERNAL COMMANDS.......................................................455
FILEOPS EXTERNAL COMMAND ERROR CODES...................544
WEB COMMAND ERROR CODES..........................................546

INDEX ...............................................................................554



About This Manual 5

About This Manual
This manual contains a description of all the following OMNIS objects

� Functions and external functions

� Hash variables

� Event Codes and event parameters

� Methods

� Commands

� External commands

To program in OMNIS you should be familiar with the method editor, and using the
OMNIS commands and notation. All these topics are discussed in detail in the
OMNIS Programming manual.

Note that object properties and the OMNIS constants are not listed here since the vast
majority of them are self-explanatory. You can view the properties of any object using the
Property Manager and Notation Inspector, and you can view the OMNIS constants in the
Catalog. For your convenience, all objects including properties, methods, and constants are
listed in the OMNIS Help.



6

Your Notes



Functions 7

Chapter 1—Functions
OMNIS provides a vast array of functions for manipulating numbers, strings, binarys, and
dates, and for performing complex calculations and trigonometric operations. You can
browse and access the OMNIS functions in the Catalog. You can use the functions in any
calculation, and in any text string using square bracket notation. This chapter lists all the
functions available in OMNIS in alphabetical order, and includes the FileOps and FontOps
external functions at the end of the chapter.

Generally the functions accept one or more string or numeric values and return a value.
They have no direct effect on the flag, although most of the functions have a true result for a
successful operation (that is, any non-zero result) and false for failure (or no result), so you
can test the result of a calculation containing a function.

To select a function

• Press F9/Cmnd-9 to display the Catalog

• Click on the Functions tab

• Click on the function group you require in the left-hand list

• Double-click on the function you require in the right-hand list

or you can

• Drag the function from the Catalog and drop it into a calculation field in the method
editor

Syntax
 All possible arguments to each function are in italic and parentheses. Square brackets
further enclose optional arguments ([,number2]), for example; do not type the square
brackets when you enter an optional argument.

 Strings appear as string, numerical values as number, list names as listname, and so on.
Where a function requires more than one argument of the same type, the description
appends a number to the word: for example, string1 is the first string, string2 is the second
string, and so on. Literal strings are always quoted.

 Some functions take a list of values or arguments; for example the fld(string1[,string2]...)
function. This means you must enter at least one string and any number of subsequent
strings, separated by commas.



8 Chapter 1—Functions

 Functions
 abs()
 abs(number)

 Returns the magnitude of a real number ignoring its positive or negative sign.

abs(1002)        ;; returns 1002

abs('-203.45')   ;; returns 203.45

abs('12ABC')     ;; returns 0

 acos()
 acos(number)

 Returns the arc cosine of a number in the range 0 to 180 degrees (0 to pi radians if #RAD is
true), or returns 0 if the number is not in the range -1 to 1.

acos(sqr(2)/2)    ;; returns 45

 ann()
 ann(rate,nper,pmt,pv,fv[,prd])

 Evaluates an unknown for an annuity. The first five arguments are mandatory, but you can
replace any one of them with '?' which is the unknown value returned by the function.

 Parameters: rate is the interest rate per payment period; nper is the number of payment
periods, which should be an integer greater than zero; pmt is the payment made to you (or
by you) at the end of each period; pv is the amount paid to you (or by you) at the start of the
first period; fv is the amount paid to you (or by you) at the end of the final period; prd is
optional and represents a specific period which must be between 1 and nper; it is used for
obtaining the split of interest and capital payments in a period.

 The convention is that positive values for pmt, pv and fv denote a payment made to you, and
negative amounts denote a payment made by you. It is important to ensure that rate, nper
and pmt all refer to the same period length. The annuity is evaluated so that the sum of all
payments made to you (or by you) when compounded at the interest rate evaluates to zero.

 For example, a 25 year mortgage for $30000 at 11% pa interest payable monthly in arrears
has monthly payments, paid by you, equal to:

rnd(ann(.11/12,25*12,'?',30000,0),2)    ;; returns -294.03



Functions 9

 anna()
 anna(rate,nper,pmt,pv,fv)

 Evaluates an unknown for an annuity in advance. This function works in the same way as
the ann() function except that the annuity is calculated in advance. The payments are
assumed to be made at the start of each period instead of the end of each period. For
example, using the same arguments as those used for the example for ann(), but using the
anna() function, where the mortgage payments are assumed to be made in advance, the
monthly payment is:

rnd(anna(.11/12,25*12,'?',30000,0),2)    ;; returns -291.36

 ansichar()
 ansichar(code)

 Returns a string containing the ANSI symbol for the specified code (available under
Windows only). You can display the result with an ANSI or TrueType font like Times
New Roman or Arial.

 ansicode()
 ansicode(string,index)

 Returns the ANSI character code for the specified string (available under Windows
only).

 asc()
 asc(string,number)

 Returns the ASCII value of a character in a string. The position of the character is specified
by number. The value returned is between 0 and 255, or -1 if number is less than 1 or
greater than the length of string.

asc('Quantity',1)

; returns 81, that is the ASCII value of the 1st character

asc('Car',3)

; returns 114, that is the ASCII value of the 3rd character

asc('Train',9)      ;; returns -1

 

 



10 Chapter 1—Functions

 asin()
 asin(number)

 Returns the arc sine of a number in the range -90 to 90 degrees (-pi/2 to pi/2 radians if
#RAD is true), or returns 0 if the number is not in the range -1 to 1.

asin(sqr(3)/2)     ;; returns 60

 atan()
 atan(number)

 Returns arc tangent of a number in range -90 to 90 degrees (-pi/2 to pi/2 radians if #RAD is
true).

atan(1)        ;; returns 45

 atan2()
 atan2(y,x)

 Returns the arc tangent of the point with y,x coordinates.

atan2(1,1)     ;; returns 45

 avgc()
 avgc(listname,column[,ignore_nulls])

 Returns the average value for a list column specified by listname and column. If you set
ignore_nulls to 1, null values are ignored and not counted. If you omit this parameter or it
evaluates to zero, nulls are treated as zero values and are counted.

Calculate LVAR30 as avgc(PLIST,Age,1)

; returns the average for Age not including null or zero values

 bdif()
 bdif(oldbinary,newbinary)

 Returns a binary representation of the differences between oldbinary and newbinary. It is
useful for comparing different versions of the same file, whether it is an OMNIS library,
external component, picture or text file, and so on.



Functions 11

 binchecksum()
 binchecksum(binary)

 Calculates a checksum for a binary field. OMNIS generates the checksum by summing the
bytes of the binary field, using a 32 bit number, ignoring overflow.

Calculate CHECKSUM as binchecksum(binary)

 bincompare()
 bincompare(binary1, binary2)

 Compares two binary fields, binary1 and binary2. Returns true if they are equal, and false if
they are not. Fields of different length are not equal, meaning that the rule about extending
the length of the shortest field does not apply in this case.

Calculate LVAR1 as bincompare(binary1, binary2)

 binfromhex()
 binfromhex(string)

 Returns a binary field value generated from the specified character string. The character
string encodes a hexadecimal value in ASCII. The string must not contain a leading 0x or
0X.

Calculate BINARY as binfromhex(string)

 binfromlong()
 binfromlong(longint)

 Returns a binary field value containing the binary representation of a long integer longint.
The binary value has a length of 4 bytes. Bit zero of the returned value is the most
significant bit of the long, and bit 31 is the least significant bit. For example, the long value
0x12345678 is returned with byte 0 = 0x12, byte 1 = 0x34, byte 2 = 0x56 and byte 3 =
0x78.

Calculate BINARY as binfromlong(longint)

 binlength()
 binlength(binary)

 Returns the length of a binary field, in bytes.

Calculate LENGTH as binlength(binary)



12 Chapter 1—Functions

 bintohex()
 bintohex(binary)

 Returns a character string representing the value of a binary field, in ASCII hexadecimal.

Calculate STRING as bintohex(binary)

 bintolong()
 bintolong(binary)

 Returns a long value from the first 4 bytes of a binary field. For example, if the binary field
contains 0x12345678, the returned long has the value 0x12345678.

Calculate LONG as bintolong(binary)

 bitand()
 bitand(binary1, binary2)

 Performs an AND operation on binary1 and binary2, and returns the result.

Calculate BINARY as bitand(binary1, binary2)

 bitclear()
 bitclear(binary1, firstBitNumber, secondBitNumber)

 Clears a range of bits in a single argument binary1 by setting them to zero, that is, bitclear()
clears all bits with numbers >= firstBitNumber and <= secondBitNumber.

 The function operates directly on the binary1 argument, and returns 1 for success and 0 for
failure. If the bit numbers identify some bits which are outside the current length of the
binary field, OMNIS extends the field by appending bytes with value zero, and clears the
bits.

Calculate STATUS as bitclear(binary1, firstBitNumber,
secondBitNumber)

 bitfirst()
 bitfirst(binary)

 Returns the number of the most significant bit with value 1 in a binary field.

Calculate NUMBER as bitfirst(binary)

 sets NUMBER to the bit number of the first bit set to 1. If all bits are zero, bitfirst()
returns -1.



Functions 13

 bitmid()
 bitmid(binary1, firstBitNumber, secondBitNumber)

 Generates a binary field value identified as a range of bits of a binary field, that is, bitmid()
extracts the bits with numbers >= firstBitNumber and <= secondBitNumber.

Calculate BINARY as bitmid(binary1, firstBitNumber, secondBitNumber)

 Bit firstBitNumber of binary1 becomes bit zero of BINARY, and so on.

 bitnot()
 bitnot(binary1)

 Performs the 1's complement of a single argument. The function operates directly on the
argument binary1, and returns 1 for success and 0 for failure.

Calculate STATUS as bitnot(binary1)

 bitor()
 bitor(binary1, binary2)

 Performs an inclusive-OR on binary1 and binary2, and returns the result.

Calculate BINARY as bitor(binary1, binary2)

 bitrotatel()
 bitrotatel(binary, count)

 Rotates a binary field to the left, by a number of bits specified in count. The function
operates directly on the argument, and returns 1 for success and 0 for failure. The vacated
bits are replaced by the bits shifted off the left-hand end.

 If the specified number of bits is greater than the bit-length of the field,  OMNIS returns 0,
and the field is unchanged.

Calculate STATUS as bitrotatel(binary, count)



14 Chapter 1—Functions

 bitrotater()
 bitrotater(binary, count)

 Rotates a binary field to the right, by a number of bits specified in count. The function
operates directly on the argument, and returns 1 for success and 0 for failure. The vacated
bits are replaced by the bits shifted off the right-hand end.

 If the specified number of bits is greater than the bit-length of the field,  OMNIS returns 0,
and the field is unchanged.

Calculate STATUS as bitrotater(binary, count)

 bitset()
 bitset(binary, firstBitNumber, secondBitNumber)

 Sets a range of bits in a single argument to 1, that is, bitset() sets all bits in a binary field
with numbers >= firstBitNumber and <= secondBitNumber.

 The function operates directly on the argument, and returns 1 for success and 0 for failure.
If the bit numbers identify some bits which are outside the current length of the binary field,
OMNIS extends the field by appending bytes with value zero, and sets the bits.

Calculate STATUS as bitset(binary, firstBitNumber, secondBitNumber)

 bitshiftl()
 bitshiftl(binary, count)

 Shifts a binary field to the left, by a number of bits specified in count. The function operates
directly on the argument, and returns 1 for success and 0 for failure. Vacated bits become
zero. Bits shifted past bit 0 are lost.

Calculate STATUS as bitshiftl(binary, count)

 bitshiftr()
 bitshiftr(binary, count)

 Shifts a binary field to the right, by a number of bits specified in count. The function
operates directly on the argument, and returns 1 for success and 0 for failure. Vacated bits
become zero. Bits shifted past the right-most bit are lost.

Calculate STATUS as bitshiftr(binary, count)



Functions 15

 bittest()
 bittest(binary, firstBitNumber, secondBitNumber)

 Tests a range of bits in a single argument, that is, bittest() tests all bits in a binary field with
numbers >= firstBitNumber and <= secondBitNumber. If any are 1, the function returns 1,
otherwise it returns zero.

Calculate BOOL as bittest(binary, firstBitNumber, secondBitNumber)

 bitxor()
 bitxor(binary1, binary2)

 Performs an exclusive-OR (XOR) on binary1 and binary2, and returns the result.

Calculate BINARY as bitxor(binary1, binary2)

 bundif()
 bundif(differences,binary)

 Restores an older version of a binary file using the differences created by the bdif()
function. The differences must be passed to an older version of the same binary file.

 bytecon()
 bytecon(binary1, binary2)

 Concatenates two binary fields binary1 and binary2, and returns the result. Note that
bytecon() concatenates binary2 on to the end of binary1.

Calculate BINARY as bytecon(binary1, binary2)

 bytemid()
 bytemid(binary1, firstByteNumber, secondByteNumber)

 Generates a binary field value identified as a range of bytes in a binary field, that is

Calculate BINARY as bytemid(binary1, firstByteNumber,
secondByteNumber)

 sets BINARY to the value generated by extracting bytes firstByteNumber to
secondByteNumber inclusive of binary1. Thus byte 0 of BINARY becomes byte
firstByteNumber of binary1, and so on.



16 Chapter 1—Functions

 byteset()
 byteset(binary1, byteNumber, value)

 Sets a byte in a binary field to a specified value, that is, byteset() sets the byte byteNumber
of binary1 to value. The function operates directly on the argument, and returns 1 for
success and 0 for failure.

Calculate STATUS as byteset(binary1, byteNumber, value)

 cap()
 cap(string)

 Returns the capitalized representation of a string, that is, the first letter of each and every
word in the string is capitalized.

cap('gRaVeS, hutton, MONKS')  ;; returns 'Graves, Hutton, Monks'

cap('on the 8TH day')         ;; returns 'On The 8th Day'

 cdif()
 cdif(class1,class2)

 Returns a list of differences between two classes class1 and class2, the first parameter is the
older class, and the second parameter is the newer class.

 The cdif() function returns a binary representation of differences between two OMNIS
library classes of the same type, for example, you can compare two versions of the same
window class.

 If an error occurs during execution, the flag is set to false. #ERRCODE will contain the
error number, and #ERRTEXT will contain the error text. Examples of error text for cdif()
are:

"Classes are of different types and cannot be compared."

"One of the classes to be compared has an invalid structure. (One of
the classes may be corrupt.)"

 An #ERRCODE value of 8095 means that the classes are identical. If no error occurs, the
returned binary representation will contain data items of objects which have changed
between the two classes.



Functions 17

; Define local vars DIF_LIST, OLD_CLASS, and

; NEW_CLASS with Binary type

Calculate OLD_CLASS as $windows.window1.$classdata

Calculate NEW_CLASS as $windows.window2.$classdata

Calculate DIF_LIST as cdif(OLD_CLASS,NEW_CLASS)

If (#ERRCODE)

OK message (High position,Sound bell) {[#ERRTEXT]}

Quit method kTrue

End If

 chk()
 chk(string1,string2,string3)

 Returns true or false depending on a character-by-character comparison of string1 with
string2 and string3 using the ASCII value of each character for the basis of the comparison.

 Firstly, each character of string2 is compared with the corresponding character of string1 to
ensure that, for each character, string2<=string1. A character is said to be less than or
greater than another character if its ASCII code is less than or greater than the ASCII code
of the corresponding character. Secondly and provided string2<=string1, each character of
string1 is compared with the corresponding character of string3 to ensure that, for each
character, string1<=string3. If both conditions are true, that is string2<=string1 and
string1<=string3 are both satisfied, the function returns true, otherwise it returns false.

chk('b','','c')

; the second string is a null

; returns true because 'b'>'' and 'b'<'c'

chk('B','B','C')

; returns true because 'B'='B' and 'B'<'C'

chk('SD04','AA00','ZZ99')

; returns true, since for each character of the respective

; strings, it is true that 'SD04'>'AA00' and 'SD04'<'ZZ99'

; That is, S>=A, D>=A, 0>=0, 4>=0

; and  S<=Z, D<=Z, 0<=9, 4<=9

chk('SDA4','AA00','ZZ99')

; returns false, since in comparing the strings

; 'SDA4' and 'ZZ99', the character 'A'>'9'

chk('SDA4','AA00','ZZ99') + 1 = 0 + 1  ;; returns 1



18 Chapter 1—Functions

 chr()
 chr(number1[,number2]...)

 Returns a string by converting ASCII codes to characters. The first character of the resulting
string has ASCII value number1, second character ASCII value number2, and so on. Any
argument with a value less than zero or greater than 255 is ignored.

 Only normal printable characters should be stored in Character or National fields. Also,
since OMNIS uses the character with ASCII value 0 as the end of string marker, this means
that if you use this character in any other way, the part of the string following the 0 value is
ignored. Control characters in the data file may also cause problems when trying to import
or export data. Records with index fields which contain characters with ASCII value 255
may not have the correct index order. It is safe, however, to have unprintable characters in
the text for the Transmit text commands.

chr(66,111,111,107)         ;; returns 'Book'

chr(257,-1,66,111,111,107)  ;; returns 'Book' (first two ignored)

 cmp()
 cmp(rate,periods)

 Returns the compound interest multiplier for a given interest rate over a given number of
periods, that is, cmp() evaluates the expression (1+(rate/100))periods; the interest rate is
given by the argument rate/100.

 The following approximations are correct to 2 decimal places.

cmp(10,10) = (1+(10/100))10    ;; returns 2.59 approx

cmp(15,25) = (1+(15/100))25    ;; returns 32.92 approx

cmp(5,0.5) = (1+(5/100))0.5    ;; returns 1.02 approx

 con()
 con(string1,string2[,string3]...)

 Returns a string by concatenating or combining two or more string values.

Calculate FirstName as 'Dick'

Calculate LastName as 'Rawkins'

con(FirstName,' ',LastName)

; returns 'Dick Rawkins'

con('OMNIS',' library')

; returns 'OMNIS library'



Functions 19

con('July ',5,'th 19',97)

; returns 'July 5th 1997'

; Note the use of spaces in the above examples

 con() has a limit of 100 parameters. You can exceed this limit by using Calculate CVAR1 as
con(CVAR2,CVAR3) where CVAR2 has 99 items and CVAR3 has 99 items, and so on.

 cos()
 cos(angle)

 Returns the cosine of an angle where the angle is in degrees (or radians if #RAD is true).

cos(60)     ;; returns 0.5

 createnames()
 createnames(file|field1[,file|field2]...)

 Returns the column specification to be used in a SQL Create statement.

 The createnames() function produces a column specification clause suitable for inclusion in
a SQL Create Table statement of the form

NAME1 CHAR(10), NAME2 NUMBER(16,2), NAME3 VARCHAR(n),....

 This specification is based on an OMNIS file class, although you can omit individual fields.
For example, this command creates a temporary table on Sybase based on the file class
AUTHORS:

SQL: Create table TEMP (createnames(AUTHORS))

 The file class AUTHORS supplies the data definition for the table. The advantage of using
createnames() over explicit SQL is that the DAM interface does the work of finding
suitable server data types for you. With the interface your "Create table" looks the same on
Sybase, Oracle, ODBC, and so on, although the actual Create statements generated by
OMNIS will vary with the server type.

 By default, createnames()does not specify whether null values are permitted in each column
created and uses the server default. A further complication is that some servers default to
"not null", others to "null". You can add the options /N (for "null value permitted") or /NN
(for "not null") to createnames() following a field name. For example:

SQL: createnames(field1/N,field2/NN)

; This line generates the function

; field1 Char Null, field2 int Not Null



20 Chapter 1—Functions

 The following example prompts the user with the SQL create function before sending:

; Define class var FCHAR with Character type

Begin SQL script

SQL: createnames(Felements)

End SQL script

Get SQL script {FCHAR}

Yes/No message {Send create statement?: [FCHAR]}

If flag true

Execute SQL script

Else

Reset cursor(s) (Current)

End If

 Field name list
 The general format of the field name list is to combine file and field names in a coma
separated list:

createnames(File1,File2,field1,field3)

 For all the fields in a file,

(filename)

 You can remove particular fields from the values clause by inserting a minus sign before the
field name. For example, to remove the sequence field FSEQ from the clause,

(File1,-FSEQ)

 Field names from a List
 If you have a list variable with field names in the first column, you can include these in the
values clause using the ^listname notation, for example

Set current list LIST_NAMES

Define list {FileClass 1}

Build field names list {FileClass 1}

SQL: Create table TABLE createnames(^LIST_NAMES)

 Qualified Field Names
 If the Unique field names option is turned off, you can use the file|fieldname /Q notation to
force OMNIS to qualify each field with the file name, that is, File1.Fieldname1,
File1.Fieldname2, and so on.

(File1 /Q)

 corresponds to the expression

(File1.FIELDNAME1,File1.FIELDNAME2,....)VALUES
(@[File1.FIELDNAME1],@[File1.FIELDNAME2],..)



Functions 21

 cundif()
 cundif(list,class)

 Restores an older version of a class using the list of differences created by cdif().

 The cundif() function is used to roll back the changes made to a class after having compared
two versions of the same class with cdif(). The list of binary differences must be passed to
an older version of the same class.

; having created DIF_LIST with cdif()...

Calculate OLD_CLASS as cundif(DIF_LIST,NEW_CLASS)

If #ERRCODE

OK message (Sound bell) {[#ERRTEXT]}

Quit method

End If

; now assign the binary field containing the

; class to a window class

Calculate LVAR1 as w1.$classdata.$assign(OLD_CLASS)

If LVAR1=0  ;; class in OLD_CLASS is not valid window

OK message (Sound bell) {The assign has failed...}

Quit method

End If

 Note that you can store multiple sets of differences or “revisions” of a class and, at any
time, “reconstruct” an earlier version by successively applying cundif() against that
particular class.

 dadd()
 dadd(datepart,number,date)

 Adds a number of date parts to a date. The datepart argument can be a number of days,
months, or quarters depending on the constant you use. The number is interpreted as the
number of date or time parts or units specified by a datepart constant. The number
argument must be an integer when specifying datepart as kYear, kMonth, kWeek, kQuarter,
or kCentiSecond (the fractional part of a number is ignored). You can use fractions for the
other date parts.

 The datepart constants that you can use are: kYear, kMonth, kWeek, kQuarter, kDay,
kHour, kMinute, kSecond, kCentiSecond.

; examples assume #D is June 9, 1998

dadd(kDay,3,#D)

; returns June 12, 1998, that is, 3 days are added



22 Chapter 1—Functions

dadd(kWeek,1.2,#D)      ;; returns June 16, 1998

; that is, one week is added, the fraction is ignored

 dat()
 dat(datestring|number[,dateformat])

 Converts a datestring or number to a date value using an optional dateformat string. If you
don’t specify a dateformat, the first argument is converted using #FD. You can use the
following symbols in the dateformat string:
    
 Y  Year (89)  d  Day (12th)

 y  Year (1989)  W  Day of week (5)

 C  Century (19)  w  Day of week (Friday)

 M  Month (06)  V  Short day of week (Fri)

 m  Month (JUN)  E  Day of year (1–366)

 n  Month (June)  G  Week of year (1–52)

 D  Day (12)  F  Week of month (1–6)
    

dat('June 7th, 98')  ;; returns '7 JUN 98' if #FD = 'D m Y'

dat('July 8th, 1998','MDY')  ;; returns '070898'

dat(91,'w, d n, y')

; returns 'Monday, 1st April, 1901' i.e. the 91st day of 1901

 ddiff()
 ddiff(datepart,date1,date2)

 Returns the difference between two dates, date1 and date2, in the units specified by a
datepart constant; the specified dates are included in the evaluation. When you specify one
of the day of the week constants (kSunday thru kSaturday) as the datepart argument, you
get the number of occurrences of that day between the two dates. When you specify kYear,
kQuarter, kMonth, or kWeek as the datepart argument, the function counts the end of years,
quarters, months, or weeks between the two dates.

 The datepart constants that you can use are: kYear, kMonth, kWeek, kQuarter, kDay,
kSunday thru kSaturday, kHour, kMinute, kSecond, kCentiSecond.

ddiff(kMonth,”1/31/98”,”3/1/98”)    ;; returns 2

ddiff(kDay,”5/9/98”,#D)

; returns 31, the number of days between the two dates

; assumes #D is June 9, 1998



Functions 23

 dim()
 dim(datestring,number)

 Increments a datestring by a number of months. Months containing different numbers of
days are accounted for. For example, Jan 31 96 increased by one month gives Feb 29 96,
but beware, Feb 29 96 decreased by one month (using a negative value) gives Jan 29 96, not
Jan 31 96.

dim(dat('4/23/97'),15)  ;; returns 'JUL 23 98' if #FD = 'm D Y'

dim(dat('6/23/98'),-1)  ;; returns 'MAY 23 98' if #FD = 'm D Y'

 dname()
 dname(datepart,date)

 Returns the name of the day or month of a specified date, depending on a datepart constant
which can be either kMonth or kDay.

dname(kMonth,#D)   ;; returns June; assumes #D is June 9, 1998

 dpart()
 dpart(datepart,date)

 Returns a number that represents a part of the specified date depending on the datepart
constant used. This is useful when you want to know the week number (that is, the week of
the year; use kWeek), the day of the year or the day of the week, and so on.

 The datepart constants that you can use are: kYear, kMonth, kWeek, kDayofYear, kQuarter,
kMonthofQuarter, kWeekofQuarter, kDayofQuarter, kWeekofMonth, kDay, kDayofWeek,
kHour, kMinute, kSecond, kCentiSecond.

 When this function returns the week of the year (kWeek) the calculation is based on 1 Jan
being the first day of the first week of the year, the last day of the year is week 53.

dpart(kWeek,#D)    ;; returns 23 (the week number)

dpart(kMonth,#D)   ;; returns 6

; the above assume #D is June 9, 1998

 dtcy()
 dtcy(datestring)

 Returns the year and century of a datestring as a string.

dtcy(#D)            ;; returns '1998'

dtcy('12 06 98')    ;; returns '1998'



24 Chapter 1—Functions

 dtd()
 dtd(datestring)

 Returns the day part of a datestring as a string unless it is part of a calculation in which case
it is returned as a number.

dtd(dat('Jul 21 98'))               ;; returns '21st'

con(dtd(dat('Jul 21 98')),' day')   ;; returns '21st day'

dtd(dat('Jul 21 98')) + 20          ;; returns 41

 dtm()
 dtm(datestring)

 Returns the month part of a datestring as a string unless it is part of a calculation in which
case it is returned as a number.

dtm(dat('Apr 16 1998'))           ;; returns 'April'

dtm(dat('Jul 21 98')) + 20        ;; returns 27

dtm(dat(dat('Jul 21 98') + 20))   ;; returns 'August'

 dtw()
 dtw(datestring)

 Returns the day of the week of a datestring as a string unless it is part of a calculation in
which case it is returned as a number.

dtw(dat('Jun 9 1951'))             ;; returns 'Saturday'

dtw(dat('Jul 21 98')) + 20         ;; returns 22

dtw(dat(dat('Jul 21 98') + 20))    ;; returns ‘Monday’

 dty()
 dty(datestring)

 Returns the year part of a datestring as a string unless it is part of a calculation in which
case it is returned as a number. The string representation of the year part of a date is the set
of numeric characters representing the year, that is, 00, 01, 02, 03, and so on, while the
numeric representation is the number of years since the start of the century.

dty(dat('16 Apr 98'))          ;; returns '98'

dty(dat('Jul 12 98')) + 20     ;; returns 118



Functions 25

 eval()
 eval(fieldname|variable)

 Evaluates a calculation held as a string in fieldname or variable. For example, if CVAR1
contains the string '3*4/2', eval(CVAR1) returns the result 6. You should use this function
with extreme care because a runtime error will occur if the string is not a valid calculation.
You can use the command Test for valid calculation to test a string before attempting to
evaluate it.

Calculate CVAR1 as '3*LVAR1/15.5'

Test for valid calculation {eval(CVAR1)}

If flag true

Calculate TAX as eval(CVAR1)

End If

 evalf()
 evalf(fieldname|variable)

 Evaluates a calculation held as a string but stores the calculation in tokenized form back in
fieldname or variable. The function evalf() is faster than the equivalent eval(); you should
use it when your code will repeat an evaluation several times. You should use it in the Set
search as calculation command and as the calculation for a window list field.

 evalf() takes a single argument that must be a fieldname or variable. If the contents of this
field or variable is the text for a valid calculation, evalf() returns the result of the
calculation, else a runtime error occurs. At the same time, the tokenized form of the
calculation is stored back in the field or variable, so that next time evalf() is called, there is
no need to tokenize or check the string. Tokenizing a string is part of the interpretation
process; once done, OMNIS can evaluate the calculation quickly. If you change the contents
of the field or variable evalf() uses, OMNIS will recognize that the new string requires
checking and tokenizing.

Test for valid calculation {evalf(SEARCH)}

If flag true

Set search as calculation {evalf(SEARCH)}

End If

Find first on TOWN (Use search)

Calculate CVAR1 as 'TAX*100'

Calculate TOTAL as VALUE + evalf(CVAR1)



26 Chapter 1—Functions

 exp()
 exp(number)

 Returns e raised to the power of a given number, or 1e100 on overflow.

exp(0.5)     ;; returns 1.6487

 fact()
 fact(number)

 Returns the factorial of a number rounded to an integer. If number<=0, 1 is returned, and if
number>=70, 1e100 is returned.

fact(4)     ;; returns 24, that is 4*3*2*1

 fday()
 fday(datepart,date)

 Returns the date of the first day of the year, month, week, or quarter in which the specified
date falls.

 The period is specified using one of the following datepart constants: kYear, kQuarter,
kMonth, kWeek.

fday(kWeek,#D)

; returns June 8,  1998 if the start of the week is set to kMonday

fday(kQuarter,#D)

; returns April 1  1998, that is, the first day of the

; quarter in which today falls, #D is June 9, 1998

 fld()
 fld(string1[,string2]...)

 Returns the value of the field name given by concatenating or combining one or more string
values. For example, if the current values of the fields RATE1 and RATE2 are 10 and 15
respectively, then

fld('RATE','1')     ;; returns 10

fld('RATE','2')     ;; returns 15

 fontlist()
 fontlist(listname)

 Returns a list of fonts currently installed in your system, including the font name and type.
The listname parameter is any list field or variable. A return value of 0 indicates no fonts



Functions 27

found or some error, otherwise 1 is returned indicating a list was built. You should define
the following columns in your list field or variable.
   
 Column 1  Column 2 (Optional)  Column 3 (Optional)

 String
variable to
hold name of
the font

 Numeric variable to
hold value (0..7) for
type of font

 String variable to hold a name for the
value in column 2. This will be
combination of "Raster", "Vector",
"TrueType" together with "Fixed" or
"Proportional"

   
Set current list LIST1

Define list (FONT_NAME,FONT_TYPE,FONT_DESCRIPTION)

If fontlist(LIST1) <> 0

Redraw lists

End If

 getfye()
 getfye()

 Returns the current date of the fiscal year end (note no argument).

 getseed()
 getseed()

 Returns the current content of the seed as an integer number (note no argument).

 getws()
 getws()

 Returns the day of the week which is set as the beginning of the week (note no argument).

 The day of the week is returned as one of the datepart constants: kSunday, kMonday,
kTuesday, kWednesday, kThursday, kFriday, kSaturday.

 insertnames()
 insertnames(file|field1[,file|field2]...)

 Returns a list of fields and values to be used in a SQL Insert statement.

 The insertnames() function produces a field name list and a values list suitable for inclusion
in a SQL Insert statement of the form

(NAME1,NAME2,.....) VALUES (@[NAME1],@[NAME2],....)



28 Chapter 1—Functions

 When inserting a complete row for which you have a corresponding set of OMNIS fields,
use

SQL: Insert into FTEL insertnames(FTEL)

 which OMNIS expands to the expression

Insert into FTEL (FTNAME, FTNUM) VALUES (@[FTNAME], @[FTNUM])

 There are cases where you don't want to insert a value (or the default NULL) into certain
columns. You can eliminate some columns from the insert statement like this:

SQL: Insert into FTEL insertnames(FTEL,-FTNUM)

Begin SQL script

SQL: Insert into CLIENTS

SQL: insertnames(CLIENTS,-C_TOWN,-C_CITY,-C_TEL)

 Field name list
 The general format of the field name list is to combine file and field names in a coma
separated list:

createnames(File1,File2,field1,field3)

 For all the fields in a file,

(filename)

 You can remove particular fields from the values clause by inserting a minus sign before the
field name. For example, to remove the sequence field FSEQ from the clause,

(File1,-FSEQ)

 Field names from a List
 If you have a list variable with field names in the first column, you can include these in the
values clause using the ^listname notation, for example

Set current list LIST_NAMES

Define list {FileClass 1}

Build field names list {FileClass 1}

SQL: Create table TABLE createnames(^LIST_NAMES)

 Qualified Field Names
 If the Unique field names option is turned off, you can use the file|fieldname /Q notation to
force OMNIS to qualify each field with the file name, that is, File1.Fieldname1,
File1.Fieldname2, and so on.

(File1 /Q)

 corresponds to the expression

(File1.FIELDNAME1,File1.FIELDNAME2,....)VALUES
(@[File1.FIELDNAME1],@[File1.FIELDNAME2],..)



Functions 29

 int()
 int(number)

 Returns the integer part of a number; it does not round to the nearest integer.

int(23.1056)        ;; returns 23

int('-2.66')        ;; returns -2

abs(int(-1.999))    ;; returns 1

 isfontinstalled()
 isfontinstalled(fontname)

 Returns a true or false value indicating whether the named font has been fully installed into
your system. The fontname argument can be a string literal, character field or variable with
a maximum length of 255.

If not(isfontinstalled('O7Font'))

Ok message { Cannot run library without 'O7Font' }

End If

 isnull()
 isnull(fieldname)

 Returns true if fieldname, a field in the current record, is null. A null value is one where no
value has been entered and the field definition is Can be null without Insert as Empty.

 isnumber()
 isnumber(string[,decimal_char][,thousands_char])

 Returns kTrue if the specified string can be evaluated as a number; kFalse otherwise. The
optional parameters can be used to define the decimal and thousand separator  If the
optional parameters are not specfied the default separators are used, a ‘.’ for the decimal
and a ‘,’ for the thousand.

Calculate STATUS as isnumber(STRING)

; STATUS is kTrue if STRING can be evaluated as a number

 isoweek()
isoweek(date)

Returns the ISO 8601 standard week number for the week containing the specified date.

isoweek(#D)  ;; returns the current iso week number



30 Chapter 1—Functions

 jst()
 jst(string1,number1[,string2,number2]...)

 Returns a string containing the specified string left or right justified with sufficient spaces
added to make a total length specified by number. The jst() function also includes
concatenation. If number is negative the resulting string is right justified, if the number is
positive the string is left justified; number must be in the range 1 to 999.

jst('This is left justified',30)

; gives

|This is left justified        |

jst('This is right justified',-30)

; gives

|       This is right justified|

 When you define the columns for a list, jst() lets you fix the column width and using a non-
proportional font the list columns will line up properly. For example, the calculation for a
list containing the fields CODE and COMPANY could be

jst(CODE,7,COMPANY,25)

 The jst() function also includes concatenation, for example

jst(p1,p2,p3,p4,p5,p6,...)

; is the same as

con(jst(p1,p2),jst(p3,p4),jst(p5,p6),...)

 However it has a limit of 100 parameters, but you can exceed this limit by using
Calculate CVAR1 as jst(CVAR2,CVAR3) where CVAR2 has 99 items and CVAR3 has 99
items, and so on.

 Formatting Strings Using jst()
 The jst() function can take a string for the second argument instead of a number, that is

 jst(string1,string1[,string2,string2]...)

 This form of jst() formats the first string1 argument in a way controlled by the second
string2 argument. The second argument consists of a series of formatting options which you
can use separately or together. Each option is represented by one or more characters. The
order of the various formatting options is not important but the case is.

^n (caret) causes the data to be centered in the field n characters wide.

jst('abc','^5')       ;; returns ' abc '

jst(FIELD,'^25')

; as a list calculation will center the FIELD values in

; a column 25 characters wide



Functions 31

£ places a £ sign in front of the data.

jst(TOTAL,'£')      ;; returns '£12.12' if TOTAL = 12.12

$ places a $ sign in front of the data.

jst(TOTAL,'$')      ;; returns ' $12.12' if TOTAL = 12.12

 < left justification, overriding the default set up in a report class. This is used by the
Ad hoc report generator to control the justification of fields.

Pc causes the part of the field not filled by the data to be filled by character c.

jst('abc','-5P*')   ;; returns '**abc'

X causes the data to be truncated if its length exceeds the field length. The default is
not to truncate.

jst('abcdef','4')     ;; returns 'abcdef'

jst('abcdef','4X')    ;; returns 'abcd'

U causes the data to be converted to upper case.

jst('this IS it','U')     ;; returns 'THIS IS IT'

L causes the data to be converted to lower case.

jst('THIS is IT','L')     ;; returns 'this is it'

C causes the data to be capitalized.

jst('this is it','C')     ;; returns 'This Is It'

jst('THIS IS IT','C')     ;; returns 'This Is It'

jst('this IS IT','C')     ;; returns 'This Is It'

Nnn causes the data to be treated as a fixed decimal number with nn decimal places. If nn
is not specified, a suitable number of decimal places is used.

jst(0.235,'N')      ;; returns '0.235'

jst(0.235,'N2')     ;; returns '0.24'

Fnn causes the data to be treated as a floating decimal number with format specified by
nn. The nn argument can be a positive or negative number and has the same meaning
as described for the #FDP variable. If nn is not specified, it defaults to the current
value of #FDP.

jst(12.35,'-10F9')      ;; returns  '     12.35'

jst(12.35,'-10F-9')     ;; returns  '1.23500000e+01'

jst(12.35,'-10F-3U')    ;; returns  '  1.24E+01'

D causes the data to be treated as a date. The default formatting string is #FD, but you
can specify a formatting string as described later.

jst('26/11/97','DC')

; returns '26 Nov 97' if #FD = 'D m Y'



32 Chapter 1—Functions

DT causes the data to be treated as a long date and time. The default formatting string is
#FDT but you can specify a formatting string using the : (colon) argument as
described below.

jst(#D,'DT')

; returns '26 Nov 97 15:30' if #FDT is 'D m Y H:N'

T causes the data to be treated as a time using the formatting string #FT. You can
include a format string using the : (colon) argument as described below.

jst('0620','T')     ;; returns '06:20' if #FT = 'H:N'

A displays a null value as 'NULL'.

jst(Field1,'A')    ;; returns 'NULL' when Field1 is null

B causes the data to be treated as Boolean.

jst(1,'LB')      ;; returns 'yes'

E applies to numbers only and turns on the 'Zero shown empty' attribute.

jst(0,'N2')      ;; returns '0.00'

jst(0,'N2E')     ;; returns ''

, (comma) applies to numbers only and turns on the 'Shown like 1,234' attribute.

jst(1234,'N2')      ;; returns '1234.00'

jst(1234,'N2,')     ;; returns '1,234.00'

( (open bracket) applies to numbers only and turns on the 'Shown like (1234)'
attribute.

jst(-1234,'N2')      ;; returns '-1234.00'

jst(-1234,'N2(')     ;; returns '(1234.00)'

jst(1234,'N2(')      ;; returns '1234.00'

) (close bracket) applies to numbers only and turns on the 'Shown like 1234-' attribute.

jst(-1234,'N2)'      ;; returns '1234.00-'

jst(1234,'N2)')      ;; returns '1234.00 '

+ (plus sign) applies to numbers only and causes positive numbers to be shown with a
“+” sign.

jst(1234,'N2+')      ;; returns '+1234.00'

jst(1234,'N2)+')     ;; returns '1234.00+'

: (colon) characters following a colon are interpreted as a formatting string. This must
be the last option since all characters following it become part of the formatting
string. The meaning of the formatting string depends on the type of the data.



Functions 33

 The formatting string has a similar format to #FDT if the data is a date/time, using the
following characters:
    
 Y  Year (99)  H  Hour (0..23)

 y  Year (1999)  h  Hour (1..12)

 C  Century (19)  N  Minutes

 M  Month (06)  S  Seconds

 m  Month (JUN)  s  Hundredths

 n  Month (June)  A  AM/PM

 D  Day (12)  V  Short day of week (Fri)

 d  Day (12th)  E  Day of year (1–366)

 W  Day of week (5)  G  Week of year (1–52)

 w  Day of week (Friday)  F  Week of month (1–6)
    

 For example:

jst(#D,'D:w, d n CY')

; returns 'Saturday, 29th November 1997'

cap(jst(#D,'D:V d n Y'))

; returns 'Sat 29th Nov 97'

 The formatting string has a similar format to #FT if the data is a time. #FT is used as the
formatting string if a formatting string is not specified for a time.

jst(#T,'T:H-N')  ;; returns '14-07'

 If the data is neither a date nor a time, and if the formatting string contains an X, the data
value is inserted at the position of the X to produce the data value.

jst(0,'BC:The answer is X!')

; returns 'The answer is No!'

 The formatting string is concatenated to the left of the data value if the formatting string
does not contain an X. The data value is left unchanged if a formatting string is not
specified.

jst(12,'-7N2:$')     ;; returns ' $12.00'

jst(12,'-7N2:£')     ;; returns ' £12.00'

jst(12,'-8N2:DM')    ;; returns ' DM12.00'



34 Chapter 1—Functions

 lday()
 lday(datepart,date)

 Returns the date of the last day of the year, month, week, or quarter in which the specified
date falls.

 The period is specified using one of the following datepart constants: kYear, kQuarter,
kMonth, kWeek.

lday(kWeek,#D)

; returns June 14, 1998 if the start of the week is set to kMonday

lday(kMonth,#D)

; returns June 30 1998, that is the last day of the month

; the above assume #D is June 9, 1998

 len()
 len(string)

 Returns the length of a string, that is, number of characters.

len('Hello there!')  ;; returns 12

len(abs(-10.25))     ;; is the same as len(10.25) which returns 5

len('OMNIS') + 20    ;; returns 25

 list()
 list(row1[,row2]...)

 Returns a list from a number of row variables of identical structure, that is, the data type of
each column in each row variable should match. One row in the list is created for each row
variable passed. For example

Set current list myList

Define list {col1, col2, col3}

Calculate myList as list(row1, row2, row3)

; returns a list from row variables row1, row2, and row3

 If the type of a particular column in the list does not match the type of a row variable
column, list() tries to convert the row variable column to that of the list column, from
number to string, for example. If the column type cannot be converted the column is left
blank.



Functions 35

 ln()
 ln(number)

 Returns the log to base e (the natural logarithm) of a number; or -1e100 if number<=0.

ln(exp(.5))  ;; returns 0.5

 log()
 log(number)

 Returns the log to base 10 of a number; or -1e100 if number<=0.

log(100)     ;; returns 2

log(0.001)   ;; returns -3

 lookup()
 lookup([refname,]searchvalue[,fieldnumber])

 Returns a field value from another data file refname (opened as a lookup file) using a
searchvalue. The fieldnumber argument specifies the particular field in the lookup file to be
returned by the function. Each lookup file is opened using the Open lookup file command at
which time a reference label is assigned to that lookup.

 If you omit the third argument, the value of the second field is returned by default. If one
argument is given, the default lookup file is used, that is, the lookup file which was opened
without a reference label, or the first lookup file opened if all have labels.

 If no exact match is found, an empty value is returned. All field types are returned,
including pictures and long text.

Open lookup file {City/Cities.df1/FCITY/1}

; Reference name is City, file class FCITY

; Uses first field in FCITY as the index

OK message {CNAME is [lookup('City','FOS',2)]}

 low()
 low(string)

 Returns the lower case representation of a string. Any non-alphabetic characters in the
strings are unaffected by low().

low('DAVID')                ;; returns 'david'

low('OrAcLe7')              ;; returns 'oracle7'

low(1017)                   ;; returns '1017'

mid(low(PERIPHERAL),3,3)    ;; returns 'rip'



36 Chapter 1—Functions

 lst()
 lst([[listname,]linenumber,]fieldname)

 Returns the value of fieldname from a line specified by linenumber in a list specified by
listname. The fieldname argument must be a field stored in the list, not a constant or
expression. If listname is not specified the current list is used. If only the fieldname
argument is specified the current line of the current list is used.

lst(L3,23,PRICE)

; returns PRICE field value stored at line 23 of list L3

lst(23,PRICE)

; returns PRICE field value stored in line 23 of the current list

lst(PRICE)

; returns PRICE field value stored at current line of current list

lst(L3,0,LM)

; returns the maximum number of lines in list L3

 max()
 max(value1[,value2]...)

 Returns the maximum value from a list of values. The values should all be numbers when
numeric comparison is used or all strings when string comparison is used.

max(3,6,2,7)                 ;; returns 7

max('dagger','dog','dig')    ;; returns 'dog'



Functions 37

 maxc()
 maxc(listname,column[,ignore_nulls])

 Returns the maximum value for a list column specified by listname and column. If you set
ignore_nulls to 1, null values are ignored and not counted. If you omit this parameter or it
evaluates to zero, nulls are treated as zero values and are counted.

 mid()
 mid(string,position,length)

 Returns a substring of a specified length, starting at a specified position, from a larger
string. If position is less than 1 it is taken as 1, that is the first character; if it is greater than
the length of the string, an empty string is returned. If length is greater than the maximum
length of any substring of string starting at position, the returned substring will be the
remainder of string starting at position.

mid('Information',6,3)    ;; returns 'mat'

int(mid(12.45,2,3))       ;; is the same as int('2.4'), returns 2

mid('interaction',6,24)   ;; returns 'action'

 min()
 min(value1[,value2]...)

 Returns the minimum value from a list of values. The values should all be numbers when
numeric comparison is used or all strings when string comparison is used.

min(3,6,2,7)                ;; returns 2

min('cat','dog','apple')    ;; returns 'apple'

 minc()
 minc(listname,column[,ignore_nulls])

 Returns the minimum value for a list column specified by listname and column. If you set
ignore_nulls to 1, null values are ignored and not counted. If you omit this parameter or it
evaluates to zero, nulls are treated as zero values and are counted.

Calculate LVAR4 as minc(LIST1,Salary,1)



38 Chapter 1—Functions

 mod()
 mod(number1,number2)

 Returns the remainder of a number division, that is, when number1 is divided by number2
to produce a remainder; it is a true modulus function.

mod(6,4)     ;; returns 2

mod(4,6)     ;; returns 4

mod(-5,-2)   ;; returns -1

 mousedn()
 mousedn()

 Returns true if the mouse button is held down, otherwise returns false (note no argument).
This function returns a Boolean value describing the state of mouse button (the left-hand
mouse button under Windows).

 mouseover()
 mouseover(constant)

 Returns information about the mouse position defined by a predefined constant at the
instant the function is evaluated. The function only works in an "open" user-defined window
(not reports or searches). Moreover, it returns references only for fields and not background
objects (text and graphic objects).

 The mouse position is returned in a variety of ways depending on the constant you use. You
can use the following constants:

kMItemref returns a reference to the object under the mouse. The window instance itself
can be returned as item 0 of the window.

kMCharpos returns the nth character in an edit field.

kMLine returns the line number for a list.

kMHorz returns the horizontal position of the mouse relative to the topmost open user-
defined window; if no user-defined window is open, returns the horizontal
position of the mouse relative to the OMNIS application window

kMVert returns the vertical position of the mouse relative to the topmost open user-
defined window; if no user-defined window is open, returns the relative
position to the OMNIS application window



Functions 39

 mouseup()
 mouseup()

 Returns true if the mouse button is released after having been pressed, otherwise returns
false (note no argument).

 msgcancelled()
 msgcancelled()

 Returns true if the Cancel button is pressed on a message box. For example, you can use this
to distinguish between No and Cancel on a Yes/No message which both clear the flag.

Yes/No message (Cancel button) {Do you want to proceed?}

If flag false

If not(msgcancelled())

; user chose No

End If

Else

; user chose Yes

End If

 nam()
 nam(fieldname)

 Returns the name of a field as a string; fieldname must be a field name or variable, not a
constant or an expression.

nam(CCODE) ;; returns the string 'CCODE'

nam(#SUBFLD) ;; returns the name of the subtotal field

 natcmp()
 natcmp(value1,value2)

 Returns the result of comparing two values using the national sort ordering. Returns 0 if the
strings are equal, 1 if value1 > value2, and -1 if value1 < value2. Both values are converted
to strings before the comparison is made. natcmp() uses the same rules for comparing the
strings as it does for normal strings, except that it uses the national sort ordering.

natcmp(value1,value2)      ;; returns 0 if values are equal



40 Chapter 1—Functions

 nday()
 nday(datepart,date)

 Returns the date of the day after the specified date when the datepart constant is set to
kDay. However, if one of the day of the week constants is used, this function returns the
date of that day of the week following the specified date.

 The datepart constants that you can use are: kDay, kSunday, kMonday, kTuesday,
kWednesday, kThursday, kFriday, kSaturday.

nday(kDay,#D)         ;; returns June 10, 1998

nday(kMonday,#D)

; returns June 15, 1998 which is the next Monday after #D

; the above assume #D is June 9, 1998 which is a Tuesday

 not()
 not(expression)

 Returns the Logical Not of an expression.

 All expressions in OMNIS have a Boolean (truth) value. Firstly, non-zero numeric values
(including negative values) are TRUE, zero values are FALSE. Secondly, string values are
TRUE or FALSE depending on their numeric equivalent. String '1' has boolean value 1,
therefore not('1') is 0. 'Bill' has boolean value 0, 'YES' has numeric value 0.

not(2501)             ;; returns 0

not('Hello there!')   ;; is the same as not(0) which returns 1

 The numeric value of an expression that evaluates to true is 1, therefore not(true) is 0.
Similarly, not(false) is 1.

not(31<45)       ;; is the same as not(true) which returns false

 You can use not() to make method code more readable.

Do method ProcessList Returns Done

If not(Done)

..

 oemchar()
 oemchar(code)

 Returns a string containing the PC symbol for the specified code (available under Windows
only). You can display the result with the Windows Terminal font, since these characters are
intended for DOS use only.



Functions 41

 oemcode()
 oemcode(string,index)

 Returns the current PC character code for the specified string (available under Windows
only). The result will depend on the nationality and code-page used, as installed by
Windows' setup.

 omnischar()
 omnischar(code)

 Returns a character for the specified code as defined by the OMNIS character set (available
under Windows only). These characters are useful to display under MacOS, but most you
can display with a full TrueType font. Some characters you can display only with an
Accuware font, and some will have no representation at all. You can find the code for a
character using omniscode().

 omniscode()
 omniscode(string,index)

 Returns the OMNIS code or character value/number (available under MacOS) for the
specified character within a string (the function is available under Windows only).

Calculate LVAR1 as omniscode(‘ABC’,1)

; returns the OMNIS code for the first character

 pday()
 pday(datepart,date)

 Returns the date of the day before the specified date when the datepart constant is set to
kDay. However, if one of the day of the week constants is used, this function returns the
date of that day of the week preceding the specified date.

 The datepart constants that you can use are: kDay, kSunday, kMonday, kTuesday,
kWednesday, kThursday, kFriday, kSaturday.

pday(kDay,#D)          ;; returns June 8, 1998

pday(kThursday,#D)

; returns June 4, 1998 which is the Thursday before #D

; the above assume #D is June 9, 1998 a Tuesday



42 Chapter 1—Functions

 pick()
 pick(number,value0,value1[,value2]...)

 Selects an item from a list of values (strings or numbers) depending on the value or result of
the number argument.

 The number argument is rounded to an integer and used to select the item. value0 is
returned if the result is 0, value1 if the result is 1, value2 if the result is 2, and so on. If the
number is less than zero or greater than the number of values in the list, an empty value is
returned. Note the list of values can be a mixture of string and numeric values.

pick(LVAR2,123,'ABC','abc')   ;; returns 123 if LVAR2 evaluates to 0

pick(LVAR1,2200,4500,6800)    ;; returns 6800 if LVAR1 = 2

pick(LVAR30,'one',2,'three')  ;; returns null if LVAR30 = 5

 pos()
 pos(substring,string)

 Returns the position of a substring within a larger string. The substring must be contained
within string in its entirety for the returned value to be non-zero. Also, the comparison is
case sensitive and only the first occurrence of substring is returned (see third example).

pos('Mouse','Mickey Mouse')     ;; returns 8

pos('mouse','Mickey Mouse')     ;; returns 0, note case

pos(' ','R S W Smith')

; returns 2, that is the position of the first space character

 For example, you can strip the extension from a file name using mid() and pos() combined,
as follows.

If pos('.',FileName)    ;; if FileName contains a dot

Calculate FileName as mid(FileName,1,pos('.',IntName)-1)

End If

 pwr()
 pwr(number,power) raises a number to a power.

pwr(2,5)            ;; returns 32

pwr(21.37,0.831)    ;; returns 12.74 approx

int(pwr(1.105,5))   ;; is the same as int(1.65) which returns 1



Functions 43

 rand()
 rand()

 Returns a real number in the range 0.0 < number > 1.0, inclusive (note no argument is
required).

 randintrng()
 randintrng(number1,number2)

 Returns an integer between number1 and number2, inclusive.

 randrealrng()
 randrealrng(number1,number2)

 Returns a real number between number1 and number2, inclusive.

 replace()
 replace(source-string, target-string, replacement-string)

 Replaces the first occurrence of the target-string, within the source-string, with the
replacement-string. The replace() function returns the new string containing the changes, if
any. If you replace part of a window field’s contents, you should redraw it.

Calculate NEW_STRING as replace(STRING,chr(65),'a')

; replaces the first occurrence of upper case A in STRING

; with lower case a, and places the result in NEW_STRING

 replaceall()
 replaceall(source-string, target-string, replacement-string)

 Replaces all occurrences of the target-string, within the source-string, with the
replacement-string. The replaceall() function returns the new string containing the changes,
if any. If you replace part of a window field’s contents, you should redraw it.

Calculate NEW_STRING as replaceall(STRING,'_','-')

; replaces all occurrences of underscores in STRING with hyphens

; and places the result in NEW_STRING



44 Chapter 1—Functions

 rgb()
 rgb(red,green,blue)

 Sets the color of an object. The three arguments red, green, blue correspond to the RGB
value of the desired color; each must be an integer in the range 0–255. For example, yellow
has an RGB value of 255,255,0.

Do $cinst.$objs.FIELD1.$forecolor.$assign(rgb(0,178,178))

; changes the object forecolor to green

 rmousedn()
 rmousedn()

 Returns true if the right mouse button is held down (under Windows), or the Ctrl key is held
down while the mouse is clicked (under MacOS). If rmousedn() is true, mousedn() is also
true but not vice versa. (Note no argument is required.)

 rmouseup()
 rmouseup()

 Returns true if, after being pressed, the right mouse button is up (in Windows) or the mouse
is up after it has been pressed with the Ctrl key held down (under MacOS). (Note no
argument is required.)

 rnd()
 rnd(number,dp)

 Rounds a number to a number of decimal places specified in dp.

rnd(2.105693,5)    ;; returns 2.10569

rnd(2.105693,3)    ;; returns 2.106

rnd(0.5,0)         ;; returns 1

 It is often essential to use rnd() when comparingany two variables with field values to round
the values to the same precision. For example

If rnd(LVAR1,2) = NUMBERFIELD  ;; if NUMBERFIELD is a Number 2 dp

; do what's expected

Else...



Functions 45

 rolldice()
 rolldice(number,faces)

 Returns the result of a die roll. You specify the number of dice to roll and the number of
faces on each die.

Calculate DICEROLL as rolldice(2,6)

; rolls two normal, six-sided dice and puts the result in DICEROLL

 rollstring()
 rollstring(stringformula)

 Returns the result of a die roll from a string formula. The format of the stringformula is:

rollstring NdF [ + - * / offset ]

 where N is the number of dice, d is a delimiter, and F is the number of faces for each die. In
addition, you can add, subtract, multiply, or divide by an offset. For example

Calculate MY_NUM as rollstring(‘2d6’)

; returns the result of rolling two standard six-faced dice

Calculate MY_NUM as rollstring(‘3d6+1’)

Calculate MY_NUM as rollstring(‘12d4+6’)

 row()
 row(variable1[,variable2]...)

 Creates a row variable from a number of variables; it creates one column for each variable
passed.

Calculate myRowVar as row(var1, var2, var3)

; creates a row variable with the columns var1, var2, and var3

 selectnames()
 selectnames(file|field1[,file|field2]...)

 Returns a list of field names to be used in a SQL Select statement.

 The selectnames() function produces a comma-separated list of field names suitable for
inclusion in a SQL Select statement and elsewhere of the form

NAME1,NAME2,.....

 The following examples use the file class FTEL which contains two fields FTNAME and
FTNUM. The file FTEL is also a table on the server:



46 Chapter 1—Functions

Perform SQL {Select selectnames(FTEL) from FTEL}

; sends the statement: Select FTNAME, FTNUM from FTEL

; and

Perform SQL {Select selectnames(FTEL,-FTNUM) from FTEL}

; sends the statement: Select FTNAME from FTEL

 Field name list
 The general format of the field name list is to combine file and field names in a coma
separated list:

createnames(File1,File2,field1,field3)

 For all the fields in a file,

(filename)

 You can remove particular fields from the values clause by inserting a minus sign before the
field name. For example, to remove the sequence field FSEQ from the clause,

(File1,-FSEQ)

 Field names from a List
 If you have a list variable with field names in the first column, you can include these in the
values clause using the ^listname notation, for example

Set current list LIST_NAMES

Define list {FileClass 1}

Build field names list {FileClass 1}

SQL: Create table TABLE createnames(^LIST_NAMES)

 Qualified Field Names
 If the Unique field names option is turned off, you can use the file|fieldname /Q notation to
force OMNIS to qualify each field with the file name, that is, File1.Fieldname1,
File1.Fieldname2, and so on.

(File1 /Q)

 corresponds to the expression

(File1.FIELDNAME1,File1.FIELDNAME2,....)VALUES
(@[File1.FIELDNAME1],@[File1.FIELDNAME2],..)

 server()
 server(function)

 Sends a server function direct to the DAM in the current session.

 The server() function takes an argument in which you specify a function to be carried out
within the SQL interface. The result can be returned to OMNIS by including the function
call in a Calculate command, for example



Functions 47

Calculate RESULT as server('Version')

; RESULT contains the version number of the active DAM

Calculate PATH as server('Path')

; PATH contains the directory path of the DAM

Calculate API as server('vendorAPI')

; API contains the directory path of server API if

; available, otherwise returns -1 if not available

Calculate DAM as server('DAM')

; DAM contains the name of the current DAM

Calculate FILE as server('File')

; FILE contains the file name of the current DAM

 Other functions are specific to the server and are documented with the installation notes for
the particular interface.

 setfye()
 setfye(date)

 Sets the date of the fiscal year end. The date does not have to be in the current year, that is,
the function ignores the year part of the date. The setting of the fiscal year end affects all
other date functions that involve quarters. It returns the previous value so you can save it for
later use.

setfye(‘MAR 31’)     ;; sets the fye to March 31st

setfye(‘12 31 98’)

; sets the fye to December 31st & ignores the year

 setseed()
 setseed(seed)

 Sets the random number seed for the random functions, such as rand(). setseed() converts
seed into a Long number. It returns the previous seed as an integer number.

 setws()
 setws(datepart)

 Sets the beginning of the week to a particular day, using one of the day of the week datepart
constants. It returns the previous value so you can save it for later use. If the datepart is
invalid this function still returns the week start but does not change it.

 The datepart constants that you can use are: kSunday, kMonday, kTuesday, kWednesday,
kThursday, kFriday, kSaturday.

setws(kMonday)   ;; sets Monday as the week start



48 Chapter 1—Functions

 shufflelist()
 shufflelist(sourcelist, targetlist, number)

 Shuffles the items in sourcelist, the specified number of times, and puts the results in
targetlist. A value of 2 or 3 for number provides a good shuffle. shufflelist() does not
support Binary fields, List fields, and Picture fields stored in a list. An empty or null date
converts to '31 DEC 00' in the targetlist.

 sin()
 sin(angle)

 Returns the Sine of an angle where the angle is in degrees (or radians if #RAD is true).

sin(30)     ;; returns 0.5

 sqr()
 sqr(number)

 Returns the square root of a number. OMNIS defines the square root of a negative number
X as sqr(abs(X)).

sqr(100)                 ;; returns 10

sqr('-301.56')           ;; returns 17.37 approx

mid('OMNIS',sqr(16),2)   ;; returns 'is'

 stddevc()
 stddevc(listname,column[,ignore_nulls])

 Returns the standard deviation for a list column specified by listname and column. If you set
ignore_nulls to 1, null values are ignored and not counted. If you omit this parameter or it
evaluates to zero, nulls are treated as zero values and are counted.

Calculate %RESULT as jst(stddevc(LIST,COL),’N2’)

; returns the standard deviation rounded to 2 decimal places



Functions 49

 strpbrk()
 strpbrk(string1, string2)

 Returns a substring of string1 from the point where any of the characters in string2 match
string1.

Calculate CVAR1 as “this is a test”

Calculate CVAR2 as strpbrk(CVAR1, “ absj”)

OK Message { Result = [CVAR2] }

; displays the message “s is a test”!

 strspn()
 strspn(string1, string2)

 Returns the index of the first character in string1 that does not match any of the characters
in the string2.

Calculate LENGTH as strspn(STRING, CONTAINEDCHARS)

; If STRING does not contain any of the characters in

; CONTAINEDCHARS, zero is returned in LENGTH

 strtok()
 strtok(‘string1’, string2)

 Tokenizes string1, using string2 as the delimiter with which to tokenize. This function
returns tokens which are a substring of string1 until any character in string2 matches a
character in string1. When strtok() is called, the token found in string1 is removed, so that
the function looks for the next token the next time it is called.

Calculate CVAR1 as “The quick brown fox, jumped over the lazy dog”

Repeat

Calculate CVAR2 as strtok( ‘CVAR1’, “,  ” )

OK Message { Token = [CVAR2] }

Until CVAR2 = ‘’

; returns each word in CVAR1 in an OK Message



50 Chapter 1—Functions

 style()
 style(style-character[,value])

 Inserts a style-character represented by an OMNIS constant into a calculation. Depending
on the style character, you can also specify a value, which itself can be a constant. You can
use this function to format the columns in a headed list box field. You can insert an icon by
specifying its ID, a center tab, right tab, left tab, a color value, or text property such as
italic. For example, to format the columns in a headed list box you could use the following
calculation

con(Col1,style(kEscBmp,1756),chr(9),
Col2,style(kEscColor,kRed),style(kEscRTab),chr(9),

Col3,style(kEscStyle,kItalic))

; gives Col1 a blue spot icon, Col2 is red and

; right-justified, and Col3 italic



Functions 51

 sys()
 sys(number)

Returns information about the current system depending on a number argument. Using the
sys() function, you can obtain system information such as the current printer name, the
pathname of the current library, the screen width or height in pixels, and so on. The
following example uses sys(6) to test the current OS and branches accordingly.

; declare lvListHD of List type, and lvFolder of Char type

Do lvListHD.$define(lvFolder)

If sys(6) = ‘M’   ;; on MacOS

  Get folders (lvListHD,lvFolder,’Mac HD’)

Else    ;; on other platforms

  Get folders (lvListHD,lvFolder,’C:\’)

End If

Do lvListHD.$sort(lvFolder)

Redraw lists      ;; if it’s a window list

You can use the following number values with the sys() function.

Sys(n) Description

1 returns the OMNIS version number.

2 returns the OMNIS program type byte:
bit 0 = full program (value 1),
bit 1 = runtime (value 2),
bit 2 = evaluation (value 4),
bit 3 = integrated (value 8),
bit 4 = unicode (value 16).
For example, a runtime evaluation returns 6, that is 2+4. Note that the current
version of OMNIS does not support the use of integrated versions

3 returns your company name entered on installation.

4 returns your name entered on installation.

5 returns your serial number entered on installation.

6 returns the platform code of the current executable:
'W' = Windows 3.x or Windows 95,
‘N’ = Windows NT,
'M' = Mac or PowerMac,
'S' = OS/2,
‘U’ = UNIX.

7 returns a string containing the version number of the current OS. For
example, returns "3.11" under Windows for Workgroups version 3.11, "4.0"
under Windows 95, and "7.5" under MacOS System Software 7.5.



52 Chapter 1—Functions

Sys(n) Description

8 returns the platform type of the current OMNIS program as a string:
'MAC68K', 'MAC600', 'WIN16', 'WIN32', 'OS2'

10 returns the pathname of the current open library file.

11,..,20 returns the pathname(s) of the current open data file segment(s) (empty if
none are open).

21 returns the pathname of the current print file name (empty if not open).

22 returns the pathname of the current import file name (empty if not open).

23 returns the current port name (empty if no port open).

24 returns the current report device, for example, Printer, Screen, Preview, File
(Screen is the default).

30,..,49 returns the name of the installed user-defined menu(s) starting from the left-
most menu (empty if none are installed).

50,..,79 returns the name of the open user-defined window(s) starting with the top
window (empty if none are open).

80 returns the current report name (empty if no report set).

81 returns the current search name (empty if no search set).

82 returns the main file name (empty if no main file set).

83 returns the number of records in main file.

85 returns the name of currently executing method in the form class
name/method number.

86 returns a list of event parameters for the current event. The first parameter is
always pEventCode containing an event code representing the event, for
example, evClick for a click on a button: a second or third event parameter
may be supplied which tells you more about the event

87 returns horizontal screen resolution in pixels per inch

88 returns vertical screen resolution in pixels per inch

89 returns the text for the current search calculation, or empty if no calculation
is set.

91 returns the decimal separator

92 returns the thousand separator

93 returns the parameter separator for calculations

94 returns the file class field name separator

101 returns the current printer name, and network path (empty if not connected).

104 returns the screen width in pixels.



Functions 53

Sys(n) Description

105 returns the screen height in pixels.

106 (MacOS only) returns the application heap size in bytes (empty on other
platforms).

107 (MacOS only) returns the current free memory in bytes in the application
heap after adding memory used for discardable objects (empty on other
platforms).

108 (MacOS only) returns the current free memory in bytes in the application
heap without adding memory used for discardable objects (empty on other
platforms).

109 returns the unused memory in bytes. OMNIS attempts to use this for sorting
and lists.

110 returns the CPU type for PCs, Macs, and compatibles. For PC: 3 = 80386, 4
= 80486, 5 = Pentium. For Mac: 3 = 68030, 4 = 68040. For PowerMac: 257
= PowerPC 601, 259 = PowerPC 603, 260 = PowerPC 604.

111 (MacOS only) returns the Apple ROM version: 121 = SI, 124 = IIsi, CI &
FX.

112 (MacOS only) returns 1 (true) if balloon help is available, 0 otherwise.

113 (MacOS only) returns 1 (true) if Publish and Subscribe is available, 0
otherwise.

114 (MacOS only) returns 1 (true) if Apple events are available, 0 otherwise.

115 returns the pathname of the folder containing the OMNIS executable,
including the terminating path separator.

120 (Windows 95 only) returns the width of the current dialog base-width unit
based on the current system font; differs for Small and Large font mode.

121 (Windows 95 only) returns the height of the current dialog base-width unit
based on the current system font; differs for Small and Large font mode.

130 returns the server name for the current session. For example, 'Oracle version
[1.2 r0]' (empty if no server connected).

131 returns the SQL error code, or 0 for no error.

132 returns the SQL error text for the current error code (empty if not available).

133 returns the number of columns for the current Select table.

134 returns the number of rows processed by the previous Insert, Delete, or
Update statement, returns 0 for most other statements.

135 returns the number of rows fetched from the Select table.

136 returns the name of the current cursor.



54 Chapter 1—Functions

Sys(n) Description

137 returns the name of the current session.

138 returns the number of Result sets to come back from the server following a
Select. Returns 0 if no more results.

 tan()
 tan(angle)

 Returns the Tangent of an angle where the angle is in degrees (or radians if #RAD is true).

tan(45)      ;; returns 1

 textsize()
 textsize(string,fontname,pointsize,style,’width’,’depth’)

 Returns the width and depth in pixels of the specified text or string. The string parameter
can be a literal string or character variable with a maximum length of 255; fontname is the
name of the font; pointsize the point size of the font; style is represented by an integer, that
is, 0 = Normal, 1 = Bold, 2 = Italic, 4 = Underline (or a combination of these: 3 would be
bold-italic, for example). The width and depth parameters hold the returned values in pixels.
The width and depth parameters are integer variables to hold the width and depth values
returned; these must be in quotes. The function also returns a value of 0 to indicate the font
does not exist or an error occurred, otherwise 1 is returned indicating the text was found.

; Declare class vars TWIDTH (Integer), TDEPTH (Integer),

; MYTEXT (Character 255), FONTNAME (Character),

; FONTSIZE (Integer), and STYLE (Integer)

Calculate STYLE as 6      ;; Italic Underline

Calculate FONTNAME as "Arial"

Calculate FONTSIZE as 16

If textsize(MYTEXT,FONTNAME,FONTSIZE,STYLE,’TWIDTH’,’TDEPTH’)<>0

; do something depending on TWIDTH or TDEPTH

Else

; Font didn't exist or error occurred

End If

 tim()
 tim(number[,timeformat]) converts the specified number to a time determined by the
timeformat argument; #FT is used as the time formatting string if the second argument is not
specified. If the first argument is already a date/time, its format is changed to the format
given by the second argument.



Functions 55

 The #FT string defaults to 'H:N' and so tim(number) takes number to be a number of
minutes. If you supply a format string such as 'N.S', number will be taken as a number of
seconds.

tim(1)            ;; returns 00:01 when #FT is H:N (the default)

tim(950)          ;; returns 15:50

tim(950,'H:N.S')  ;; returns 00:15.50, that is 950 seconds

 With a second argument, tim() is equivalent to dat() with two arguments. The format string
determines how the conversion is carried out.

 tot()
 tot([listname,]fieldname)

 Returns the total of the stored values of fieldname in a list specified by listname. The
fieldname argument must be a field stored in the list, not a constant or expression. If the
listname argument is not specified the current list is used. This function does not work for
table based lists. If fieldname is not a numeric field, all values are converted to their
numeric equivalents before being accumulated, for example

tot(LIST2,COST)

; returns total of all COST field values stored in list LIST2

tot(COST)

; returns total of all COST field values stored in current list

tot(#LSEL)

; returns total number of selected lines in the current list

 totc()
 totc([listname,]expression)

 Returns the total of an expression evaluated for a list specified by listname. If the listname
argument is not specified the current list is used. This function does not work for table
based lists.

 This is a more general version of the tot() function. The expression is totaled for the lines in
the specified list. For example, if list LIST1 contains field NUMBER, the sum of the squares
of all the values of NUMBER in the list is:

totc(LIST1,NUMBER*NUMBER)

; note that totc(LIST1,NUMBER) is the same as tot(LIST1,NUMBER)



56 Chapter 1—Functions

trim()
trim(string[,leading=kTrue,trailing=kTrue,character=space_char])

Removes the specified leading and/or trailing character from the string. You specify the
character to be removed in the character argument. If this is omitted the space character is
removed from the string by default.

trim(' ABCDE ') ;; returns 'ABCDE'

trim('*****ABCDE*****',kTrue,kFalse,'*') ;; returns 'ABCDE*****'

truergb()
truergb(color)

Converts the specified color into its true RGB value and returns the result.

truergb(kRed) ;; returns RGB value for red

truergb(rgb(255,0,0)) ;; returns RGB value for red

 updatenames()
 updatenames(file|field1[,file|field2]...)

 Returns a list of files and/or fields to be used in a SQL Update statement.

 The updatenames() function produces a "set" clause suitable for inclusion in a SQL Update
statement of the form

SET NAME1=@[NAME1], NAME2=@[NAME2],....

 If you do not want to update certain columns, you can eliminate some columns from the
update statement like this:

SQL: Update FTEL updatenames(FTEL,-FTNUM)

; sends: Update FTEL SET FTNAME = @[FTNAME]

 For example, to update a range of fields from the FCLIENTS file use

SQL: Update Table updatenames(CNAME..CCITY) WHERE wherenames(CKEY)

 And, to update all the columns in FCLIENTS except C_SEQ use

SQL: Update Table updatenames(FCLIENTS,-C_SEQ) WHERE
wherenames(CKEY)

 Field name list
 The general format of the field name list is to combine file and field names in a coma
separated list:

createnames(File1,File2,field1,field3)

 For all the fields in a file,



Functions 57

(filename)

 You can remove particular fields from the values clause by inserting a minus sign before the
field name. For example, to remove the sequence field FSEQ from the clause,

(File1,-FSEQ)

 Field names from a List
 If you have a list variable with field names in the first column, you can include these in the
values clause using the ^listname notation, for example

Set current list LIST_NAMES

Define list {FileClass 1}

Build field names list {FileClass 1}

SQL: Create table TABLE createnames(^LIST_NAMES)

 Qualified Field Names
 If the Unique field names option is turned off, you can use the file|fieldname /Q notation to
force OMNIS to qualify each field with the file name, that is, File1.Fieldname1,
File1.Fieldname2, and so on.

(File1 /Q)

 corresponds to the expression

(File1.FIELDNAME1,File1.FIELDNAME2,....)VALUES
(@[File1.FIELDNAME1],@[File1.FIELDNAME2],..)

 upp()
 upp(string)

 Returns the upper case representation of a string. Any non-alphabetic characters in the
string are ignored.

upp('Author')                ;; returns 'AUTHOR'

upp(‘oMnIs’)                 ;; returns ‘OMNIS’

upp(mid('peripheral'),3,3)   ;; returns 'RIP'

 wherenames()
 wherenames([comparison][,operator,]field1[,field2]...)

 Returns a constraining Where clause to be used in a SQL statement.

 wherenames() is used as a shortcut when creating Select, Update or Delete statements which
include the constraining Where clauses such as

Select * from Table WHERE Column = OMNIS_Value

; For example, WHERE KEY = [KEY]



58 Chapter 1—Functions

 wherenames() is most useful when there is a one-to-one correspondence between the name
of the remote table key and the OMNIS field name that defines the row. Thus the command

Perform SQL {Select * from Table Where wherenames('=',KEY) }

 is expanded by OMNIS to

Select * from Table where KEY = @[KEY]

 When you create methods which are called with arguments such as the Table name and
unique key, you can use square bracket notation to generalize the expression:

; Method 1

; Define parameter vars KEY and TABLE with Character type

; Call me with the name of the table and the key

SQL: Select * from [TABLE] WHERE wherenames('=', [KEY])

 wherenames() takes three arguments: a comparison (=, >=, <=, >, <, <>,LIKE, NOT
LIKE,!=) which defaults to = when omitted, a logical operator (AND, OR) defaulting to
AND, and a field name list. Both the comparison and the logical operator should be
enclosed in single quotes. The list of field names to be used in the Where clause can be
from an OMNIS list as described earlier. See the following examples:

wherenames('>=',PCODE)

; becomes

PCODE >= @[PCODE]

wherenames('<=',PCODE,PTOWN)

; becomes

PCODE <= @[PCODE] AND PTOWN <= @[PTOWN]

wherenames('>','OR',PCODE,PTOWN)

; becomes

PCODE > @[PCODE] OR PTOWN > @[PTOWN]



FileOps External Functions 59

FileOps External Functions
$changeworkingdir()
$changeworkingdir(path)

Changes the current working directory to the directory named in path. $changeworkingdir()
only switches between folders on the same drive, not between drives. The function returns
an error number, or zero if successful: see the FileOps function error codes at the end of this
section.

Switch sys(6)

  Case ‘M’ ;; for MacOS

    Do FileOps.$changeworkingdir('HD:Omnis:Examples') Returns
lvError

  Default ;; for other platforms

    Do FileOps.$changeworkingdir('c:\omnis\examples') Returns
lvError

End switch

OK message {Working directory is now: [FileOps.$getworkingdir()]}

$copyfile()
$copyfile(from-path [,to-path])

Copies the file specified in from-path to the new location in to-path. You can use this
function to copy and rename the specified file to the same folder or a different location. The
file named in to-path should not already exist. The function returns an error number, or zero
if successful: see the FileOps function error codes at the end of this section.

Do
FileOps.$copyfile('c:\omnis\test.txt','c:\omnis\examples\test.txt
') Returns lvError

; copies ‘test.txt’ to the ‘examples’ folder

Do
FileOps.$copyfile('c:\omnis\test.txt','c:\omnis\examples\test2.tx
t') Returns lvError

; copies and renames ‘test.txt’ to ‘test2.txt’ in the ‘examples’
folder

Do FileOps.$copyfile('c:\omnis\test.txt','c:\omnis\test2.txt')
Returns lvError

; copies and renames ‘test.txt’ to ‘test2.txt’ in the same folder



60 Chapter 1—Functions

$createdir()
$createdir(path)

Creates the folder specified in path. The folder named in path must not already exist.
$createdir() does not create intervening folders, it only creates the last folder named in
path, therefore the intervening folders should already exist. The function returns an error
number, or zero if successful: see the FileOps function error codes at the end of this section.

Do FileOps.$createdir('c:\omnis\examples\extcomp\clock') Returns
lvError

; creates the ‘clock’ folder assuming c:\omnis\examples\extcomp is a
valid path

$deletefile()
$deletefile(path)

Deletes the file or folder named in path. Files deleted with $deletefile() are not moved into
the Recycled bin or Trash can, they are deleted irreversibly. You can delete a folder with
$deletefile(), but only if it is empty. The function returns an error number, or zero if
successful: see the FileOps function error codes at the end of this section.

Do FileOps.$deletefile('c:\omnis\examples\extcomp\test2.txt')
Returns lvError

; deletes ‘test2.txt’ at 'c:\omnis\examples\extcomp’

Do FileOps.$changeworkingdir('c:\omnis') Returns lvError

Do FileOps.$deletefile('test3.txt') Returns lvError

; deletes ‘test3.txt’ at the current folder ‘c:\omnis’

Do FileOps.$deletefile('c:\omnis\examples\extcomp\clock') Returns
lvError

; deletes the ‘clock’ folder if empty



FileOps External Functions 61

$doesfileexist()
$doesfileexist(path)

Returns true if the file or folder named in path exists. The function returns an error number,
or zero if successful: see the FileOps function error codes at the end of this section.

Do
FileOps.$doesfileexist('c:\omnis\examples\extcomp\clock\test2.txt
') Returns lvStatus

; lvStatus (Boolean) returns true if ‘test2.txt’ exists at
'c:\omnis\examples\extcomp\clock’

Switch sys(6)

  Case ‘M’ ;; for MacOS

    Do FileOps.$changeworkingdir('HD:Omnis:Tutorial’) Returns
lvError

  Default ;; for other platforms

    Do FileOps.$changeworkingdir('c:\omnis\tutorial’) Returns
lvError

End switch

Do FileOps.$doesfileexist('mylib.lbs') Returns lvStatus

; returns true if ‘mylib.lbs’ exists at the current folder
'c:\omnis\tutorial'

$filelist()
$filelist( include ,path, [what-info, filter]) Returns list-name

Returns a list containing a directory listing of the files, folders, and/or volumes in the folder
specified in path. You specify what to include in the file list by specifying any one or a
combination of the constants kFileOpsIncludeFiles, kFileOpsIncludeDirectories, and
kFileOpsIncludeVolumes (you + multiple constants). You can specify what-info is returned
by including any one or a combination of the kFileOpsInfo… constants, such as
kFileOpsInfoSize, kFileOpsInfoCreated, otherwise the file name only is returned in the first
column of the list. To return the long name under 32-bit Windows you must specify
kFileOpsInfoFullName. The list returned by $filelist() can contain up to 11 columns always
in the following order, regardless of the info requested or the order you specify the what-
info constants.



62 Chapter 1—Functions

Col Col name what-info constant description

1 name kFileOpsInfoName name of the file

2 name83 kFileOpsInfoName83 DOS 8.3 name of the file

3 fullname kFileOpsInfoFullName 32-bit Windows long name of the file

4 readonly kFileOpsInfoReadOnly file’s read-only status

5 hidden kFileOpsInfoHidden file’s hidden status

6 size kFileOpsInfoSize logical size of file

7 actualsize kFileOpsInfoActualSize physical size of file on disk; same as
logical size under Windows

8 created kFileOpsInfoCreated date and time the file was created

9 modified kFileOpsInfoModified date and time the file was modified

10 creator kFileOpsInfoCreatorCode the file’s creator under MacOS, blank
under Windows

11 type kFileOpsInfoTypeCode the file’s type under MacOS, the file
extension under Windows

You can also apply a filter which specifies the file type or extension of the files to be
included. For example, you can specify text files using ‘*.txt’ under Windows, or ‘TEXT’
under MacOS. The function returns an error number, or zero if successful: see the FileOps
function error codes at the end of this section.

Do FileOps.$filelist(kFileOpsIncludeFiles+
kFileOpsIncludeDirectories,'c:\omnis') Returns lvList

; returns a list of the files and folders in the main OMNIS folder

Do FileOps.$filelist(kFileOpsIncludeFiles, 'c:\omnis\external',
kFileOpsInfoName+kFileOpsInfoCreated+kFileOpsInfoSize, '*.dll')
Returns lvList

; returns a list of DLLs in the OMNIS\EXTERNAL folder including the
name, size, creation date and time of each file

Do FileOps.$filelist(kFileOpsIncludeFiles, 'c:\windows',
kFileOpsInfoSize+kFileOpsInfoFullName+kFileOpsInfoReadOnly+
kFileOpsInfoCreated) Returns lvList

; returns a list of files in the c:\windows folder

; including the fullname, read-only, size, creation date and time

; of each file



FileOps External Functions 63

$getfileinfo()
$getfileinfo( path[,what-info]) Returns list-name

Returns the file information for the file named in path. You can specify what-info is
returned by including any one or a combination of the kFileOpsInfo… constants, such as
kFileOpsInfoSize, kFileOpsInfoCreated, otherwise the file name only is returned in the first
column of the list. To return the long name under 32-bit Windows you must specify
kFileOpsInfoFullName. The list returned by $getfileinfo() can contain up to 11 columns
always in the following order, regardless of the info requested or the order you specify the
what-info constants.

Col Col name what-info constant description

1 name kFileOpsInfoName name of the file

2 name83 kFileOpsInfoName83 DOS 8.3 name of the file

3 fullname kFileOpsInfoFullName 32-bit Windows long name of the file

4 readonly kFileOpsInfoReadOnly file’s read-only status

5 hidden kFileOpsInfoHidden file’s hidden status

6 size kFileOpsInfoSize logical size of file

7 actualsize kFileOpsInfoActualSize physical size of file on disk; same as
logical size under Windows

8 created kFileOpsInfoCreated date and time the file was created

9 modified kFileOpsInfoModified date and time the file was modified

10 creator kFileOpsInfoCreatorCode the file’s creator under MacOS, blank
under Windows

11 type kFileOpsInfoTypeCode the file’s type under MacOS, the file
extension under Windows

The function returns an error number, or zero if successful: see the FileOps function error
codes at the end of this section.

; declare lvFileList (List), lvPath, lvFileName, lvSize, lvCreated
all (Char)

Do sys(10) Returns lvPath ;; returns the name and path of the
current library

Do FileOps.$getfileinfo(lvPath,kFileOpsInfoName+
kFileOpsInfoCreated+kFileOpsInfoSize) Returns lvFileList

; returns the name, size, creation date and time of the current
library

Do lvFileList.$redefine(lvFileName,lvSize,lvCreated)

Do lst(lvFileList,1,lvSize) Returns lvSize

; returns the value in the Size column



64 Chapter 1—Functions

$getfilename()
$getfilename(path [,prompt, filter, initial-directory])

Opens the standard Open file dialog for the current OS. You can specify the dialog title in
prompt, and limit the file type by specifying a filter. For example, you can specify text files
using ‘*.txt’ under Windows, or ‘TEXT’ under MacOS. You can also specify an initial-
directory for the Open dialog. The name and full path of the file selected by the user is
returned in the path parameter. Note the file is not opened as such, you must do something
with the file name and path returned. The function returns an error number, or zero if
successful: see the FileOps function error codes at the end of this section.

Do FileOps.$getfilename(lvPath,'Please locate the

OMNIS help file','*.ohf','c:\omnis\help') Returns lvError

; returns the name and full path of the file

; selected, e.g. ‘c:\omnis\help\omnis\omnis.ohf’

$getworkingdir()
$getworkingdir()

Returns the current working directory (no parameters required). The function returns an
error number, or zero if successful: see the FileOps function error codes at the end of this
section.

; declare lvWorkDir of Char type

Do FileOps.$changeworkingdir(sys(115)) Returns lvError

Do FileOps.$getworkingdir() Returns lvWorkDir ;; returns c:\omnis

$movefile()
$movefile(from-path, to-path)

Moves the file named in from-path to the new location in to-path. Use $copyfile() to copy a
file to a new location. The function returns an error number, or zero if succe see the FileOps
function error codes at the end of this section.

Do FileOps.$movefile('c:\omnis\examples\extcomp\extcomp.lbs',

'c:\omnis\startup\extcomp.lbs') Returns lvError

; moves the library ‘extcomp.lbs’ to the OMNIS\Startup folder

$putfilename()
$putfilename(path [,prompt, filter, initial-directory])

Opens the Save as dialog for the current OS. You can specify the dialog title in prompt, and
limit the file type by specifying a filter. For example, you can specify text files using ‘*.txt’
under Windows, or ‘TEXT’ under MacOS. You can also specify an initial-directory for the



FileOps External Functions 65

Save dialog. The name and full path of the file entered by the user is returned in path. Note
the file is not saved as such, you must code a save method. The function returns an error
number, or zero if successful: see the FileOps function error codes at the end of this section.

Do FileOps.$putfilename(lvPath,'Save print file','*.rep',

'c:\omnis\examples') Returns lvError

; opens the Save dialog with the title 'Save print file'

; and returns the name and full path of file entered by the user

$rename()
$rename( oldname, newname)

Renames the file or folder named in oldname to the newname. The function returns an error
number, or zero if successful: see the FileOps function error codes at the end of this section.

Do FileOps.$rename('c:\omnis\libs','c:\omnis\examples) Returns
lvError

; renames the ‘libs’ folder to ‘examples’

Do FileOps.$changeworkingdir('c:\omnis\datafile\odbc') Returns
lvError

Do FileOps.$rename('odbc.txt','readme.txt') Returns lvError

; switches to the 'c:\omnis\datafile\odbc' folder and renames
‘odbc.txt’

$selectdirectory()
$selectdirectory(path [,prompt, initial-directory])

Opens the Select folder dialog for the current OS. You can specify the dialog title in
prompt, and the initial-directory. The name and full path of the folder selected by the user is
returned in path. The function returns an error number, or zero if successful: see the FileOps
function error codes at the end of this section.

; declare lvPath, lvWorkDir both (Char)

Do FileOps.$changeworkingdir(sys(115)) Returns lvError

Do FileOps.$getworkingdir() Returns lvWorkDir

Do FileOps.$selectdirectory(lvPath,'Select a folder',lvWorkDir)
Returns lvError

; switches the working dir to ‘c:\omnis’ and prompts the user to
select a folder



66 Chapter 1—Functions

$setfileinfo()
$setfileinfo( path, what-info, info-setting, ...)

Sets file information for the file named in path. You specify what-info is to be changed
using one of the kFileOpsInfo… constants, although in practice you can change only the
read/write and hidden status of a file (kFileOpsInfoReadOnly or kFileOpsInfoHidden),
assuming you have permission. You specify kTrue or kFalse for the read-only or hidden
status in the info-setting parameter. You can supply a list of file info settings, as shown
below. The function returns an error number, or zero if successful: see the FileOps function
error codes at the end of this section.

Do FileOps.$setfileinfo('c:\omnis\meths.txt',

kFileOpsInfoReadOnly,kTrue,kFileOpsInfoHidden,kTrue) Returns
lvError

; sets the file ‘meths.txt’ to read-only and hidden

$splitpathname()
$splitpathname(path,drive-name,directory-name,file-name,file-extension)

Splits the specified path into drive-name, directory-name, file-name, and file-extension. The
function returns an error number, or zero if successful: see the FileOps function error codes
at the end of this section.

; declare lvPath, lvDrive, lvDirName, lvFileName, lvFileExtn all
(Char) type

Do sys(10) Returns lvPath ;; returns the name and path of current
library

Do
FileOps.$splitpathname(lvPath,lvDrive,lvDirName,lvFileName,lvFile
Extn) Returns lvError

; under Windows, when lvPath=’C:\OMNIS\EXAMPLES\EXTCOMP.LBS’

; lvDrive returns C:

; lvDirName returns \OMNIS\EXAMPLES\

; lvFileName returns EXTCOMP

; lvFileExtn returns .LBS

Do
FileOps.$splitpathname('c:\omnis',lvDrive,lvDirName,lvFileName,lv
FileExtn) Returns lvError

; under Windows

; lvDrive returns C:

; lvDirName returns \

; lvFileName returns OMNIS

; lvFileExtn returns (Empty)



FileOps External Functions 67

FileOps External function Error Codes
The following errors are returned from the FileOps functions.

kFileOpsNoOperation 999 Operation not supported on this platform

kFileOpsUnknownError 998 Unknown error

kFileOpsOutOfMemory 12 Out of memory

kFileOpsParamError 1 Too few parameters passed

kFileOpsOK 0 No Error

kFileOpsDirFull -33 File/Directory full

kFileOpsDiskFull -34 Disk full

kFileOpsVolumeNotFound -35 Specified volume doesn't exist

kFileOpsDiskIOError -36 Disk I/O error

kFileOpsBadName -37 Bad file name or volume name (perhaps
zero-length)

kFileOpsFileNotOpen -38 File not open

kFileOpsEndOfFile -39 Logical end-of-file reached during read
operation

kFileOpsPositionBeforeStart -40 Attempt to position before the start of the
file

kFileOpsTooManyFilesOpen -42 Too many files open

kFileOpsFileNotFound -43 File not found

kFileOpsHardwareVolumeLock -44 Volume is locked by a hardware setting

kFileOpsFileLocked -45 File is locked

kFileOpsSoftwareVolumeLock -46 Volume is locked by a software flag

kFileOpsMoreFilesOpen -47 One or more files are open

kFileOpsAlreadyExists -48 A file with the specified name already
exists

kFileOpsAlreadyWriteOpen -49 Only one access path a file can allow
writing

kFileOpsNoDefaultVolume -50 No default volume

kFileOpsVolumeNotOnline -53 Volume not on-line

kFileOpsPermissionDenied -54 Permission denied.

kFileOpsReadOnlyFile -54 Read only file

kFileOpsVolumeAlreadyMounted -55 Specified volume is already mounted and
on-line



68 Chapter 1—Functions

kFileOpsBadDrive -56 No such drive number

kFileOpsInvalidFormat -57 Volume lacks Macintosh-format directory

kFileOpsExternalSystemError -58 External file system error

kFileOpsProblemDuringRename -59 Problem during rename

kFileOpsBadMasterBlock -60 Master directory block is bad; must re-
initialize volume

kFileOpsCantOpenLockedFile -61 Cannot open a locked file

kFileOpsDirectoryNotFound -120 Directory not found

kFileOpsTooManyDirOpen -121 Too many working directories open

kFileOpsCantMoveToOffspring -122 Attempted to move into offspring

kFileOpsNonHFSOperation -123 Attempt to do HFS operation on a non-
HFS volume

kFileOpsInternalSystemError -127 Internal file system error

FontOps External Functions
$replistfonts()
$replistfonts(list)

Populates the specified list with the report fonts installed on your system, and indicates
whether or not they are truetype. The list must contain two columns, the first character type,
the second boolean. The function returns zero for success, less than zero for failure. Having
built the list you can search and manipulate the list using the standard list functions and
methods.

; declare lvfonlist (List), lvfont (Char), lvTrueType (Boolean)

Do lvfonlist.$define(lvfont,lvTrueType)

Do FontOps.$replistfonts(lvfonlist)

; returns a list something like...

Arial True

Bookman Old Style True

Courier False

Garamond True

etc... ...



FontOps External Functions 69

; declare lvNumOfFonts, lvTrueFonts, lvNotTrueType all

; Number type, using lvfonlist from above...

Do lvfonlist.$linecount() Returns lvNumOfFonts ;; returns 64

Do tot(lvfonlist,lvTrueType) Returns lvTrueFonts ;; returns 52

Do totc(lvfonlist,lvTrueType=kFalse) Returns lvNotTrueType ;;
returns 12

$reptextheight()
$reptextheight(font-name|font-table-index,point-size[,font-style,extra-points])

Returns the height in inches/cms (depending on $usecms preference) of the specified report
font. You specify the font using either the font-name or font-table-index. When called with
a font table index, $reptextheight() uses the report font system table of the current library
which can contain up to 15 fonts numbered 1 to 15. You specify the point-size of the font,
and you can include a font-style constant and a number of extra-points.

Do FontOps.$reptextheight('Times',144) Returns lvHeight

; returns 2.24 ins / 5.69 cms

Do FontOps.$reptextheight('Times',144,,24) Returns lvHeight

; returns 2.57 ins / 6.54 cms

$reptextwidth()
$reptextwidth(string, font-name|font-table-index,point-size[,font-style])

Returns the width in inches/cms (depending on $usecms preference) required to draw the
string using the specified report font. You specify the font using either the font-name or
font-table-index. When called with a font table index, $reptextwidth() uses the report font
system table of the current library which can contain up to 15 fonts numbered 1 to 15. You
can include a font-style constant, or combination of styles.

Do FontOps.$reptextwidth('Hello WWW','Arial',24) Returns lvWidth

; returns 1.83 ins / 4.66 cms

Do FontOps.$reptextwidth('Hello WWW','Arial',24,kBold+kItalic)
Returns lvWidth

; returns 1.85 ins / 4.71 cms

Do FontOps.$reptextwidth('Hello WWW',2,72,kBold+kItalic) Returns
lvWidth

; returns 5.40 ins / 13.72 cms ;; note Courier is at position 2 in
#WIRFONTS



70 Chapter 1—Functions

$winlistfonts()
$winlistfonts(list)

Populates the list with the window fonts installed on your system, and indicates whether or
not they are truetype. The list must contain two columns, the first character type, the second
boolean. The function returns zero for success, less than zero for failure. Having built the
list you can search and manipulate the list using the standard list functions and methods.

; declare lvfonlist (List), lvfont (Char), lvTrueType (Boolean)

Do lvfonlist.$define(lvfont,lvTrueType)

Do FontOps.$winlistfonts(lvfonlist)

; returns a list something like...

Arial True

Bookman Old Style True

Chicago False

Courier False

Garamond True

etc... ...

; declare lvFirstFont, lvLastFont of Char type

Do lst(lvfonlist,1,lvfont) Returns lvFirstFont ;; returns Arial

Do lst(lvfonlist,lvfonlist.$linecount,lvfont) Returns lvLastFont ;;
returns Wingdings

$wintextheight()
$wintextheight(font-name|font-table-index,point-size[,font-style,extra-points])

Returns the height in screen units of the specified window font. You specify the font using
either the font-name or font-table-index. When called with a font table index,
$wintextheight() uses the window font system table of the current library which can contain
up to 15 fonts numbered 1 to 15. You specify the point-size of the font, and you can include
a font-style constant and a number of extra-points.

Do FontOps.$wintextheight('Courier',72) Returns lvHeight

; returns 96 under Windows

Do FontOps.$wintextheight('Courier',72,,24) Returns lvHeight

; returns 128 under Windows

Do FontOps.$wintextheight(2,36) Returns lvHeight

; returns 48 under Windows ;; note Courier is at position 2 in
#WIWFONTS



FontOps External Functions 71

$wintextwidth()
$wintextwidth(string, font-name|font-table-index,point-size[,font-style])

Returns the width in screen units required to display the string using the specified window
font. You specify the font using either the font-name or font-table-index. When called with
a font table index, $wintextwidth() uses the window font system table of the current library
which can contain up to 15 fonts numbered 1 to 15. You can include a font-style constant,
or combination of styles.

Do FontOps.$wintextwidth('Hello WWW','Courier',36) Returns lvWidth

; returns 243

Do FontOps.$wintextwidth('Hello WWW','Courier',36,kBold+kItalic)
Returns lvWidth

; returns 276

Do FontOps.$wintextwidth('Hello WWW',5,36) Returns lvWidth

; returns 240 ;; note System font is at position 5 in #WIWFONTS



72 Chapter 2—Hash Variables

 Chapter 2—Hash
Variables

 This chapter describes the hash variables available in OMNIS. They are arranged in
alphabetical order.

 About the Hash Variables
 A hash variable is an OMNIS variable with global scope that you can use to temporarily
store data. The name comes from the fact that all hash variables begin with the "#"character,
the hash sign.

 To select a hash variable

• Press F9/Cmnd-9 to display the Catalog, and select the Hash tab

• In the left-hand list, click on the appropriate group of hash variables

• In the right-hand list, double-click on the hash variable you require

Hash Variables
#???
#??? is displayed by OMNIS when a reference is made to a field which does not exist. This
can occur when you delete a field name from a file class or when a window class is copied
into your library that references non-existing fields (for example, the corresponding file
class has not been copied). This is a "special" variable with zero length, hence it cannot
hold data.

#1, #2,..,#60
Numeric variables numbered from #1 to #60 for storing positive and negative values.
Initialized to zero, their values are retained when you close your library or open a new one.
You can reinitialize them in your library using Clear range of fields #1 to #60.

You can use the notation #nnDx with numeric fields to limit the number of decimal places
displayed. The value of nn can be from 1 to 60 corresponding to the sixty numeric variables



Hash Variables 73

available. The value of x can be in the range 0 to 15, that is, values are displayed with zero
to 14 decimal places. For example, #3D2 will display the number held in the variable #3 to
2 decimal places. The value of a numeric variable is always stored as a real number.
Changing the decimal places only affects the way the number is displayed and not its stored
value. All numeric variables are set to zero decimal places when OMNIS starts, and the
number of decimal places for a particular variable is unaffected by changing to a different
library from within OMNIS.

You can use the notation #nnF to display #nn as a floating decimal; again, this does not
affect how the value is stored.

When comparing hash variables with file class fields, you must use the rnd() function, for
example, If rnd(#2,2) = FIELD will ensure an exact comparison, assuming FIELD is a
Number 2 dp type.

#ALT
True if the Alt key (or Option key under MacOS) is held down.

#CLIST
Read-only string variable which stores the name of the current list. The eight built-in lists
are held as the strings "#L1" to "#L8".

#COMMAND
True if the Cmnd key (or Ctrl key under Windows) is held down.

#CT
Read-only numeric variable which stores the current tick count since the system was booted;
the tick count is incremented 60 times per second.

#CTRL
True if the Ctrl key (or Cmnd key under MacOS) is held down.

#D
Read-only string variable which is set to the operating system date when OMNIS starts, and
changed during the operation of OMNIS only if the system date is changed using the
Control Panel. #D is actually a Date and Time data type but is made to look like a Short
date using #FD. Thus, the calculation dat(#D,#FDT) returns the full date and time.



74 Chapter 2—Hash Variables

For example, you can place the date on a report using the following text object (the square
brackets will force the date to print).

Date: [#D]

The following example uses #D to initialize month and year library variables.

Calculate LV_CurrentMonth as dtm(#D)

Calculate LV_CurrentYear as dtcy(#D)

#ENTER
True if the Enter key is pressed when an evOK event is reported to a control method.

#ERRCODE
Numeric variable which reports the error number generated by a method. For example,
running the Set main file command without a valid file name causes an error with
#ERRCODE set to 108139. Warning error codes are between 1 and 99,999 while fatal
errors are greater than 100,000.

Warning error codes are also represented by constants; see the Constants chapter in this
manual.

#ERRTEXT
String variable which reports the error text generated by a method. For example, running the
Set main file command without a valid file name causes an error with #ERRTEXT set to
"Set main file command with no valid file name."

The following method attempts to start the session named in LV_SESSION. If it cannot be
found, #ERRCODE is set and the user is alerted.

Start session {[LV_SESSION]}

If #ERRCODE

OK message {Error: [#ERRCODE]//[#ERRTEXT]}

; says “Error: 8739”

;      “The SQL DAM specified cannot be found”

; do prompt for valid session name

End If

#F
Numeric variable which stores the status of the OMNIS flag; it can be true (numeric value
of 1) or false (numeric value of 0). There are several commands that test the value of the
flag, such as If flag true, If flag false, Until flag true, While flag true, and so on.



Hash Variables 75

#FD
String variable used to specify the display format of a Short date field value. The default
value of #FD depends on the language version of OMNIS you are using. For example,
European versions of OMNIS set #FD to 'D m Y', but you can assign it a new value using
the following date formatting symbols.

Y Year (89) d Day (12th)

y Year (1989) W Day of week (5)

C Century (19) w Day of week (Friday)

M Month (06) V Short day of week (Fri)

m Month (JUN) E Day of year (1–366)

n Month (June) G Week of year (1–52)

D Day (12) F Week of month (1–6)

You can see the effect of different values of #FD in the following table, which shows the
display of a fixed date, JUN 12 97, for various values of #FD.

#FD Date display

m D CY JUN 12 1997

M/D/Y 06/12/97

MDY 061297

D-m-y 12-JUN-1997

#FDP
Numeric variable which specifies the format used for display or string conversion of a
floating point number; it does not affect how the values are stored internally by OMNIS.
#FDP defaults to 12 for a newly selected library file.

If #FDP is positive, then floating numbers are displayed with #FDP digits in decimal format
if possible or otherwise in 'e' format. For example, if #FDP equals +2, then 45.456 is
displayed as 45, and 999 is displayed as 1.0e3. In the case of 999, there are too many whole
numbers to be accommodated by the decimal format, and the figure is rounded and
displayed in 'e' format. Note that 9.9 x 102 becomes 1.0 x 103.

If #FDP is negative, then floating numbers are always displayed with exactly abs(#FDP)
digits in 'e' format. For example, if #FDP equals -2, then 45.456 is displayed as 4.5e+01,
that is, 4.5x101.



76 Chapter 2—Hash Variables

#FDT
String variable used to specify the display format of a Long date data type, that is, a Date
and time field value.

The default value of #FDT depends on the language version of OMNIS you are using. For
example, European versions of OMNIS set #FDT to 'D m Y  H:N:S', but you can assign it a
new value using the following date formatting symbols.

Y Year (89) H Hour (0..23)

y Year (1989) h Hour (1..12)

C Century (19) N Minutes

M Month (06) S Seconds

m Month (JUN) s Hundredths

n Month (June) A AM/PM

D Day (12) V Short day of week (Fri)

d Day (12th) E Day of year (1–366)

W Day of week (5) G Week of year (1–52)

w Day of week (Friday) F Week of month (1–6)

For example, you can use the following commands in a method to set the format of #FDT
temporarily.

; #FDT is curently ‘D m Y  H:N:S’

Begin reversible block

Calculate #FDT as 'm D Y'

End reversible block

; do something with dates...

; when method ends #FDT is reverted

The Catalog (F9/Cmnd) contains a list of the codes as given above.

You can see the effect of different values of #FDT in the following table, which shows the
display of a fixed date JUN 12 97, at a fixed time 15:45.

#FDT Date and Time display

m D CY H:N.S.s JUN 12 1997 15:45.00.00

D m Y H:N A 12 JUN 97 3:45 PM

M/D/Y H.N 06/12/97 15.45

D-m-19Y 12-JUN-1997



Hash Variables 77

You can create up to 30 date field subtypes with preset formatting strings using the
File>>Preferences>>Change Date Formats menu item. The date types are stored in the
library format #DFORMS.

#FT
String variable which specifies the display format of a Short time field value. The default
value of #FT is 'H:N', but you can assign it a new value using the following date formatting
symbols.

H Hour (0..23)

h Hour (1..12)

N Minutes

S Seconds

s Hundredths

A AM/PM

You can see the effect of different values of #FT in the following table, which shows the
display of a fixed time, 15:45, for various values of #FT.

#FT Time display

H:N 15:45

h N A 3 45 PM

H:N.S.s 15:45.00.00

#L
Numeric variable which stores the line number of the current line in the current list. If there
is no current line or the current list is empty #L is set to zero. The value of #L is updated
when a different line in the list is made current. #L is unchanged by list commands such as
Merge lists, Sort lists and Add line to list. A Calculate #L as... command is the normal way
to change #L within a method. In addition, Search list searches the list and sets #L to the
first line number which matches the search condition and loads the values from the selected
line into the CRB. If you wish, you can set #L to a value greater than #LN or less than
0.Note #L is equivalent to the notation Listname.$line.

For example, you can implement a Repeat loop that steps through the contents of the list:
the loop repeats until #L, the current line, reaches the end of the list, #LN.



78 Chapter 2—Hash Variables

; Define and build the list

Set current list LISTNAME

Calculate #L as 1

Repeat

Load from list

; do something with each list line

Calculate #L as #L + 1

Until #L > #LN

In a For each line in list loop, #L is automatically incremented.

#L1,..,#L8
Global list variables that let you create list structures available to all libraires. To use one of
these lists, you must make it the current list using the command Set current list and define
the fields for the columns using Define list.

For example, the following method uses #L2 to set the columns for a graph.

Set current list #L2

Define list {#S2}

Add line to list {'Sales'}

Add line to list {'Expenses'}

Add line to list {'Projections'}

Set graph attribute ('W_Graph',1,'$a2d_labellist_column',#L2)

Note   #L1 to #L8 retain their definitions and values between libraries. You can clear them
using the Clear range of fields #L1 to #L8 command.

#LM
Numeric variable which stores the maximum number of lines to be stored in a list. Each list
stores its own #LM value which defaults to 100,000,000. By changing the value of #LM,
you can limit the number of lines held in a list. The number of lines you can store is also
limited by the available memory. When lines are added to a list you can test value of the
flag; a flag false indicates that either #LM or your memory has been exceeded.

#LN
Numeric variable which stores the current number of lines in the current list. Each list stores
its own value of #LN. Its value is changed as lines are added to or deleted from the list. You
can specify its value with Set final line number. You can use this command to truncate the
list or add blank lines to the end. You cannot give #LN a negative value or set it greater
than #LM. Note #LN is equivalent to the notation Listname.$linecount.



Hash Variables 79

For example, you can use #LN to set the End value of a list For loop

; Define and build the list

Set current list LISTNAME

For each line in list from 1 to #LN step 1

Load from list

; do something with each list line

End For

#LSEL
Read/write boolean variable which stores the selection status of current line in the current
list. #LSEL=1 if the current line (#L) of the current list (#CLIST) is selected. Its value is
changed by the Select list line(s), Deselect list line(s) commands and by the user clicking on
the list field.

#MU
Read-only numeric variable which stores the current workstation number (#MU=0 when
OMNIS is running in single-user mode). When in multi-user mode, OMNIS automatically
assigns a number to each workstation. The numbers are not necessarily contiguous and often
jump in multiples of 255 depending on the serial numbers of the workstations currently
logged on. For data files on PC hard disks which are non-sharable , #MU is set equal to 0.
When a user quits using a data file, the #MU number is made available for a new user.

The Test for only one user command is used to check if anyone else is accessing a data file.

#NULL
Returns a NULL value. You can use it to assign a null value to field or variable. A null
value is not the same as zero (for numeric and Boolean data types) or "empty" (for non-
numeric or Boolean data types). When a field has a value of null, it is completely unknown
as to what that value is, and there is therefore no way to operate on that field value.

#OPTION
True if the Option key (or Alt key under Windows) is held down.

#P
Numeric variable which stores the current page number during the printing of a report
instance. #P will return the number of pages in a subtotal and/or totals report section.

You can place #P on a report either as a field or within square brackets in text strings, for
example, "Page [#P]".



80 Chapter 2—Hash Variables

#PI
Read-only numeric variable which stores the value of pi.

#R
Numeric variable which stores the current number of records printed during the printing of a
report instance. You can place #R on a report either as a field or within square brackets in
text strings, for example, "Record number [#R]". The value of #R in a report subtotal
section is set to the number of records printed in that particular subtotal section.

#RAD
Local boolean variable which controls whether the angles for trigonometric functions are in
degrees or radians; the default is degrees since #RAD is initialized to false. However, if you
set #RAD to true, angles are in radians.

#RATE
Numeric variable which stores the initial guess of interest rate with which an annuity is
calculated. #RATE defaults to 0.05 for a newly selected library file.

#RETURN
True if the Return key is pressed and an evOK event is reported to a control method
terminating enter data.

#S1,..,#S5
Global string variables that let you store string values up to 10 million (10,000,000)
characters long. Initialized as "empty", their values are retained when you close your library
or open a new one. You can initialize them using Clear range of fields #S1 to #S5.

#SHIFT
True if the Shift key is held down.

#SUBFLD
String variable which stores the name of the report subtotal field which triggered that
subtotal. Thus nam(#SUBFLD) returns a string containing the name of the subtotal field and
[#SUBFLD] placed in the subtotal section returns the subtotal value.



Hash Variables 81

#T
Read-only string variable which is set to the operating system time, that is, the value of #T
is updated from the system clock each time it is used in a format. #T is actually a Date and
Time data type but is made to look like a Short time data type using #FT. Thus
dat(#T,#FDT) returns the full time and date.

#UL
Read-only numeric variable which stores the current user level in the password security
system. In a range 0 to 8, a value of 0 represents the master user level.



82 Chapter 3—Events

Chapter 3—Events
This chapter describes the standard event messages reported in OMNIS and their
parameters. In this chapter the event messages are arranged in groups according to the
object that generates or receives the event.

About the Event Codes
Almost all user actions in OMNIS generate an event. When the event occurs an event
message is sent to the object in which the event occurred. These messages are intercepted
by your event handling methods. A message may contain one or more event parameters,
and first parameter always contains an event code representing the event. All the event
parameters are prefixed with the letter “p”, and all event codes are prefixed with the letters
“ev”. For example, a standard mouse click on a window field generates a message with a
pEventCode event parameter containing an evClick.

An event message may contain a second or a third event parameter. These parameters tell
you more about the event. For example, a click on a list field generates a message with
pEventCode containing evClick, and a second event parameter pRow containing the number
of the row clicked on. You can use the event codes and parameters in your event handling
methods. For example

On evClick        ;; method behind a list field

If pRow = 1      ;; if row 1 was clicked on

; Do this...

End If

If pRow = 2      ;; if row 2 was clicked on

; Do that...

Also you can test pEventCode in your event handling methods.

On evAfter,evBefore      ;; method behind field

; Do this code for both event messages

If pEventCode = evAfter

; Do this for evAfter events only

End If

If pEventCode = evBefore

; Do this for evBefore events only

End If



About the Event Codes 83

To select an event code in an event handling method

• Enter the On command in the method editor and click on the required event code from
the list provided in the method editor, e.g. On evClick

or to enter an event in your code, or multiple events

• Press F9/Cmnd-9 to display the Catalog, and select the Events tab

• In the left-hand list, click on the appropriate group of events

• In the right-hand list, double-click on the event code you require

To select an event parameter for the current event

• Enter the On command in the method editor plus the required event code, e.g. On
evClick

• Press F9/Cmnd-9 to display the Catalog, and select the Variables tab

• In the left-hand list, click on the Event parameters group of events

The right-hand list now contains event parameters relevant to the current event code. To
enter a parameter into your code

• Double-click on the event parameter



84 Chapter 3—Events

Event Parameters
The following event parameters are available.

Event Parameter Description

pCellData the data in the grid cell

pChannelNumber the DDE channel number

pClickedField a reference to the field clicked on

pClickedWindow a reference to the window clicked on

pCommandNumber internal number of the menu option selected

pContextMenu a reference to the menu instance

pDdeValue the new value received using DDE

pDdeItemName the DDE data item name used to address the received value

pDragField a reference to the dragged field

pDragType the field type of the dragged field

pDragValue the actual value of the data being dragged

pDropField a reference to the field being dropped on

pEventCode the type of event, contains an event constant

pHorzCell the column selected in a grid field

pIsVertScroll true if the scrolltip is for the vertical scroll bar

pKey the letter key pressed

pLineNumber the line number of a list field

pMenuLine line number of option selected in a custom menu

pNextCode the event code to follow an evAfter

pNodeItem a reference to the tree list node clicked on

pRow the number of the selected row in a grid

pScrollPos the new scroll position following a scroll

pScrollTip the string in the scrolltip

pSelectionCount the number of selected objects in a modify report field

pSystemKey the system key pressed

pTabNumber the tab number selected for a tab pane

pVertCell the row selected in a grid field



Field Events 85

Field Events
The following event messages are sent to the current target field ($ctarget).

Event Code Generated when... Event Parameters

evAfter the cursor is about to leave the current field;
a field oftens gets evAfter, but remains the
focus field and many more evAfter than
evBefore events are generated; the second
event parameter is the reason the field is
about to loose the focus (e.g.
evWindowClick, evMouseDown,
evCloseBox, evOk, evTab, evShiftTab), and
for evWindowClick, the third event
parameter is a reference to the field or
window being clicked. Discarding this event
causes the current field to remain the target
field (however, this may not prevent a
window or library from closing)

pEventCode,
pClickedField,
pClickedWindow,
pMenuLine,
pNextCode,
pCommandNumber,
pRow

evBefore the cursor is about to enter the current field.
Discarding this event has no effect since the
event has already ocurred

pEventCode,
pRow

evClick a click on buttons, lists, other controls or the
window background (but not entry fields);
generated when an evMouseDown occurs,
no drag operation occurs and an evMouseUp
is still within the field’s boundary

pEventCode,
pRow

evDoubleClick a double-click on lists, other controls and the
window background; generated in response
to an evMouseDouble

pEventCode,
pRow

evOpenContextMenu a context menu has been opened over the
field, also reported for windows; the second
parameter is an item reference to the context
menu instance

pEventCode,
pContextMenu,
pClickedField

evSent the contents of a field gets updated by a
DDE or AppleEvent message; the second
and third parameters are for DDE only and
contain the new value received using DDE,
and the DDE data item name used to address
the received value

pEventCode,
pDdeValue,
pDdeItemName,
pChannelNumber



86 Chapter 3—Events

Grid Events
The following event messages are generated when a grid field is changed in some way by
the user.

Event Code Generated when... Event Parameters

evCellChanged the cell has changed; perhaps the user has
tabbed. The second and third parameters give
you the position of the cell, and the fourth
parameter contains the data in the cell

pEventCode,
pHorzCell,
pVertCell

evCellChanging the cell that is about to change. The second and
third parameters give you the position of the
cell, and the fourth parameter contains the data
in the cell

pEventCode,
pHorzCell,
pVertCell,
pCellData

evExtend the complex grid has been expanded, that is,
extra lines have been added

pEventCode,
pLineNumber,
pRow

evRowChange the row in the complex grid has changed pEventCode,
pLineNumber,
pRow

evScrollTip the grid field is being scrolled pEventCode,
pIsVertScroll,
pScrollPos,
pScrollTip



Headed List Box Events 87

Headed List Box Events
The following event messages are generated for headed list box fields only.

Event Code Generated when... Event Parameters

evHeadedListEditFinished a cell in a headed list box has been
edited; the second and third
parameters are the line and column
numbers of the selected cell

pEventCode,
pLineNumber,
pColumnNumber

evHeadedListEditFinishing the user has entered a new value and
pressed return or clicked away from
the edit field; discarding this event
leaves the field in edit mode; the
second and third parameters are the
line and column numbers of the
selected cell; the fourth parameter is
the new text entered, which you can
transfer to the list

pEventCode,
pLineNumber,
pColumnNumber,
pNewText

evHeadedListEditStarting sent on the first click in the selected
cell which puts the cell into edit
mode; discarding this event prevents
editing; the second and third
parameters are the line and column
numbers of the selected cell

pEventCode,
pLineNumber,
pColumnNumber

evHeaderClick a header button has been clicked on;
the second parameter contains the
column  number

pEventCode,
pColumnNumber



88 Chapter 3—Events

Icon Array Events
The following event messages are generated for icon array fields only.

Event Code Generated when... Event Parameters

evIconDeleteFinished the delete has occurred, after all
selected lines in the list have been
deleted

pEventCode

evIconDeleteStarting the delete is pressed; discarding this
event prevents the delete occurring

pEventCode

evIconEditFinished the user has finished editing; the second
parameter contains the line number of
the list that has been edited

pEventCode,
pLineNumber

evIconEditFinishing the user enters a new value by hitting
return or clicking away from the edit
field; discarding the event leaves the
field in edit mode; the second
parameter contains the line number of
the list being edited; the third is the
new text entered

pEventCode,
pLineNumber,
pNewText

evIconEditStarting the first click in the selected cell which
puts the cell into edit mode; discarding
the event prevents editing; the second
parameter contains the line number of
the list that is to be edited

pEventCode,
pLineNumber



Key Events 89

Key Events
The following event messages are generated when the user presses a key. Key events are
generated only if the $keyevents property is enabled. Discarding these events prevents the
key being handled by the field.

Event Code Generated when... Event Parameters

evKey any key is pressed; the second event parameter
holds the letter of the key being pressed or zero
if a system key is pressed; the third event
parameter holds a constant containing the
system key being pressed (see the Keyboard
constants) or zero if a normal key is pressed.
This event occurs before any processing of the
key has been carried out

pEventCode,
pKey,
pSystemKey

evShiftTab the shift-tab keys is pressed pEventCode

evTab the tab key is pressed pEventCode

Modify Report Field Events
The following event messages are generated for modify report fields only.

Event Code Generated when... Event Parameters

evSelectionChanged the user selects another object in the
field; the second parameter is the
number of objects selected

pEventCode,
pSelectionCount



90 Chapter 3—Events

Mouse Events
The following mouse event messages are sent to a field or window background. Mouse and
right-button mouse events are generated only if the $mouseevents and $rmouseevents
properties are enabled. Discarding any of these events (except evMouseDouble and
evMouseDown) has no effect since the event has already occurred.

Event Code Generated when... Event Parameters

evCanDrop a drag operation is started to test whether the
field or window containing the mouse can
accept a drop. Discarding this event prevents a
drop onto this field or window

pEventCode,
pDragType,
pDragValue,
pDragField

evDrag the mouse is held down in a field and a drag
operation is about to start. Discarding this event
cancels the drag

pEventCode,
pDragType,
pDragValue

evDrop the mouse is released over the destination field
or window at the end of a drag operation; the
second event parameter is a reference to the
object being dropped

pEventCode,
pDragType,
pDragValue,
pDragField

evMouseDouble the mouse is double-clicked in a field or
window. Discarding this event ensures that no
double-click is generated

pEventCode

evMouseDown the mouse is pressed and held down in a field or
window. Discarding this event ensures that no
drag action happens and no click is generated
(but evMouseUp is still reported)

pEventCode

evMouseEnter the mouse enters a field or leaves a field and
enters the window background

pEventCode

evMouseLeave the mouse leaves a field or enters a field from
the window background

pEventCode

evMouseUp the mouse is released over the field or window
which had the evMouseDown

pEventCode

evRMouseDouble the right-button is pressed pEventCode

evRMouseDown the right-button is pressed pEventCode

evRMouseUp the right-button is released pEventCode

evWillDrop the mouse is released at the end of a drag
operation. Discarding this event prevents the
evDrop message from being generated

pEventCode,
pDragType,
pDragValue,
pDropField



Scroll Events 91

Scroll Events
The following event messages can occur for a field or window provided they have a vertical
or horizontal scroll bar as appropriate.

Event Code Generated when... Event Parameters

evHScrolled the field or window is scrolled horizontally pEventCode

evVScrolled the field or window is scrolled vertically pEventCode

Status Events
The following event messages are reported for fields only. They reflect the current status of
a field, and are generated only if the $statusevents property is enabled. Discarding any of
these events has no effect since they report the status of a field.

Event Code Generated when... Event Parameters

evDisabled a field is disabled either by notation or by OMNIS pEventCode

evEnabled a field is enabled either by notation or by OMNIS pEventCode

evHidden a field is hidden either by notation or by OMNIS pEventCode

evShown a field is made visible either by notation or by
OMNIS

pEventCode

Tab Pane and Tab Strip Events
A tab pane or tab strip can have a number of tabs. The following event message is generated
when the user selects one of the tabs.

Event Code Generated when... Event Parameters

evTabSelected a tab has been selected; the second event
parameter is the number of the tab selected

pEventCode,
pTabNumber



92 Chapter 3—Events

Tree List Events
A tree list object can have a number expandable and collapsable nodes which the user clicks
on. The following event messages are generated when the user expands or collapses a node,
or clicks on a node, or edits a node name.

Event Code Generated when... Event
Parameters

evTreeCollapse a node is about to be collapsed; the
second event parameter is a reference
to the node

pEventCode,
pNodeItem

evTreeExpand a node is about to be expanded; the
second event parameter is a reference
to the node

pEventCode,
pNodeItem

evTreeExpandCollapseFinished a node has expanded or collapsed;
sent after an evTreeCollapse or
evTreeExpand message

pEventCode

evTreeNodeIconClicked a node has been clicked; the second
parameter is a reference to the node

pEventCode,
pNodeItem

evTreeNodeNameFinished a node name change has finished; the
second parameter is a reference to the
node; the third parameter contains the
new text

pEventCode,
pNodeItem,
pNewText

evTreeNodeNameFinishing a node name is about to change; the
second parameter is a reference to the
node; the third parameter contains the
new text

pEventCode,
pNodeItem,
pNewText



Window Events 93

Window Events
The following event messages are sent to the current top window ($cwind). Discarding the
majority of these events has no effect since the event has already ocurred. For example, you
can detect an evMinimized for a window, but discarding it has no effect since the user will
have already minimized the window.

Event Code Generated when... Event Parameters

evCancel the user has clicked the Cancel button or
equivalent keys; $ctarget gets evCancel
then $cwind (evAfter is not reported with
evCancel). Discarding this event prevents
enter data being terminated

pEventCode

evClose the top window is closed, sent to the
window just after $canclose message has
been sent (so evClose is an alternative to
$canclose); $ctarget gets an evAfter (if
it’s on the window being closed) then
$cwind gets evClose. Discarding this
event prevents the window from closing,
but forcing OMNIS to quit closes
everything

pEventCode

evCloseBox the user has clicked the close box of the
top window; $ctarget gets evAfter then
$cwind gets evCloseBox. Discarding this
event stops the window closing

pEventCode

evCustomMenu the user has selected a line in a custom
menu; $ctarget gets evAfter then $cwind
gets evClick; the second event parameter
is the line number of the option selected.
Discarding this event prevents the
method for the selected line from being
executed

pEventCode,
pMenuLine

evMaximized the window is maximized pEventCode

evMinimized the window is minimized pEventCode

evMoved the window is moved pEventCode

evOK the user has clicked the OK button or has
pressed the equivalent key; $ctarget gets
evAfter then $cwind gets evOK.
Discarding this event prevents enter data
being terminated

pEventCode



94 Chapter 3—Events

Event Code Generated when... Event Parameters

evOpenContextMenu a context menu has been opened over the
field, also reported for windows; the
second event parameter is an item
reference to the context menu instance

pEventCode,
pContextMenu

evResized the window is resized pEventCode

evRestored the window is restored to its normal size pEventCode

evStandardMenu the user has selected a line in a standard
menu or clicks one of the standard
buttons (Next, Edit, etc.); $ctarget gets
evAfter then $cwind gets evClick; the
second event parameter is an internal
number representing the menu option
selected. Discarding this event prevents
the standard menu action from being
performed

pEventCode,
pCommandNumber

evToTop the window has come to the top.
Discarding this event has no effect since
the event has already occurred

pEventCode

evWindowClick the mouse is clicked on another window;
$ctarget gets evAfter, then $cwind gets
evWindowClick, then the new window is
brought to the top and (if it keeps bring
to front clicks) may get an
evMouseDown; the second event
parameter is a reference to the window
clicked on. Discarding this event
prevents the clicked window from
coming to the top

pEventCode,
pClickedWindow



Window Events 95

Chapter 4—Methods
Every object in OMNIS has certain characteristics that determine exactly how it looks and
behaves. These characteristics are defined by the object’s properties and methods.
Properties are things like color, size, type, and visibility, while methods are pieces of code
contained in the object that perform some action when you send the object the appropriate
message. You can manipulate the properties and methods of an object or OMNIS itself
using the notation, OMNIS’ own hierarchical programming language. Before using the
OMNIS notation you should read the Programming Methods chapter in the OMNIS
Programming manual.

Object properties are not listed in this chapter since the vast majority of them are self-
explanatory. You can view the properties of any object using the Property Manager, and the
notation as a whole using the Notation Inspector. You can turn on Help Tips or short
descriptions for the properties or methods by Right-clicking in the Property Manager and
Notation Inspector. Using the same context menu in the Property Manager or Notation
Inspector you can show Runtime properties and Methods for the current object.

Graph objects, properties, and methods are described in the OMNIS Graphs manual
available in PDF on the OMNIS CD.

$canomit() and $canassign()
Notation strings are often long, but you can shorten them by omitting certain intermediate
objects. The $canomit() method for the intermediate object returns true if you can leave the
property out of an expression. In practice however $canomit() is true for the following
objects only: $root, $extobjects, $constants, $clib, $hashvars, $libs, $tvars, $datas, $cvars,
$files, $lvars, $vals. Therefore in the following expression

Do $root.$clib.$windows.MyWindow.$closebox.$assign(kTrue)

you can omit $root and $clib leaving

Do $windows.MyWindow.$closebox.$assign(kTrue)

In addition, the $canassign() method tells you whether you can use the $assign() method to
assign a value to an object. For example

Do $cclass.$forecolor.$canassign() Returns #F

returns true if $cclass is a window class, which means you can assign a value to the
forecolor, otherwise for some other classes this example would return false.



96 Chapter 4—Methods

Common
Notation [notation.]OBJECT.method

All objects have common properties, such as $name, and some objects have the following
methods.

Method Description

$assign() NOTATION.PROPERTY.$assign(value) assigns the specified value to the
property; the value and syntax depends on the object you are assigning to

$att() NOTATION.OBJECT.$att(n) returns the nth attribute for the object (does not
include custom methods)

$canassign() NOTATION.PROPERTY.$canassign() returns true if the $assign() method is
implemented for the property, that is, you can change the value of the
property; $canassign() is true for most properties, but depending on the
current context it may be false for certain properties

$canomit() NOTATION.PROPERTY.$canomit() returns true if you can omit the property
from the notation; the properties with $canomit set to true are: $root, $clib,
$libs, $datas, $constants, $hashvars, $tvars, $cvars, $lvars, $vals, and
$files

$chain() $chain(n) returns the nth object in the reference chain for a reference
variable



$root 97

$root
Notation $root.method

The $root object is the object at the base of the OMNIS object tree. It has the following
methods.

Method Description

$redraw() $redraw(bSetcontents=kTrue,bRefresh=kFalse) redraws the contents
and/or refreshes all window instances in the context of $root; note window
instances and window objects also contain the $redraw() method and
redraw the object depending on the current context

$exechelp() $exechelp([cInstName], [cWindowTitle], [cHelpFolder],
[cDocumentName], [cTopic]) opens the OMNIS help system, where
cInstName specifies the optional instance name of the help window;
cWindowTitle specifies the optional window title; cHelpFolder specifies a
help folder name, overriding the folder named in $helpfoldername;
cDocumentName specifies the name and partial path of the help topic to be
displayed, if empty help searches on the topic specified in cTopic; cTopic
specifies the title or beginning of a topic title. If cDocumentName is empty
and a topic title is specified, help attempts to locate the topic. If no topic is
found, the help window enters the given text into the word search entry
field and displays any topics found. If both cDocumentName and cTopic
are empty, the contents list is displayed



98 Chapter 4—Methods

Group
Notation [notation.]ANYGROUP.Method

A group is a special type of object that contains a number of related objects. Some groups
are static, while others change dynamically at runtime, such as the $iwindows group which
contains all the window instances currently open. The group methods perform some action
on the group as a whole, or return some information about the group or an individual object
in the group.

Method Description

$count() $count() returns the number of objects in a group, for example,
Do $components.$count() Returns lv_xcompnum returns the number of
external components currently available in your system

$makelist() $makelist(col1[,col2]…) lists the members of a group, for example,
Do $components.$makelist($ref.$name) Returns lv_xcomplist builds a
list of the external components currently available in your system, or
Do $iwindows.$makelist($ref.$name) Returns lv_winlist builds a list of
window instances currently open in the order that they appear on the
screen

$appendlist() $appendlist(list,col1[,col2]…) appends the members or contents of a
group to the specified list

$insertlist() $insertlist(list,line,col1[,col2]…) inserts the members or contents of a
group into the specified list at the specified line

$sendall() $sendall(message[,condition]) sends a message to all objects in a group;
for example, $cwind.$objs.$sendall($ref.$visible.$assign(kFalse)) hides
all the fields on the current window; $sendall() returns the number of
objects which received the message; the return value of the message sent
to an individual object is discarded

$first() $first() returns a reference to the first object in a group, for example,
Do $iwindows.$first() Returns lv_topwin returns a reference to the top
window

$next() $next(object) returns the next object in a group

$findname() $findname(object) returns a reference to the specified object in a group

$findident() $findident(ident) returns the object with the specified unique numeric
identifier from within a group.  Not applicable for all groups



Group 99

Method Description

$add() $add(param1[,param2]…) inserts a new object into a group and returns
an item reference to the new object created; you can use $add() to create
libraries, classes, window objects, list columns, and so on; its parameters
depend on the group and object being created; usually the Property
Manager indicates the parameters required, or you can use the notation
[Notation.]ANYGROUP.$add.$desc to return the parameters.
For example, you can create a new window class in the current library
using Do $clib.$windows.$add('MyWin') Returns iWinRef; this creates a
window class called MyWin and returns a reference to it in the variable
iWinRef. Having created the new class you can add objects to it using
$add(), such as Do iWinRef.$objs.$add(kEntry,20,20,25,200) Returns
iObjRef; this creates an entry field and returns a reference to it in the
variable iObjRef; note you specify the size for window objects in pixels,
and report object in inches or cms depending on the current units.
You can also create new objects in the current window instance using
$cinst, such as Do $cinst.$objs.$add(objtype[,params…]). For example,
you can create an external component using
Do $cinst.$objs.$add(kComponent,'OmnisIcn Library','OmnisIcn
Control',lvTop,lvLeft,lvHeight,lvWidth) Returns lvSubRef; this creates
an OMNIS icon control with the size and position specified in lvTop,
lvLeft, lvHeight, lvWidth.

$remove() $remove(object) removes the object from a group (it does not delete the
object from the disk)

$addafter() $addafter(object) inserts a new object after the specified object.  Not
applicable for all groups, e.g. doesn’t work for $cols in a list

$addbefore() $addbefore(object) inserts a new object before the specified object.  Not
applicable to all groups, e.g. doesn’t work for $cols in a list



100 Chapter 4—Methods

OMNIS Modes
Notation [$root.]$modes.Method

The OMNIS modes control the overall behavior or mode of your system. You can view the
OMNIS modes group in the Notation Inspector under $root. The $modes group contains the
following methods.

Method Description

$welcome() $welcome(library-mode) controls the opening and running of the
Welcome library, a constant: kWelcomeNewLibrary,
kWelcomeLastLibrary, kWelcomeToggleStop

$dotoolmethod() $dotoolmethod(tool-constant,method-name[,parameters])
executes a public method within one of the OMNIS tools; tool-
constant can be: kEnvToolAdhoc, kEnvToolCms,
kEnvToolMethods, kEnvToolSql, kEnvToolVcs

OMNIS Preferences
The $root.$prefs group contains the following method(s).

Method Description

$serialize() $serialize([bGenericLogo=kTrue,cTitle,iBitmapID]) opens the OMNIS
serialization dialog; you can pass your own title and bitmap, otherwise if
bGenericLogo is kFalse (the default) the OMNIS logo is displayed, or if
kTrue a generic Serialize logo is displayed; if you pass a title it replaces
the one in the dialog window title



Printing Devices 101

Printing Devices
The following methods are available for some printing devices only. $cando() returns true if
the device supports the method.

Method Description

$open() opens the device ready for printing or transmitting text or data

$close() closes the device if the device is open

$canclose() returns true if the device can be closed; if the device was opened by
calling $open(), it usually returns true, but if the device was opened via a
print job, and the job is still in progress it returns false

$sendtext() $sendtext(cText, bNewLine, bFormFeed) sends the text in cText to the
device. All normal character conversion takes place. If bNewLine is true,
the device will advance to a new line or an end of line character is sent. If
bFormFeed is true, a new page is started or a form feed character is sent.
Data is sent in the same order as the parameters

$senddata() $senddata(xData[,xData1]…) sends cData in binary format to the device.
No character conversion takes place unless the data is of type kCharacter.
If you specify more than one parameter the data is sent in individual
packets

$flush() flushes the device. In the case of the File device, you can call $flush() to
make sure all data is written to disk. $cando() returns true for all devices
that support either $senddata() or $sendtext()

$getparam() $getparam(nParamNumber) returns the value of the specified parameter
for a custom device

$setparam() $setparam(nParamNumber,Value[,nParamNumber,Value]...) sets the
value(s) of the specified parameter(s) for a custom device



102 Chapter 4—Methods

Window Class
Notation [$root.$libs.LIBRARYNAME.]$windows.WINDOWNAME.Method

All classes that you can instantiate and those that support inheritance, such as window
classes, contain the following methods. For example, the $open() method opens the
specified window class.

Do $windows.WindowName.$open(‘InstanceName’,kWindowCenter) Returns
WinRef

; returns an item reference to the instance created

Method Description

$makesubclass() Classname.$makesubclass([cLibraryname.]cNewclassname) creates a
new subclass of the class in the current or specified library

$isa() Class|instancename.$isa(rClass) returns true if the class or instance is
a subclass of the specified class

$open() Classname.$open([cInstancename][,iLocation][,parameters]) creates
an instance of the specified window class and returns a reference to
the instance; you can specify the instance name, or $open('*') will
assign a unique instance name in the form ClassName_Number,
otherwise the simple class name is used; you can send parameters to
the $construct() method of the instance, and for window classes you
can specify the initial location or position of the window instance

$openonce() Classname.$openonce([cInstancename][,iLocation][,parameters])
creates an instance of the specified window class, but only if one does
not already exist, excluding subwindows; in the case of a window,
this method brings the window instance to the top if it already exists;
$openonce() returns a reference to the instance either newly created
or already open, just like the $open() method



Menu Class 103

Menu Class
Notation [$root.$libs.LIBRARYNAME.]$menus.MENUNAME.Method

All classes that you can instantiate and those that support inheritance, such as menu classes,
contain the following methods. For example, the $open() method opens or installes the
specified menu class.

Do $menus.MenuName.$open(‘InstanceName’) Returns WinRef

; returns an item reference to the instance created

Method Description

$makesubclass() Classname.$makesubclass([cLibraryname.]cNewclassname) creates a
new subclass of the class in the current or specified library

$isa() Class|instancename.$isa(rClass) returns true if the class or instance is
a subclass of the specified class

$open() Classname.$open([cInstancename][,iPosition][,parameters]) creates
an instance of the specified menu class and returns a reference to the
instance; you can specify the instance name, or $open('*') will assign
a unique instance name in the form ClassName_Number, otherwise
the simple class name is used; you can send parameters to the
$construct() method of the instance, and for menu classes you can
specify the initial position of the menu instance on the menubar, the
default position is the right-most position on the main menu bar

$openonce() Classname.$openonce([cInstancename][,iLocation][,parameters])
creates an instance of the specified menu class, but only if one does
not already exist, excluding instances that are submenus; $openonce()
returns a reference to the instance either newly created or already
open, just like the $open() method



104 Chapter 4—Methods

Toolbar Class
Notation [$root.$libs.LIBRARYNAME.]$toolbars.TOOLBARNAME.Method

All classes that you can instantiate and those that support inheritance, such as toolbar
classes, contain the following methods. For example, the $open() method opens or installs
the specified toolbar class.

Do $toolbars.ToolbarName.$open(‘InstanceName’) Returns WinRef

; returns an item reference to the instance created

Method Description

$makesubclass() Classname.$makesubclass([cLibraryname.]cNewclassname) creates a
new subclass of the class in the current or specified library

$isa() Class|instancename.$isa(rClass) returns true if the class or instance is
a subclass of the specified class

$open() Classname.$open([cInstancename][,DockingArea][,parameters])
creates an instance of the specified toolbar class and returns a
reference to the instance; you can specify the instance name, or
$open('*') will assign a unique instance name in the form
ClassName_Number, otherwise the simple class name is used; you
can send parameters to the $construct() method of the instance, and
for toolbar classes you can specify the initial docking area for the
toolbar instance, the default being the top toolbar

$openonce() Classname.$openonce([cInstancename][,DockingArea][,parameters])
creates an instance of the specified toolbar class, but only if one does
not already exist, excluding window toolbars; $openonce() returns a
reference to the instance either newly created or already open, just
like the $open() method



Report Class 105

Report Class
Notation [$root.$libs.LIBRARYNAME.]$reports.REPORTNAME.Method

All classes that you can instantiate and those that support inheritance, such as report classes,
contain the following methods. For example, the $open() method instantiates the specified
report class.

Do $reports.ReportName.$open(‘InstanceName’) Returns WinRef

; returns an item reference to the instance created

Method Description

$makesubclass() Classname.$makesubclass([cLibraryname.]cNewclassname) creates a
new subclass of the class in the current or specified library

$isa() Class|instancename.$isa(rClass) returns true if the class or instance is
a subclass of the specified class

$open() Classname.$open([cInstancename][,parameters]) creates an instance
of the specified report class and returns a reference to the instance;
you can specify the instance name, or $open('*') will assign a unique
instance name in the form ClassName_Number, otherwise the simple
class name is used; you can send parameters to the $construct()
method of the instance

$openonce() Classname.$openonce([cInstancename][,parameters]) creates an
instance of the specified report class, but only if one does not already
exist, and returns a reference to the instance either newly created or
already open, just like the $open() method



106 Chapter 4—Methods

Task Class
Notation [$root.$libs.LIBRARYNAME.]$tasks.TASKNAME.Method

All classes that you can instantiate and those that support inheritance, such as task classes,
contain the following methods. For example, the $open() method opens the specified task
class.

Do $tasks.TaskName.$open(‘InstanceName’) Returns WinRef

; returns an item reference to the instance created

Method Description

$makesubclass() Classname.$makesubclass([cLibraryname.]cNewclassname) creates a
new subclass of the class in the current or specified library

$isa() Class|instancename.$isa(rClass) returns true if the class or instance is
a subclass of the specified class

$open() Classname.$open([cInstancename][,parameters]) creates an instance
of the specified task class and returns a reference to the instance; you
can specify the instance name, or $open('*') will assign a unique
instance name in the form ClassName_Number, otherwise the simple
class name is used; you can send parameters to the $construct()
method of the instance

$openonce() Classname.$openonce([cInstancename][,parameters]) creates an
instance of the specified task class, but only if one does not already
exist, and returns a reference to the instance either newly created or
already open, just like the $open() method

Table Class
Classes that support inheritance, such as table classes, contain the following methods. Note
that table classes do not contain the $open() or $openonce() methods, rather a table instance
is created automatically when you create a list based on a schema, query, or table class.

Method Description

$makesubclass() Classname.$makesubclass([cLibraryname.]cNewclassname) creates
a new subclass of the table class in the current or specified library

$isa() Class|instancename.$isa(rClass) returns true if the class or instance
is a subclass of the specified table class



Object Class 107

Object Class
Object classes let you define your own structured data objects containing your own
variables and methods. All classes that you can instantiate and those that support
inheritance, such as object classes, contain the following methods.

Method Description

$makesubclass() Classname.$makesubclass([cLibraryname.]cNewclassname) creates
a new subclass of the class in the current or specified library

$isa() Class|instancename.$isa(rClass) returns true if the class or instance
is a subclass of the specified class

$new() $new(parm1[,parm2]..) creates an object instance dynamically; the
parameters are passed to the object instance's $construct() method;
when the new instance is assigned any existing instances of the class
are replaced; for example

Do
$clib.$objects.objectclass.$new(parm1,parm2,...)
Returns objectvar

where parameters parm1 and parm2 are the $construct() parameters
for the object instance



108 Chapter 4—Methods

List Variable
Notation [notation.]LISTNAME.Method

A list variable contains multiple values of fields and variables. OMNIS lets you define and
build as many lists of data as memory allows. A list defined from a schema, query, or table
class has the properties and methods of a table instance.

A list variable with the smart list property enabled contains two lists: the normal list,
containing the list data, and the history list containing the change tracking and filtering
information. The history list has one row for each row in the normal list, together with a row
for each row that has been deleted. Defining a list by any mechanism, or adding columns to
a list, discards the history list, and turns off change tracking.

You can use the following methods against any type of OMNIS list. The history list
$savelist.. and $revertlist.. methods are only available for smart lists. Note also that list
variables have some group methods, such as $add() and $remove(); these are listed below
and are described in the context of manipulating lists.

In addition, row variables behave in exactly the same way as list variables, except that some
methods do not apply to row variables since they have only one line.

Method Description

$define() $define(var1[,var2]...) clears the current list definition and defines
the list with the specified variables or fields as columns; you can
use fields in a no-data file, but they must be quoted in the
parameter list

$definefromsqlclass() $definefromsqlclass(sqlclass[,cSchemaCol1,cSchemaCol2,...]
[,,constructor params]) defines a list or row variable from a query,
schema, or table class and instantiates a table instance; for lists
based on a schema class, or a table class referencing a schema
class, all columns are used to define the list unless you pass a list
of schema columns as a subset of those in the schema class; the
constructor parameters are passed to the $construct() method of
the table instance (note the empty parameter before the
constructor params)

$copydefinition() $copydefinition(list or row variable[,constructor params) clears
the list and copies the definition but not the data from another list
or row variable; if the source list has a file class the new list will
also have a file class; the parameters are passed to the $construct
method

$redefine() $redefine(var1[,var2]…) redefines the names and data types of the
list columns, but does not change or delete existing data in the list



List Variable 109

Method Description

$clear() $clear() clears the list data; the list definition is unchanged

$search() $search(calculation[,bFromStart=kTrue, bOnlySelected=kFalse,
bSelectMatches=kTrue, bDeselectNonMatches=kTrue]) searches
a list using the specified calculation; this method has the same
function as the Search list command. The search calculation can
use $ref.colname or list_name.colname to refer to a list column.
With bSelectMatches or bDeselectNonMatches the first line
number whose selection state is changed is returned (or 0 if no
selection states are changed), otherwise the first line number
which matches the selection is returned (or 0 if no line is found).
This method does not change any CRB values, the current row is
changed if neither bSelectMatches or bDeselectNonMatches is
used

$sort() $sort(column1,bDescending=kFalse[,column2,
bDescending=kFalse]...) sorts the list on the specified columns
sort fields; you can specify up to 9 columns including the
bDescending flag for each (which defaults to kFalse meaning cols
are sorted ascending). The columns can be column names or
calculations using $ref.colname or list_name.colname. For
calculated sorts, the calculation is evaluated for line 1 of the list to
determine the comparison type (Character, Number or Date)

$merge() $merge(list or row,bByName,bSelectedOnly) merges the two lists;
if you specify a row it is treated as a single row list. If you specify
bByName, columns are matched by name rather than by number;
if you specify bOnlySelected only selected lines in the source list
are merged

$savelistdeletes() $savelistdeletes() removes all kRowDeleted rows from the history
list, and also from the normal list if $rowpresent is kTrue

$savelistinserts() $savelistinserts() changes all kRowInserted rows to
kRowUnchanged, and sets the old contents of those rows to the
current contents. It does not change $rowpresent

$savelistupdates() $savelistupdates() changes all kRowUpdated rows to
kRowUnchanged and, for all rows, sets the old contents to the
current contents; this does not change $rowpresent

$savelistwork() $savelistwork() executes the $savelist... methods

$revertlistdeletes() $revertlistdeletes() changes all kRowDeleted rows to
kRowUnchanged or kRowUpdated (depending on whether the
contents have been changed); for these rows $rowpresent is set to
kTrue



110 Chapter 4—Methods

Method Description

$revertlistinserts() $revertlistinserts() removes any inserted rows from both the
normal and history list

$revertlistupdates() $revertlistupdates() changes all kRowUpdated rows to
kRowUnchanged and, for all rows, the current contents are set to
the old contents; this does not change $rowpresent

$revertlistwork() $revertlistwork() quick and easy way to execute the $revertlist...
methods

$includelines() $includelines(row status) includes rows of a given status,
represented by the sum of the status values of the rows to be
included. Thus 0 means no rows, kRowUnchanged +
kRowDeleted means unchanged and deleted rows, and kRowAll
means all rows, irrespective of status

$filter() $filter(search-calculation) applies a filter to a smart list; this
method restricts the list to only those rows which match the search
calculation; for example, Do LIST.$filter (COL1 = ‘10’) will only
display lines where COL1 is 10

$unfilter() $unfilter(level) removes a filter or filters from a smart list

$refilter() $refilter() reapplies all current filters to a smart list

$remove() $remove(rLine|iLineNumber|kListDeleteSelected|kListKeepSelect
ed) deletes the specified line or lines from the list; note you can
specify a reference to a list line, a line number, or you can remove
all selected or non-selected lines; if you specify 0, the current line
is removed (kTrue is returned if successful)

$first() $first(bSelectedOnly=kFalse, bBackwards=kFalse) sets the
current row of the list to the first row or first selected row and
returns a reference to that row; if there are no further rows the
current row is set to zero

$next() $next(list row or row number, bSelectedOnly=kFalse,
bBackwards=kFalse) sets the current row of the list to the next
row or next selected row and returns a reference to that row; if
there are no further rows the current row is set to zero and nothing
is returned. If you specify 0 for the list row it is taken as the
current row

$add() $add(col1value[,col2value]...) inserts a row at the end of the list
with the specified column values. If you use $add() without
parameters any columns which correspond to CRB fields are
loaded with the current CRB values

$addbefore() $addbefore(list row or row number,col1value[,col2value]...)



List Variable 111

Method Description

inserts a row before the specified row with the specified column
values.. If you specify 0, $row is used

$addafter() $addafter(list row or row number,col1value[,col2value]...) inserts
a row after the specified row with the specified column values. If
you specify 0, $row is used

List Column
Notation [notation.]LISTNAME.$cols.COLNUMBER.Method

The columns of a list are contained in the $cols group. You can access a column using its
column number.

Method Description

$clear() clears the data for the column for every row in the list, the column
definition is left unchanged, for example, LIST.$cols.col1.$clear()
clears col1

$removeduplicates() $removeduplicates(bSortnow,bIgnorecase) removes lines with
duplicate values in the column. If bSortnow is true the list is
sorted on that column, otherwise you must sort the list using
$sort() before applying this method. If bIgnorecase is true the case
of character values is ignored when making the comparison. The
number of rows removed is returned

$count() returns the number of rows for the column, including rows that
have empty or null values

$total() returns the total for a column containing numeric data

$average() returns the average for a column containing numeric data

$minimum() returns the minimum value in a column containing numeric data

$maximum() returns the maximum value in a column containing numeric data



112 Chapter 4—Methods

List Row
Method Description

$assigncols() $assigncols(col1value[,col2value]...) replaces the column values for the
row with the specified values; if you use $assigncols() the values of any
columns which correspond to CRB fields are loaded with the current
CRB values

$assignrow() $assignrow(row, by name) assigns the column values from the row
specified by the first parameter into the row on a column by column
basis; if you specify ‘by name’ the columns are matched by name,
otherwise by column number

$clear() $clear() clears the value of all the columns for the row

$loadcols() $loadcols(variable1[,variable2]...) loads the column values for the row
into the specified variables; if you use $loadcols() the values of any
columns which correspond to CRB fields are loaded into the CRB fields



External Components 113

External Components
Notation [$root.]$components.LIBNAME.Method

You can access automation objects using the $cmd() method via the $components group. If
an error occurs, for example the construction of an automation object fails, #ERRCODE
and #ERRTEXT can be inspected to determine the error.

Method Description

$cmd() $cmd(parm1[,parm2]...) issues a component-specific command to the
component; it lets you interact with components such as the Automation
component, without needing a component object in a window or report
instance; not all components support this method.
For example, you can control the JavaBean component using $cmd() and
one or more parameters, such as
Do $components.JavaBean.$cmd("GetPaths", List)
populates the specified list with the Java Bean search paths.
Using the Automation component and the $cmd() method you can launch a
browser window, for example
Set reference iRef to
    $components.Automation Library
Do iRef.$cmd("$createobject",
    "InternetExplorer.Application.1")
    Returns pDISPapp
Do iRef.$cmd(pDISPapp,"Navigate()","www.MyWebSite")
Do iRef.$cmd(pDISPapp,"Visible") Returns #1
If #1=0
    Do iRef.$cmd(pDISPapp,"Visible",kTrue)
End If
This method sets an item reference to the automation component, constructs
an instance of InternetExplorer and returns a unique descriptor to the new
object; the descriptor is a character string of 15 chars and a unique pointer to
an Automation dispatch interface, which you pass to other calls related to
the object; the method then invokes the Navigate() method and gets the
current value of the Visible property; if the object is not visible, the method
sets the visible property to true



114 Chapter 4—Methods

Method Lines
You can manipulate method lines using the following method(s).

Method Description

$modify() $modify([iLine=1]) opens the method editor at the specified line in the
method; the default is line 1; this method is not available in the runtime
version of OMNIS

Instance
Notation [notation.]INSTANCENAME.Method

All class instances, except table instances, have the following methods.

Method Description

$canclose() $canclose(bIsquit) is sent to an instance just before any action which may
cause it to be destructed; bIsquit is passed as kTrue when the $canclose()
message is sent as a result of a Quit OMNIS event

$close() $close(instancename) closes or destructs the instance (if it can be closed)
and returns true if the instance is closed. $close() calls $canclose() and if it
returns true the instance is closed



Report Instance 115

Report Instance
Notation [$root.]$ireports.REPORTINST.Method

Report instances have the following methods.

Method Description

$openjobsetup() $openjobsetup() opens the job setup dialog, and can be called
immediately after $open() for a report; if it returns kFalse (the user
has canceled), the report instance should be closed without printing
any data

$printrecord() $printrecord() is sent to the report instance by the Print record
command. The default handler prints the record section

$printtotals() $printtotals(section) is sent to the report instance when a subtotal
break has been triggered or the report is about to be terminated;
section is the highest level subtotal to be printed (a constant such as
kSubtotal5 or kTotals), if section is not a subtotal or totals section
only the subtotal header sections are printed. The default handler
prints the correct subtotal sections followed by the corresponding
subtotal header sections

$printsection() $printsection(section) is sent when a section is printed; section is
one of the constants (kRecord, kTotals, etc.) or a reference to a
section field on the report instance. The default handler prints the
section positioned according to $sectionstart, $sectionend and the
positioning mode for the section . For a subtotal or total section the
current field values are temporarily reset to those which were
current when $printsection for a detail section was previously called

$accumulate() $accumulate(kSection) accumulates the subtotals and totals; it is
sent to the report instance during the printing of a record section
and the current field values into the most rapidly changing subtotals.
$accumulate(section) is sent from $printtotals(section) to
accumulate the current level subtotals into the next level of
subtotals; you can use $accumulate() instead of
$accumulate(kSection)

$checkbreak() checks if a subtotal break is required by comparing the current field
values with those when it was last called; returns a constant:
kSubtotal1 to kSubtotal9 or kNone if no subtotal break is required

$skipsection() causes any further processing of the current section to be skipped; if
you call this during $print() for a field, no further fields will be
printed for that section, so positioning sections count as new
sections and are not skipped if the previous section was skipped



116 Chapter 4—Methods

Method Description

$startpage() $startpage(page number) is sent to a report instance when another
page is started. The default handler adds the page header section to
the page: for the first page, the default handler also adds the report
header section to the page. Calls to $startpage() for a large number
of pages will result in large memory use. Starting a page always
ends the previous page (only one page is started and not ended)

$endpage() $endpage(page number) is sent to a report instance just before a
page is ended (the next page is to be started or the page is about to
be ejected). The default handler adds the footer section to the page.
Calls to $endpage() for a large number of pages will result in large
memory use. $endpage() without a parameter ends all pages which
have been started

$ejectpage() $ejectpage(page number) is sent to a report instance just before a
page is ejected. You cannot add to a page once it is ejected; the
default handler ejects the page; pages are ejected in order so
ejecting a page also ejects all earlier pages. Calling $ejectpage(page
number) will start and end all pages before they are ejected.
$ejectpage() without a parameter ejects all pages which have been
ended and not ejected

$endprint() $endprint() is sent to the report instance by the End print command
and in other circumstances when the report is terminated. The
default handler prints the final subtotals and totals sections and
ejects all the remaining pages

Report Instance Object
Notation [$root.]$ireports.REPORTINST.$objs.REPORTOBJ.Method

A field or object in a report instance has the following methods.

Method Description

$print() $print(position,value) is sent to the field or section when it is to be printed. If
you specify value this data is printed, otherwise the normal field value is
printed (when the default processing calls $print() the value parameter is set
up): position is the starting position for the field or section, if no position is
specified the field is printed at $sectionend. When $print() is called for a
section the position has already taken account of the positioning mode of the
section, $sectionstart and $sectionend



Table Instance 117

Table Instance
Notation [notation.]SQLLIST.Method

A table instance is created when you create a list or row variable based on a schema, query,
or table class. The following methods let you populate and change a list based on a sql
class, and apply changes to the data on the server. Note that some of these methods execute
SQL in the context of the current OMNIS session.

Method Description

$select() $select([cText,...]) issues a SELECT statement to the server; it can
take one or more arguments, either literals or variable values which
are concatenated into one text string and appended to the SELECT

$selectdisticnt() $selectdistinct([cText,...]) issues a SELECT DISTINCT statement to
the server; it can take one or more arguments, either literals or
variable values which are concatenated into one text string and
appended to the select statement

$fetch() $fetch(iFetchcap[,bAppend=kFalse]) fetches the next iFetchcap
number of rows from the server; if bAppend is kTrue the fetched
data is appended to the list, otherwise if kFalse or omitted the list is
cleared before the fetch; parameters do not apply for row variables,
since the current data in the row is always replaced

$sqlerror() $sqlerror(iErrortype,iErrorcode,cErrortext) called when an error
occurs while executing $select(), $fetch(), $update(), $delete(),
$insert(), or $do... methods; performs default processing for the
error unless you override $sqlerror() with your own method to
handle SQL errors

$createnames() $createnames() returns a text string suitable for using with a
CREATE TABLE statement

$selectnames() $selectnames() returns a text string, containing a comma separated
list of column names, suitable for using with a SELECT statement

$insertnames() $insertnames([cRowName]) returns a text string suitable for using
with an INSERT statement, in the form (col1,...,colN) VALUES
(@[cRowName.col1],...,@[cRowName.colN]) where col1...colN are
the names of the columns in the row variable; if cRowName is
omitted $cinst is used in bind variables



118 Chapter 4—Methods

Method Description

$updatenames() $updatenames([cOldrowName][,cRowName]) returns text suitable
for using with an UPDATE statement, in the form SET
col1=@[cRowName.col1], ...,colN=@[cRowName.colN] where
col1...colN are the names of the columns in the row variable; if
cRowName is omitted $cinst is used in bind variables

$wherenames() $wherenames([cOperator][,cRowName]) returns text suitable for
using as a WHERE clause, in the form WHERE
col1=@[cRowName.col1] AND ,..., AND
colN=@[cRowName.colN] where col1...colN are the names of the
columns in the row variable; if cRowName is omitted $cinst is used
in bind variables

$doinserts() $doinserts() inserts list rows with status kRowInserted into the
server database

$doupdates() $doupdates([bDisableWhere=kFalse]) updates list rows with status
kRowUpdated in the server database; when bDisableWhere is true it
prevents $doupdates from appending a WHERE clause to the
UPDATE statement

$dodeletes() $dodeletes([bDisableWhere=kFalse]) deletes list rows with status
kRowDeleted from the server database; when bDisableWhere is true
it prevents $dodeletes from appending a WHERE clause to the
DELETE statement

$dowork() $dowork([bDisableWhere=kFalse]) executes the $dodeletes(),
$doupdates(), $doinserts() methods in that order; it passes the value
of bDisableWhere to the $dodeletes() and $doupdates() methods

$undoinserts() $undoinserts() removes any inserted rows from the list

$undoupdates() $undoupdates() restores any updated rows to their original value,
and resets their status to kRowUnchanged

$undodeletes() $undodeletes() restores any deleted rows to the list, and resets their
status to kRowUnchanged

$undowork() $undowork() executes the three $undo... methods in the order insert,
update, delete, that is, the reverse order to the $dowork method

$doinsert() $doinsert(wRow) inserts a row into the server database; it is called
by $doinserts() for each row to be inserted

$doupdate() $doupdate(wRow,wOldrow) updates a row in the server database; it
is called by $doupdates() for each row to be updated



Window Instance 119

Method Description

$dodelete() $dodelete(wRow) deletes a row from the server database; it is called
by $dodeletes() for each row to be deleted

$insert() $insert() inserts a row into the server database

$update() $update(wOldrow[,bDisableWhere=kFalse]) updates a row in the
server database; when bDisableWhere is true it prevents $update
from appending a WHERE clause to the UPDATE statement. You
would typically use this when $extraquerytext is not empty.
$update() appends $extraquerytext after the WHERE clause

$delete() $delete([bDisableWhere=kFalse]) deletes a row from the server
database; when bDisableWhere is true it prevents $delete from
appending a WHERE clause to the DELETE statement. You would
typically use this when $extraquerytext is not empty. $delete()
appends $extraquerytext after the WHERE clause

Window Instance
Notation [$root.]$iwindows.WINDOWINST.Method

A window instance contains the methods of an instance together with the following.

Method Description

$bringtofront() brings the window instance to the front, returns true if successful

$minimize() minimizes the window instance, returns true if successful

$maximize() maximizes the window instance, returns true if successful

$redraw() $redraw(bSetcontents=kTrue,bRefresh=kFalse) redraws the contents
and refreshes the window



120 Chapter 4—Methods

Window Instance Object
Notation [$root.]$iwindows.WINDOWINST.$objs.OBJNAME.Method

All window objects have the $redraw() method. Methods for specific field types are listed
separately.

Method Description

$redraw() $redraw(bSetcontents=kTrue,bRefreshWindow=kFalse) resets the
contents of the field and/or refreshes the window instance containing the
field

Methods for Tree Lists
Method Description

$getnodelist() $getnodelist(Listmode,rNodeRef,lListname) returns the list data
under the current node or for the entire tree; Listmode can be
kRelationalList or kFlatList; rNoderef can be a reference to a node
or NULL to retrieve the entire tree, lListname is the name of a list
variable to receive the list data

$setnodelist() $setnodelist(Listmode,rNodeRef,lListname) lets you populate the
current node or whole tree with the data in lListname; Listmode can
be kRelationalList or kFlatList; rNoderef can be a reference to a
node or NULL to populate the whole tree

$currentnode() returns an item reference to the current node in the tree

$count() returns the number of nodes under the current node, or all root
nodes in whole tree

$clearallnodes() clears all nodes under the current node, or all the nodes in the entire
tree

$findnodename() $findnodename(rNodeRef,cName,bRecursive) returns a reference to
a found node using the node $name property, or NULL if nothing is
found: rNodeRef is the starting node, a NULL value searches the
whole tree; cName is the name to search for; if bRecursive is kTrue,
any child nodes are also searched

$findnodeident() $findnodeident(rNodeRef,iIdent,bRecursive) returns a reference to a
found node using the node $ident property, or NULL if nothing is
found: rNodeRef is the starting node, a NULL value searches the
whole tree; iIdent is the ident value to search for; if bRecursive is
kTrue, any child nodes are also searched

$first() returns a reference to the first root node

$add() $add(cName[,iIdent]) adds a new root node or node after the
specified iIdent



Window Instance 121

Method Description

$remove() $remove(rItem) deletes the specified child node

$setcurrentnode() $setcurrentnode(rNodeRef) sets the current node to the node in
rNodeRef

$nextnode() $nextnode(rItem,bRecursive) returns the next node in the tree after
the node in rItem, or the first root node if rItem is NULL; if
bRecursive is kTrue the method steps into any child nodes

$prevnode() $prevnode(rItem,bRecursive) returns the previous node in the tree
before the node in rItem; if bRecursive is kTrue, the method steps
back into node parents

$expand() opens all child nodes under the current node, or all nodes in the
entire tree list

$collapse() closes all child nodes under the current node, or all nodes in the
entire tree list

$getvisiblenode() $getvisiblenode(iVisLine) returns a reference to the node for a
visible line

$findname() $findname(cName) returns a reference to the node named in cName

$findident() $findident(iIdent) returns a reference to the node specified by iIdent

$edittext() lets the user edit the text for the current node

Methods for Icon Arrays
Method Description

$edittext() $edittext() lets the user edit the text for the current icon

Methods for Headed List Boxes
Method Description

$edittext() $edittext(iColumnNumber) lets the user edit the cell for the current
line of the specified column

$getcolumnalign() $getcolumnalign(iColumnNumber) returns the alignment of the
specified column

$setcolumnalign() $setcolumnalign(iColumnNumber[,Alignment]) sets the alignment
of the specified column; you can specify Alignment as kLeft,
kRightJst, or kCenterJst, otherwise if it is omitted the method uses
the current value of $columnalignmode for the field



122 Chapter 4—Methods

Methods for Tab panes
Method Description

$showpane() $showpane(iPaneNumber,bShow=kTrue) shows the specified
pane; if bShow is kFalse the pane is hidden

$ispaneshown() $ispaneshown(iPaneNumber) returns true if the specified pane is
visible

$enablepane() $enablepane(iPaneNumber,bEnable=kTrue) enables the specified
pane; if bEnable is kFalse the pane is disabled or grayed out and
the user cannot select it

$ispaneenabled() $ispaneenabled(iPaneNumber) returns true if the specified pane is
enabled

Methods for Screen Report Fields
Method Description

$redirect() $redirect(bPrompt=kTrue) redirects the current report by prompting for
a different print device, rather than the device specified in default
preferences

$print() prints the current report in the field

$printpage() prints the current page of the report in the field

$zoom() $zoom(bZoomOn=kTrue) sets the zoom mode when the screen report
field is in page preview mode

$clear() clears the field of the current report

Methods for Modify Report Fields
Method Description

$sortfields() opens the sort fields dialog for the current report

$pagesetup() opens the page setup dialog for the current report



About the Commands 123

Chapter 5—Commands
This chapter describes the OMNIS commands, including the fifty or so external commands.
In this chapter they are arranged in alphabetical order. The external commands are listed in
a separate section at the end of this chapter. Each entry includes a short description of the
command, its reversibility, its effect on the flag, and its parameters and syntax.

To learn how to use the commands you should read the Using OMNIS Studio manual. Also
you should be familiar with the method editor and OMNIS debugger before using the
commands.

About the Commands
There are over 500 OMNIS commands that provide a powerful interpreted programming
language with which you can build client/server applications. With them you can monitor
events in the client user interface, control SQL objects and transaction management,
manipulate classes and data in your libraries and data files, and so on.

You can enter all the commands under all operating systems, but some commands only run
under a particular OS indicated by the appropriate OS icon.

External Commands
External commands add functionality to OMNIS. They are implemented as Dynamic Link
Libraries (DLLs) under Windows, or external code resources under MacOS. External
command packages are placed in the EXTERNAL folder and appear in the External
commands... group in the method editor. The external commands are described in the next
chapter in this manual.



124 Chapter 5—Commands

Commands
Accept advise requests
Reversible: YES Flag affected: NO

Parameters: � Accept

Syntax: Accept advise requests [(Accept)]

DDE command, OMNIS as server. This command enables or disables responses to a
request Advise message from a client. With the Accept check box selected, OMNIS will
respond to an Advise request message specifying a valid field name by repeatedly sending
the field value to the client at appropriate times. If the Accept option is unchecked, all
conversations with Advises in force will be terminated unless the command is part of a
reversible block.

Accept advise requests  (Accept)    ;; Check the Accept option

Accept commands
Reversible: YES Flag affected: NO

Parameters: � Accept

Syntax: Accept commands [(Accept)]

DDE command, OMNIS as server. This command determines whether OMNIS will accept
commands from the client program. When Accept commands is in force, OMNIS will
respond to a DDE EXECUTE message by attempting to execute a command string sent by
the client program. All conversations are terminated when you close your OMNIS library.

Accept advise requests (Accept)

Accept commands  (Accept)      ;; Check the Accept option



Commands 125

Accept field requests
Reversible: YES Flag affected: NO

Parameters: � Accept

Syntax: Accept field requests [(Accept)]

DDE command, OMNIS as server. This command enables or disables responses to a
request for field values issued by a client application. With the Accept option selected,
OMNIS will respond to a Request message specifying a valid field name by sending the
field value to the client program. Values are taken from the current record buffer. Values
are only sent when OMNIS is in enter data mode or when no methods are running.

Accept advise requests (Accept)

Accept commands (Accept)

Accept field requests  (Accept)       ;; Check the Accept option

Accept field values
Reversible: YES Flag affected: NO

Parameters: � Accept

Syntax: Accept field values [(Accept)]

DDE command, OMNIS as server. This command determines whether OMNIS is able to
receive data from a client via a DDE POKE message. With the Accept option selected,
OMNIS will respond to a Poke message specifying a valid field or variable name, by setting
the value of that field to the value transmitted by the client program. Values are stored in the
current record buffer and, if the relevant field is on the top window, that window is redrawn.

Field values are only accepted when OMNIS is in enter data mode, Prompted find, or when
no methods are running. All conversations are terminated when you close your OMNIS
library.

Accept advise requests (Accept)

Accept field values  (Accept)        ;; Check the Accept option



126 Chapter 5—Commands

Add line to list
Reversible: NO Flag affected: YES

Parameters: Line number (default is end of list)
List of values

Syntax: Add line to list [{[line-number] [(value1[,value2]...)]}]

This command adds a new line to the current list using the current field values in the CRB
or values you specify in the list of values. Any conversions required between data types are
carried out automatically. The flag is cleared if the line cannot be added, either because the
maximum number of lines in the list or the memory limits have been exceeded.

You can specify the line number at which the new line is inserted, otherwise the line is
added to the end of the list. If the line number you specify in the command line is empty or
evaluates to zero, the new line is added to the end of the list.

You can specify a comma-separated list of values (enclosed in parentheses) to be added to
the list. For example

Add line to list  {$line ('abc',,VAR1+3)}

stores 'abc' into the first column of the current line of the current list, leaves the value of the
second column empty, and loads the result of VAR1+3 into the third column. If too few
values are specified, the other columns are left empty; if too many values are specified, the
extra values are ignored. When you supply a comma-separated list of values, the values in
the CRB are ignored.

The following example sets the current list to MYLIST, defines and builds the list and adds
the values in S3 and LVAR1 at line 4 (note the first column of line 4 is left empty).

Set current list MYLIST

Define list {CODE,NAME,CREDIT}

Build list from file on CLIENTS

Calculate S3 as 'New string'

Calculate LVAR1 as 23

Add line to list  {4(,S3,LVAR1)}

OK message (Icon) {New value in list is [lst(4,S3)]}

; lst() defaults to current list when name not specified

You can use Add line to list to create fixed lists of string and numeric data. For example

Set current list DROPDATALIST

Define list { Name, Sales, Expenses }

Add line to list  {('Fred',100,20)}

Add line to list  {('Sam',81,15)}

Add line to list  {('George',92,34)}

Add line to list  {('Niles',45,15)}



Commands 127

Alternatively, you can use the $add() method to add lines to your list. The following method
defines the list and adds three rows

Do LIST1.$define(Name,Sales,Expenses)

Do LIST1.$add('Henry',231,154)

Do LIST1.$add('Moses',342,132)

Do LIST1.$add('Cynthia',423,231)

You can also use the $addbefore() and $addafter() methods to add lines at a specific
position in the list.

Advise on find/next/previous
Reversible: YES Flag affected: NO

Parameters: � Accept

Syntax: Advise on find/next/previous [(Accept)]

DDE command, OMNIS as server. This command determines when OMNIS is permitted to
send requested Advise messages to the client program. When Advise requests have been
received from a client, the Set server mode command determines when OMNIS is permitted
to send field values that have changed. In addition to the Set server mode options, the three
commands Advise on Find/next/previous, Advise on OK, and Advise on Redraw let you
toggle individual options on or off.  Advise on Find/next/previous lets you control this
particular option without affecting the other two.

Advise on Find/next/previous  (Accept)   ;; Check the Accept option

Advise on OK
Reversible: YES Flag affected: NO

Parameters: � Accept

Syntax: Advise on OK [(Accept)]

DDE command, OMNIS as server. This command determines when OMNIS is permitted to
send requested Advise messages to the client program. When Advise requests have been
received from a client, the Set server mode command determines when OMNIS is permitted
to send field values that have changed. In addition to the Set server mode options, the three
commands Advise on Find/next/previous, Advise on OK, and Advise on Redraw let you
toggle individual options on or off. The Advise on OK command lets you control this
particular option without affecting the other two.

Advise on OK (Accept)      ;; Enables advise on OK

Advise on OK               ; ; Disables advise on OK



128 Chapter 5—Commands

Advise on redraw
Reversible: YES Flag affected: NO

Parameters: � Accept

Syntax: Advise on redraw [(Accept)]

DDE command, OMNIS as server. This command determines when OMNIS is permitted to
send requested Advise messages to the client program. When Advise requests have been
received from a client, the Set server mode command determines when OMNIS is permitted
to send field values that have changed. In addition to the Set server mode options, the three
commands Advise on Find/next/previous, Advise on OK, and Advise on redraw let you
toggle individual options on or off. The Advise on redraw command lets you control this
particular option without affecting the other two.

Advise on redraw  (Accept)      ;; Enables advise on redraw

Advise on redraw                ;; Disable advise on redraw

AND selected and saved
Reversible: NO Flag affected: YES

Parameters: Line number (can be a calculation, default is current line)
� All lines

Syntax: AND selected and saved [(All lines)] [{line-number}]

This command performs a logical AND of the Saved selection with the Current selection.
You can specify a particular line in the list by entering either a number or a calculation. The
All lines option performs the AND for all lines of the current list.

To allow sophisticated manipulation of data via lists, a list can store two selection states for
each line; the "Current" and the "Saved" selection. The Current and Saved selections have
nothing to do with saving data on the disk; they are no more than labels for two sets of
selections. The lists may be held in memory and never saved to disk: they will still have a
Current and Saved selection state for each line but they will be lost if not saved. When a list
is stored in the data file, both sets of selections are stored.

The list data structure contains the column definitions, the field values for each line of the
list, the current selected status and saved selected status for each line, LIST.$line,
LIST.$linecount and LIST.linemax.



Commands 129

The AND selected and saved command performs a logical AND on the saved and current
state, and puts the result into the Current selection. Hence, for a particular line, if both the
Current and Saved states are selected, the Current state remains selected, but if either or
both states are deselected, the resulting Current state will become deselected.

Saved State Current State Resulting Current State

  Selected   Selected   Selected

  Deselected   Selected   Deselected

  Selected   Deselected   Deselected

  Deselected   Deselected   Deselected

The following example selects all but the middle line of the list:

Set current list MYLIST

Define list {LVAR1}

Calculate LVAR1 as 1

Repeat

Add line to list

Calculate LVAR1 as LVAR1+1

Until LVAR1=6

Select list line(s) (All lines)

Save selection for line(s) (All lines)

Invert selection for line(s) {3}

AND selected and saved  (All lines)

Redraw lists

Autocommit
Reversible: NO Flag affected: YES

Parameters: On or Off mode (On is the default)

Syntax: Autocommit (On|Off)

This command turns on or off the automatic commit or rollback; on being the default. It lets
you turn off the default behavior of OMNIS whereby statements between Begin SQL script
and End SQL script commands that are completed without error are automatically
committed at the next Begin SQL script, Reset session or Logoff from host.  After each
Execute SQL script, an error causes OMNIS to roll back the transaction. The default for a
session which has not issued an Autocommit is automatic commit on. SQL statements sent
to a remote database using Perform SQL are committed at the next Begin SQL script, Reset
session or Logoff from host.

When Autocommit is off, you can use Commit current session and Rollback current session
to commit or rollback uncommitted statements at any time; with automatic commit off,
OMNIS will only issue explicit commits and rollbacks when it encounters these commands.



130 Chapter 5—Commands

(Under some circumstances, the external database may commit or rollback as a consequence
of some other action.) You can use Commit current session and Rollback current session
with automatic commit switched on but there will not, usually, be anything to commit or
rollback.

In some situations you should use Set transaction mode instead of Autocommit.  This is
described more fully in the server-specific programming section of the OMNIS Studio Data
Access Manager manual.

Autocommit  (Off)

Begin SQL script

SQL: Update TABLE set (column='value') where CODE='IDI'

End SQL script

Execute SQL script

If flag true

Commit current session

End If

Begin print job
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Begin print job

This command defines the beginning of an OMNIS print job. To create a print job, you use
the following sequence of commands.

Begin print job

; Print the various reports, using either

; Print report, or Prepare for print etc.

End print job

Only one print job can be started at any time: you cannot nest Begin print job commands.

If printing is already in progress, Begin print job returns an error and sets the flag to false. It
also returns an error if it cannot set up the printer, or open the printer document; again, it
sets the flag to false in this case.

Begin print job sets the flag to true if it succeeds. It automatically sets the report destination
to the printer and closes the report destination selection window if it is open.

Each report is printed in the same way as if it were in an individual document. If you print
two reports in a job, then page numbering starts at 1 for each report.

You cannot change the page setup while a print job is in progress, although OMNIS does
not try to enforce this, as it will probably cause an OS error (and abnormal termination of
printing) if you do.



Commands 131

Under MacOS, there is a spool file limit of 128 pages, imposed by the operating system. If a
job exceeds this limit then the job will be printed as multiple documents, and this may not
result in the desired interleaving.

The Begin and End print job commands only apply to reports sent to a printer, via the
printer report destination.

Begin reversible block
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Begin reversible block

This command begins a reversible block of commands. All reversible commands enclosed
within the commands Begin reversible block/End reversible block are reversed when the
method containing this block finishes. However, a reversible block in the $construct()
method of a window class reverses when the window is closed—not when the method is
terminated as is normally the case. OMNIS always steps backwards through a reversible
block of commands, thus the first command is reversed last.

Reversible blocks let you create subroutines that restore the values of variables, the current
record buffer, and so on, to their previous state when the method terminates. Most
commands are reversible: those that are not usually involve an irreversible action such as
changing the data in an OMNIS data file or running another program.

A method can contain more than one block of reversible commands. In this case, commands
contained within all the blocks are reversed when the method terminates.

; all the commands in the following example are reversed

; when the method containing the block is finished

Begin reversible block

Disable menu line {MMENU/5}

Set current list LVAR1

Build open window list (Clear list)

Calculate LVAR1 as 0

Open window instance WEDIT

End reversible block

; more commands...

When this block is reversed:

1. The window instance WEDIT is closed

2. LVAR1 returns to its former value

3. MYLIST is restored to its former contents and definition

4. The current list is set to the former value



132 Chapter 5—Commands

5. Menu line 5 is enabled

Methods called from within a reversible block are not reversed. For example

; FirstMethod

Begin reversible block

A...

Do method SecondMethod

B...

C...

D...

E...

End reversible block

; SecondMethod

M...

N...

O...

P...

In this example, commands A... to E... within the reversible block are reversed (if they are
commands that can be reversed), while commands M... to P... within the called method are
not reversed.

Further examples will show how reversible blocks are used. The following method hides
fields Entry1 and Entry2 and installs the menu MCUSTOMERS.

Begin reversible block

Hide fields Entry1,Entry2

Install menu MCUSTOMERS

End reversible block

OK message (Icon) {MCUSTOMERS is now visible}

When this method ends, first MCUSTOMERS is removed, then the fields are shown.

In the following example, the current list is LIST1.

Begin reversible block

Set current list LIST2

Define list {AMOUNT,TOS}

Set main file {FACCOUNTS}

Build list from file on ACCNUM

Enter data

End reversible block

When this method terminates and the command block is reversed, the Main file is reset, the
former list definition is restored and the current list is restored to LIST1.



Commands 133

Begin SQL script
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Begin SQL script

This command defines the start of a block of SQL statements and text to be stored in the
SQL buffer. The SQL text buffer is cleared when you execute this command. The End SQL
script command defines the end of the block. The lines are not checked by OMNIS in any
way and must be valid SQL in order for the server to be able to operate on them. When an
Execute SQL script command is issued, the text in the buffer is sent to the remote server.
The Begin SQL script and End SQL script markers usually denote a transaction which
OMNIS will automatically commit if no errors occur.

The commands Begin SQL script, Execute SQL script, Perform SQL, and Reset cursor(s) all
empty the SQL statement buffer for the current session.

; method to select all customers

Begin SQL script

SQL: Select * from CUSTOMERS

End SQL script

Execute SQL script

Begin text block
Reversible: NO Flag affected: NO

Parameters: � Keep current contents

Syntax: Begin text block [(Keep current contents)]

This command defines the start of a block of text to be stored in the global text buffer. The
Begin text block command clears the text buffer by default, and adds the text in subsequent
Text: commands to the text buffer. However, you can keep the current contents of the buffer
by checking the Keep current contents option, in which case text is appended to current
text in the buffer. You build the text block using the Text: command, which supports
leading and trailing spaces and can contain square bracket notation. The End text block
command defines the end of the text block, and you can return the contents of the text buffer
using the Get text block command.

; Declare var cTEXT of Character type

Begin text block

Text: If a train station is where the

Text: train stops, what is a work station?

End text block

Get text block cTEXT



134 Chapter 5—Commands

Break to end of loop
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Break to end of loop

This command terminates a Repeat, While or For loop, passing control to the command
following the Until, End While or End For command.  An If command is usually placed
before the Break to end of loop to determine the condition under which a break occurs.

Open window instance WClient

Set main file {FCLIENT}

Find first on SEQ

While SEQ<201

Prepare for edit

Enter data

If flag false

Break to end of loop

End If

Update files

Next

End While

; Control breaks to here if Enter data is canceled



Commands 135

Break to end of switch
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Break to end of Switch

This command causes OMNIS to jump out of the current Case statement (i.e. terminate the
Case before the end of Case is reached), and resume method execution after the End Switch
command. You use it in conjunction with the Switch and Case commands.

Switch LVAR1

Case 16

OK message {Got a 16}

Break to end of switch

OK message {I never run}

Case 4

OK message {Got a 4}

Break to end of switch

OK message {I never run}

Default

OK message {didn’t get a 4 or 16}

End Switch

Breakpoint
Reversible: NO Flag affected: NO

Parameters: Message (text)

Syntax: Breakpoint [{message}]

This command places a breakpoint at a command line in a method where you want to stop
execution, to check your coding for example. You can include a message with the command
which is displayed in the debug window when the break occurs. The command does nothing
at runtime.

When OMNIS encounters a breakpoint the debugger is opened with the current method
loaded and the Breakpoint command line highlighted. You can examine the value of fields
and variables by right button/Ctrl-clicking on the field or variable name.

Following a breakpoint you can continue method execution by clicking the Go button or by
using Step or Trace mode.



136 Chapter 5—Commands

Open window instance WCONTROL

Calculate LVAR1 as sqr(MASS/2)

Breakpoint  {Check MASS and LIMIT}

If LVAR1 >> LIMIT

Do method SetLimit

End If

Bring window instance to front
Reversible: NO Flag affected: NO

Parameters: Window instance name

Syntax: Bring window instance to front window-instance-name

This command brings the specified window instance to the front. If the window is already in
front, the command does nothing. If the specified window instance does not exist (that is,
the window is not open) this command will cause an error.

Test for window open {winst1}

If flag true

Bring window instance to front  winst1

Else

Open window instance Mywin/winst1

End If

Build export format list
Reversible: YES Flag affected: YES

Parameters: � Clear list

Syntax: Build export format list [(Clear list)]

This command builds a list containing the name of each export format. The list is built in
the current list for which you must define a single column to contain the export format.

The Clear list option clears the current list and redefines it to include only the S4 field.
With this option, the command becomes reversible.



Commands 137

Set current list EXPORTLIST

Build export format list  (Clear list)

; Defines the list as containing S4

Build externals list
Reversible: YES Flag affected: YES

Parameters: � Clear list

Syntax: Build externals list [(Clear list)]

This command builds a list of the externals in the EXTERNAL folder. The list of
extensions is placed in the current list for which you must define the following columns

Col 1
(Character)

Col 2
(Character)

Col 3
(Number)

Col 4
(Character)

Windows File name Routine name Routine index File extension

MacOS File name Routine name Routine ID Routine type

The Clear list option clears the current list. The command becomes reversible with this
option.

The following method builds a list of extensions.

; declare Local vars NAME, ROUTINE, IND, TYPE

; declare Local var EXTERNALLIST of List type

Set current list EXTERNALLIST

Define list (NAME,ROUTINE,IND,TYPE)

Build externals list

When an external routine is called, the internal list of routines is always searched before the
current resource path. If a full pathname for a file and a routine name is specified, only that
path is searched.



138 Chapter 5—Commands

Build field names list
Reversible: YES Flag affected: YES

Parameters: � Clear list
� Full names
File name

Syntax: Build field names list [([Clear list][ ,Full names])] {file-name}

This command builds a list of field names for the specified file class in the current list. You
must specify the following columns in the current list.

Column 1
(Character)

Column 2
(Character)

Column 3
(Character)

Field name Field type and Description; for

 length index fields only

When you use the Clear list option you get column 1 only defined as #S5. With this option
the command becomes reversible. The flag is cleared if the value of LIST.$linemax prevents
a complete list from being built.

The Full names option creates a list in which the fields are prefixed with the file class
name, for example, PO_DATE becomes FPORDERS.PO_DATE.

Set current list FIELDLIST

Build field names list  (Clear list) {FILENAME}

; Clear list option defines the list as containing #S5

or you can do it like this

Do $files.filename.$makelist($ref.$name)



Commands 139

Build file list
Reversible: YES Flag affected: YES

Parameters: � Clear list

Syntax: Build file list [(Clear list)]

This command builds a list containing the name of each file class in the current library. The
list is built in the current list for which you must specify the following columns.

Column 1
(Character)

Column 2
(Character)

File name Description for file (if you
have entered one)

When you use the Clear list option you get column 1 only defined as #S5. With this option
the command becomes reversible, that is, the original contents of the list are restored. The
flag is cleared if the number of lines in the list exceeds LIST.$linemax.

Set current list FILELIST

Build file list  (Clear list)

; Clear list option defines the list column as #S5

or you can do it like this

Do $files.$makelist($ref.$name)

Build indexes
Reversible: NO Flag affected: YES

Parameters: File name

Syntax: Build indexes {file-name}

This command rebuilds all the indexes for the specified file which have been dropped with
the Drop indexes command. Drop indexes deletes all the indexes for the specified file apart
from the sequence number index. Build indexes checks that all the indexes defined in the
file class actually exist in the data file and builds those which are not there. This command
does not build any indexes which already exist even if they are in a damaged state.

If the specified file name does not include a data file name as part of the notation, the
default data file for that file is assumed. If the file is closed or memory-only, the command
does not execute and returns flag false.

If you are not running in single user mode, this command automatically tests that only one
user is using the data file (the command fails with the flag false if this is not true), and
further users are prevented from logging onto the data until the command completes.



140 Chapter 5—Commands

If a working message with a count is open while the command is executing, the count will
be incremented at regular intervals. The command may take a long time to execute, and it is
not possible to cancel execution even if a working message with cancel box is open.

The flag is set if at least one index is successfully rebuilt. Note that the command is not
reversible.

Do not flush data

Drop indexes {Pictures}

Repeat

Working message {Building indexes...}

Build indexes  {Pictures}

Until flag true

Build installed menu list
Reversible: YES Flag affected: YES

Parameters: � Clear list

Syntax: Build installed menu list [(Clear list)]

This command builds a list containing the name of all menu instances on the main OMNIS
menu bar, starting from the left. All the standard OMNIS menus such as File and Edit  are
ignored. The list is built in the current list for which you must define the following columns:

Column 1
(Character)

Column 2
(Character)

Menu instance
name

Description for menu class (if one
has been entered)

When you use the Clear list option you get column 1 only defined as #S5 with a 15
character column width. With this option, the command becomes reversible.

Menu instances from libraries other than the current library are prefixed with their library
names. The flag is cleared if the command fails due to a shortage of memory.

Set current list MENULIST

Build installed menu list  (Clear list)

; clear list option defines list as #S5

or you can do it like this

Do $imenus.$makelist($ref.$name,$ref.$desc)



Commands 141

Build list columns list
Reversible: YES Flag affected: YES

Parameters: List or row name (default is the current list)
� Clear list

Syntax: Build list columns list [list-name] [(Clear list)]

This command builds a list containing the column names and data types of the current or
specified list. This information is placed in the current list. If the current list contains one
column, it contains the column names only. The current list column headings are ignored,
but to obtain all the available information, you define the list with two columns as follows:

Col 1
(Character)

Col 2
(Character)

List Column
name

List Column data
type

The Clear list option clears and defines the current list to contain one column, #S5, so the
column data types are not returned. With this option, the command becomes reversible.

The flag is cleared if the value of LIST.$linemax prevents a complete list from being built.
The following method and the list of data it loads into the list illustrate the typical values
produced:

Set current list COLSLIST

Define list {PO_DATE,PO_NUMBER,PO_BATCHED,SU_CONTACT,IT_UNITPRICE}

Set current list LIST1

Define list {CVAR2,CVAR3}

Build list columns list  COLSLIST

; Here are the values for LIST1:

#S2 #S3

PO_DATE Short date 2000..2099

PO_NUMBER Character 15

PO_BATCHED Boolean

SU_CONTACT Character 30

IT_UNITPRICE Number 2 dp

or you can do it like this

Do LIST.$cols.$makelist($ref.$name, $ref.$coltype)



142 Chapter 5—Commands

Build list from file
Reversible: NO Flag affected: YES

Parameters: Field name (must be indexed)
� Exact match
� Use search
� Use sort

Syntax: Build list from file on field-name [([Exact match]
[,Use search] [ ,Use sort])]

This command builds a list of data from the main file using a specified index field. The
records are selected and corresponding field values added to the list in the order of the
specified index field. You must set the main file before using the command.

If the Exact match option is specified, only records matching the current value of the
specified field are added to the list. Similarly, if the Use search check box is selected, only
records matching the current search class are added. In both cases, an error occurs if neither
a field nor a search class is specified.

When large files are involved, that is, those that may require more than the maximum
number of available lines (the value of LIST.$linemax), you can use the flag false condition
to detect when an incomplete list is built.

Building a list using this command does not affect the current record buffer and does not
clear ‘Prepare for update’ mode.

The Use sort option lets you use the database records in sorted order without first having to
load them into a list. You use Set sort field to specify a sort field after which Build list from
file (Use sort) creates a sorted table of records in memory before loading them into the list.
The main advantage of this method is that the sort fields do not have to be read into the list
at all. The Sort field order overrides the index field order but if the sort field is non-indexed,
the index is used as the order in which to gather up records before sorting. Multi-level sorts
are possible by using repeated Set sort field commands to accumulate the required sorting
order.  Since sort levels are cumulative you should first clear any existing ones with Clear
sort fields.

The following method compiles a list of all records where CODE equals the current value of
CODE in the CRB.

Set current list LIST1

Build list from file  on CODE (Exact match)

The following method compiles a list of all records sorted in order of descending
PO_NETTOTAL values and within each value, in increasing PO_NUMBER order.



Commands 143

Set current list LIST1

Set main file {FPORDERS}

Define list {PO_DATE, PO_NETTOTAL}

Clear sort fields

Set sort field PO_NETTOTAL (Descending)

Set sort field PO_NUMBER

Build list from file  on PO_SEQ (Use sort)

;  Note PO_NUMBER is not in the list

Build list from select table
Reversible: NO Flag affected: NO

Parameters: Cursor name (default is the current)
� Add CRB fields
� Clear list
List name (default is the current)

Syntax: Build list [list-name] from select table [for cursor cursor-name]
[([Add CRB fields] [ ,Clear list])]

This command copies the select table for the current or specified cursor into the current or
specified list. Each row in the select table corresponds to one line in the OMNIS list. A
Define list command should have already been executed to ensure that suitable list field
types correspond to the correct table columns. Build list from select table appends lines to
the current or specified list. You can set LIST.$linemax to limit the size of the resulting list.
A Build list from select table occurring after a sequence of Fetch next row commands stores
only the part of the table which has not already been fetched.

The flag is not a reliable indicator of whether the list build was successful, although it is
cleared if an error occurred.  Otherwise sys(138) should be used to check if there are more
rows to fetch.

Picture and Binary field types are not supported by Build list from select table.

The Add CRB fields option adds values taken from the current record buffer to the list.
You can use this option for columns with no available SQL data but this slows down the
command by about 20%.

The Clear list option clears the current list before building the new list otherwise the
command appends the data to the current list.

; declare class variable CLIST with List type

Set current list FLIST

Define list (COL1,COL2,COL3,COL4)

Describe database (Tables)

Build list from select table  (Clear list)



144 Chapter 5—Commands

For potentially large tables, setting the maximum number of lines in the list allows users to
control the retrieval of the rows, for example

Calculate LIST.$linemax as 0

Clear list

Repeat

Calculate LIST.$linemax as LIST.$linemax + 50

Build list from select table

If sys(138)

Yes/No message {Load next 50?}

End If

Until not(sys(138))

Alternatively, you can do it like this

Do TableBasedList.$select()

Do TableBasedList.$fetch(nRows)

Build list of event recipients
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Build list of event recipients

This command builds a list of Apple event recipients. The list is built in the current list for
which the columns must have been defined. The columns are

Column 1
(Character)

Column 2
(Character)

Recipient tag Application name

At any one time, you may have multiple recipients. Build list of event recipients uses the
current list to build a list of recipient tags and application names that are currently known to
OMNIS; one recipient tag per row of the list.

Begin reversible block

Set current list LIST1

End reversible block

Define list {S2,S3}

Build list of event recipients

Redraw lists



Commands 145

Build menu list
Reversible: YES Flag affected: YES

Parameters: � Clear list

Syntax: Build menu list [(Clear list)]

This command builds a list containing the name of each menu class in the current library.
The list is built in the current list for which the columns must have been defined. The
columns are

Column 1
(Character)

Column 2
(Character)

Menu class
name

Description for menu (if one has
been entered)

The Clear list option clears the current list and redefines it to include only the #S5 field.
With this option, the command becomes reversible but you get column 1 only.

Set current list MENULIST

Build menu list  (Clear list)

; defines the list as containing #S5

or you can do it like this

Do $menus.$makelist($ref.$name)

Build open window list
Reversible: YES Flag affected: YES

Parameters: � Clear list

Syntax: Build open window list [(Clear list)]

This command builds a list containing the name of each window instance, starting with the
topmost window instance. The window instance names are stored in the first column of the
list. You can also return the position and size coordinates of each window instance in the
second to fifth columns. The list is built in the current list for which you must define the
following columns:

Col 1
(Character)

Col 2
(Long Int)

Col 3
(Long Int)

Col 4
(Long Int)

Col 5
(Long Int)

Window instance
name

/left
window
coord

/top
window
coord

/right
window
coord

/bottom
window
coord

If you use the Clear list option, the list will contain one column only defined as #S5, so the
window coordinates are not returned. Also, with the Clear list option selected, the



146 Chapter 5—Commands

command is reversible, that is, the list definition and contents are restored when the method
terminates.

Set current list WINSLIST

Build open window list  (Clear list)   ;; list uses #S5

or you can do it like this

Do $iwindows.$makelist($ref.$name)

Build report list
Reversible: YES Flag affected: YES

Parameters: � Clear list

Syntax: Build report list [(Clear list)]

This command builds a list containing the name of each report class in the current library.
The list is built in the current list for which the columns must have been defined. The
columns are

Column 1
(Character)

Column 2
(Character)

Report class
name

Description for report (if one has
been entered)

You get column 1 only when you use the Clear list option.

The Clear list option clears the current list and redefines it to include only the #S5 field.
With this option the command becomes reversible.

Set current list REPLIST

Build report list  (Clear list)   ;; list use #S5

or you can do it like this

Do $clib.$reports.$makelist($ref.$name)



Commands 147

Build search list
Reversible: YES Flag affected: YES

Parameters: � Clear list

Syntax: Build search list [(Clear list)]

This command builds a list containing the name of each search class in the current library.
The list is built in the current list for which the columns must have been defined. The
columns are

Column 1
(Character)

Column 2
(Character)

Search class
name

Description for search (if
one has been entered)

You get column 1 only when you use the Clear list option.

The Clear list option clears the current list and redefines it to include only the #S5 field.
With the Clear list option, the command is reversible. The flag is cleared if the value of
LIST.$linemax prevents a complete list from being built.

This example displays the names of the search classes.

Set current list SEARCHLIST

Build search list  (Clear list)   ;; list uses #S5

or you can do it like this

Do $clib.$searches.$makelist($ref.$name)



148 Chapter 5—Commands

Build window list
Reversible: YES Flag affected: YES

Parameters: � Clear list

Syntax: Build window list [(Clear list)]

This command builds a list containing the name of each window class in the current library.
The list is built in the current list for which you must define the following columns

Column 1
(Character)

Column 2
(Character)

Window class
name

Description for window (if one
has been entered)

You get column 1 only when you use the Clear list option, but the command becomes
reversible.

The Clear list option clears the current list and redefines it to include only the #S5 field.
With the Clear list option, the command becomes reversible.

Set current list WINDOWLIST

Build window list  (Clear list)   ;; list uses #S5

or you can do it like this

Do $clib.$windows.$makelist($ref.$name)

Calculate
Reversible: YES Flag affected: NO

Parameters: Field name
Calculation (leave blank for null values)

Syntax: Calculate field-name as [calculation]

This command assigns a new value to a data field or variable. The form of the command is
"Calculate X as Y", where X is a valid data field or variable name and Y is either a valid
data field or variable name, value, calculation, or notation. When Calculate is executed the
state of the flag is unchanged, unless #F is recalculated by this command.

You can use Calculate in a reversible block. The data field returns to its initial value when
the method containing the block of reversible commands finishes.

WARNING  The Calculate command does not redraw a calculated field so if your field is
on a window you must use the Redraw command or the $redraw() method after the
Calculate command to reflect the change.

The following examples show how you can use the Calculate command.



Commands 149

Calculate  LVAR1 as LVAR2

; sets field LVAR 1 equal to the contents of LVAR 2

Calculate  PRICE as 100.50

; sets PRICE equal to 100.50

Calculate  PRICE as COST*(1+MARKUP/100)

; calculates the value of PRICE from the current

; values of COST and MARKUP

You can also use notation in the field or calculation, for example

Calculate  $cwind.$objs.Field1.$top as 9999

; recalculates the position of Field 1

Calculate  $clib.$prefs.$mouseevents as kFalse

; turns off mouse events

You can operate on variables with the Calculate command, for example

; Declare local variable L_FILES of List type

Set current list L_FILES

Calculate  L_FILES as $libs.LIBNAME.$files.$makelist($ref.$name)

; builds a list of files in the library

Note that certain operations executed via the notation are better performed using the Do
command, rather than Calculate, for example

Do $iwindows.win1.$bringtofront()

; brings the window instance to the front, but is simpler than

Calculate  #F as $iwindows.win1.$bringtofront()

Operator Precedence
Mathematical expressions are evaluated using the operator precedence so that in the
absence of brackets, * and / operations are evaluated before + and -.  The full ordering from
highest to lowest precedence is:

unary minus

* and /

+ and -

>, <, >=, <=, <>, =

& and |

For example, if you execute the command

Calculate  LVAR1 as 10-2*3

the calculation part is evaluated as

10-(2*3) which equals 4



150 Chapter 5—Commands

Call external routine
Reversible: NO Flag affected: YES

Parameters: Routine name or library name/routine name
Parameters list
Return field

Syntax: Call external routine [library name/]routine-name
[(parameter1[,parameter2]...)] returns return-field

This command calls an external routine with mode ext_call and returns a value from the
external in the specified return-field. The return value is placed in the specified field by the
external code using the predefined field reference Ref_returnval with the functions
SetFldVal or SetFldNval. The flag is set if the external routine is found and the call is made
but this does not necessarily mean that the external code has executed correctly. The flag is
cleared if the routine is not found. Note that the routine cannot use the flag to pass
information back to the method.

You can pass parameters to the external code by enclosing a comma-separated list of fields
and calculations. If you pass a field name, for example, Call external routine Maths1
(Num1,Num2), the external can directly alter the field value. Enclosing the field in brackets,
for example, Call external routine Maths1 ((Num1),(Num2)), converts the field to a value
and protects the field from alteration.

In the routine itself, the parameters are read using the usual GetFldVal or GetFldNval with
the predefined references Ref_parm1, Ref_parm2, and so on, Ref_parmcnt gives the
number of parameters passed. If the field name is passed as a parameter, you can use
SetFldVal or SetFldNval with Ref_parm1, and so on, to change the field's value.

Call external routine  Mathslib/sqroot (Num1) returns  Num2

Cancel advises
Reversible: NO Flag affected: NO

Parameters: Field name
� All channels

Syntax: Cancel advises [field-name] [(All channels)]

DDE command, OMNIS as client. This command cancels one or more Request advises
from the current channel. If you omit the field name, all Request advises to the current
channel are canceled. If you specify a field name, all Request advises to the current channel
which refer to that field name are canceled.

The command is addressed to the current channel only, and if the current channel is not
open, an error occurs. No error occurs, however, if there are no Request advises commands
to cancel.



Commands 151

If you use the All channels option, all channels are canceled. There is no need to use a
Cancel advises command before a Close DDE channel command.

When OMNIS issues a Request advises to a DDE server, OMNIS is in effect saying "Hey,
tell me if this value changes and send me an update". The Enter data command must be
running to allow the incoming data to get through.

Yes/No message {Do you want updates?}

If flag false

Cancel advises  (All channels)    ;; clears all advises

Quit method

Else

Request advises C_COMPANY {C_COMPANY}

Request advises C_ADDRESS {C_ADDRESS}

End If

Prepare for insert

Enter data

Update files if flag set

Cancel event recipient
Reversible: NO Flag affected: YES

Parameters: Recipient tag

Syntax: Cancel event recipient {recipient-tag}

This command cancels the specified Apple event recipient.

Set event recipient {Microsoft Excel}

; do something...

Yes/No message {Do you want to keep Excel?}

If flag false

Cancel event recipient  {Microsoft Excel}

Else

; continue...



152 Chapter 5—Commands

Cancel prepare for update
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Cancel prepare for update

This command cancels the Prepare for update mode and releases any semaphores which
may have been set. You use the Prepare for edit/insert command to prepare OMNIS for
editing or insertion of records. It is usually followed by Update files which is the usual way
of terminating the Prepare for... state but you can also terminate this state with Cancel
prepare for update. It must be followed by commands which prevent an Update files
command from being encountered.

When you execute a Prepare for... command in multi-user mode, semaphores are used to
implement record locking. Cancel prepare for update neutralizes the effect of a Prepare
for... command and releases all semaphores.

You can use this command within a timer method to implement a timed record release.

Set timer method 600 sec  {Timer method}

Prepare for edit

Enter data

Update files if flag set

Clear timer method

; Timer method

Yes/No message {Time's up, cancel edit?}

If flag true

Cancel prepare for update

Queue cancel

End If



Commands 153

Cancel publisher
Reversible: NO Flag affected: YES

Parameters: File or field list

Syntax: Cancel publisher [{file|field1[,file|field2]...}]

This command cancels the publication of the fields specified. The field list can take a file
name (for all fields in a file) or a range of fields, which includes a range of fields in the
order listed in the Field names window. If no list is given, all publications for the library are
canceled. There are no errors if the list includes unpublished fields.

The flag is set if the command cancels the publication for one or more fields.

Publish field CNAME {HD80:Public:Sales-Name}

Publish field CTOTAL {HD80:Public:Sales-Total}

Find first on CNAME

Publish now {CNAME,CTOTAL}

Cancel publisher {CNAME,CTOTAL}

Cancel subscriber
Reversible: NO Flag affected: YES

Parameters: File or field list

Syntax: Cancel subscriber [{file|field1[,file|field2]...}]

This command cancels the subscription of the fields specified. The field list can take a file
name (for all fields in a file) or a range of fields, which includes a range of fields in the
order listed in the Field names window. If no list of field names is given, all subscriptions
for the library are canceled. There are no errors if the list includes nonsubscribed fields.

The flag is set if the command cancels the subscription for one or more fields.

Subscribe field CNAME {Freds Mac: Public:Sales-Name}

Subscribe field CTOTAL {Freds Mac: Public:Sales-Total}

Enter data

Subscribe now {CNAME,CTOTAL}

Cancel subscriber {CNAME,CTOTAL}



154 Chapter 5—Commands

Case
Reversible: NO Flag affected: NO

Parameters: Constant value, field name or expression

Syntax: Case expression

The Case statement is part of a Switch construct that chooses one of an alternative set of
options. The options in a Switch construct are defined by the subsequent Case commands.
The Case command takes either a constant, field name, single calculation, or a comma-
separated series of calculations. You must enclose string literals in quotes. Date values must
match the date format in #FDT.

; a value between 1 and 4 is passed to Group

; declare parameter Group (Short integer (0 to 255))

Switch Group

Case 1     ;; North

Set search as calculation {Div='N'}

Case 2     ;; East

Set search as calculation {Div='E'}

Case 3     ;; South

Set search as calculation {Div='S'}

Case 4     ;; West

Set search as calculation {Div='W'}

End Switch

; now use search on a list perhaps

You can add multiple conditions in a comma-separated list to one Case statement (see
below). Use Default to specify commands that should run if the value is not one of those
specified in the Case statements. For example

Switch CVAR1

Case 'A'

; do this, if CVAR1 is A

Case 'B','C','D'

; or do this, if CVAR1 is B, C or  D

Default

; otherwise do this, if CVAR1 is none of the above

End Switch



Commands 155

Change user password
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Change user password

This command opens the Password dialog in which the user can change passwords. The
menus are redrawn and lists and variable values (apart from #UL) are unaffected.

If the current user is the master user, passwords can be changed. In addition, the command
gives the user the choice of using another password to re-enter the current library at a
different user level, thus gaining access to different areas of the library. If a user re-enters at
a different level, the value of #UL will change (within the range 0–8) to reflect that new
user level.

Test for menu installed {Options}

If flag false

Yes/No message {You must install the Options menu to continue
with this operation. You must re-enter as master user. Re-enter?}

If flag true

Change user password

End If

Quit all methods

End If

Check data
Reversible: NO Flag affected: YES

Parameters: � Perform repairs
� Check data file structure
� Check records
� Check indexes
File or list of file names (the default is all files)

Syntax: Check data [([Perform repairs][,Check data file structure]
[,Check records][,Check indexes])] [{file1[,file2]...}]

This command checks the data for the specified file or list of files, and works only when one
user is logged onto the data file. If you omit a file name or list of files, all the files with slots
in the current data file are checked. If the specified file name does not include a data file
name as part of the notation, the default data file for that file is assumed. If the file is closed
or memory-only, the command does not execute and returns with the flag false.

There are Check data file structure, Check records, and Check indexes checkbox
options. If none of these is specified, the command does nothing; if only Check data file
structure is specified, the list of files is ignored. If Perform repairs is specified, any



156 Chapter 5—Commands

repairs required are automatically carried out, otherwise the results of the check are added
to the check data log. The check data log is not opened by this command but is updated if
already open.

If you are not running in single user mode, this command automatically checks that only one
user is using the data file (the command fails with flag false if this is not true), and further
users are prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will
be incremented at regular intervals. The command may take a long time to execute and it is
not possible to cancel execution even if a working message with cancel box is open.

The command sets the flag if it completes successfully and clears the flag otherwise. It is
not reversible.

Check data  (Check records) {MYDATA.ACCOUNT}

If flag true

Yes/No message {View log}

If flag true

Open check data log

End If

Else

OK message (Icon,Sound bell) {The check data file command could
not be carried out//Please make sure that only one user
is logged onto the data file}

End If



Commands 157

Check menu line
Reversible: YES Flag affected: NO

Parameters: Menu instance name
Menu line number

Syntax: Check menu line menu-instance-name/menu-line-number

This command places a check mark on the specified line of a menu instance to show that the
option has been selected. You specify the menu instance name and the number of the menu
line you want to check.

You can remove the check mark with Uncheck menu line. If you use this command in a
reversible block, the check mark is removed when the method terminates. Nothing happens
if the menu instance is not installed on the menu bar.

The following method tests whether a line in the menu instance is checked and either checks
or unchecks it accordingly.

Install menu mBookings/MINST1

Test for menu line checked MINST1/3

If flag true

Uncheck menu line MINST1/3

Else

Check menu line  MINST1/3

End If

Clear all files
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Clear all files

This command clears the current record buffer of all file variables for all open libraries and
all open data files, including any memory-only files. However, it does not clear the hash
variables. Window instances are not automatically redrawn so you must follow it by Redraw
if you want the screen to reflect the current state of the buffer.

Clear all files

Redraw wInvoices

; clears CRB fields from fInvoices, fCustomers, fStock



158 Chapter 5—Commands

Clear check data log
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Clear check data log

This command clears the check data log, which stores all the results of a check data
operation. To clear the log, there is no need for the log to be open.

Check data (Check records) {MYDATA.ACCOUNT}

If flag true

Yes/No message {View log}

If flag true

Open check data log

; After looking at the data log

Yes/No message {Clear the log?}

If flag true

Clear check data log

End If

End If

Else

OK message {Check data file could not be carried out//Please
ensure that only one user is logged onto the data file}

End If

Clear class variables
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Clear class variables

This command clears any class variables used within the class and clears the memory used
for the class variables. Clear class variables is placed in a method within the class where
you want to clear variables.

A class variable is initialized to empty or its initial value the first time it is referenced.  It
remains allocated until the class variables for its class are cleared. The class variables for all
classes are cleared when the library file is closed.

; declare class variables with initial values

; transfer values to instance variables

Clear class variables  ;; all variables for class are now clear

Redraw (Refresh now) {Entry1,Entry2,Entry3}



Commands 159

Clear data
Reversible: NO Flag affected: YES

Parameters: Field name
� Redraw field
� All windows

Syntax: Clear data [field-name] [([Redraw field][ ,All windows])]

This command clears the data from the specified field or current selection. The data is lost
and is not placed on the clipboard. If you do not specify a field, the current field’s data is
cleared (assuming there is a selection).

In the case of a null selection when the cursor is merely flashing in a field and no characters
are selected, Clear data will literally clear "nothing".

The following method is placed behind the TO_PRICE field and checks if the value is over
5000; if it is, the value entered into the field is cleared and the cursor remains in the field.

On evAfter

If TO_PRICE > 5000

Yes/No message {Is this price correct?}

If flag false

Clear data  TO_PRICE (Redraw field)

Queue set current field {ePrice}

Quit event handler (Discard event)

End If

Clear DDE channel item names
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Clear DDE channel item names

DDE command, OMNIS as client. This command clears all server data item names selected
for use with a print-to-channel report. You use this command when exporting data via a
DDE channel to another Windows application. The channel item names become the item
names into which the server places the fields printed in the OMNIS report.

Clear DDE channel item names clears all the item names set up with Set DDE channel item
name.



160 Chapter 5—Commands

Set DDE channel number {2}

Open DDE channel {EXCEL|SHEET1}

Send to DDE channel

Set report name RDDEXPORT

Clear DDE channel item names

Send command {[[TakeControl]}

; Double first [['s so OMNIS accepts text

If flag true

Set DDE channel item name {R1,C1}

Set DDE channel item name {R2,C1}

...

Set DDE channel item name {R50,C1}

Print report

End If

Clear find table
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Clear find table

This command clears the find table for the current main file and releases the memory it
used.

When a Find or Next/Previous command is encountered, OMNIS uses the Index, Search
and Sort field parameters to create a table of records (similar to a SQL Select table). This
may simply be an existing index in which case no further processing takes place or, if there
is a search and/or sort condition, a file may be scanned and a selection of records sorted in
memory. If a Next or Previous returns an unexpected record or no record, this is probably
because there is still a find table in existence from another Find operation.

For a large file, a substantial amount of RAM may be used.

Set main file {FCLIENT}

Set sort field TOWN

Set sort field COUNTRY

Find first on CCODE (Use sort)

Do method ProcessTable

Clear find table



Commands 161

Clear line in list
Reversible: NO Flag affected: YES

Parameters: Line number (can be a calculation, default
is current line)

Syntax: Clear line in list [{line-number}]

This command clears the values stored in the specified line of the current list. You can
specify the line number in a calculation, otherwise the current line (LIST.$line) is used. The
flag is cleared if the list is empty or if the line is beyond the current end of the list.

This method deletes the current line from the list if CREDIT value is zero:

Set current list LIST2

For each line in list from 1 to LIST2.$linecount step 1

If lst(CREDIT)=0

Clear line in list

End If

End For

Redraw lists

or you can do it like this

Do LIST.rownumber.$clear()



162 Chapter 5—Commands

Clear list
Reversible: YES Flag affected: NO

Parameters: � All lists

Syntax: Clear list [(All lists)]

This command clears all the lines in the current list and frees the memory they occupy. It
does not alter the definition of the list. If you use Clear list as part of a reversible block, the
list lines will be reloaded when the method containing the reversible block finishes. The list
is only reloaded if it occupies 50,000 bytes of storage or less.

The All Lists  option only clears the hash variable lists #L1 to #L8: all other lists including
task, class, instance and local variable lists, are not cleared by this command.

The following method builds a list of data formats depending on the type of graph selected
by the user. Before the method is built the list is cleared using the Clear list command; this
ensures the list is initialized and completely empty of data.

Set current list List1

Clear list

Add line to list (1,’Bloggs’,pSal)

or you can do it like this

Do LIST.$clear()

Clear main & connected
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Clear main & connected

This command clears the memory of current records from the main file and any files
connected to the main file. The windows are not automatically redrawn so you must follow
it with a Redraw window-name command if you want the screen to reflect the current state
of the buffer.

You can use Clear main & connected to release locked records to other users.

In the following example, the memory is cleared after Insert is canceled.

Prepare for insert

Enter data

If flag false

Clear main & connected

Quit method

End If



Commands 163

Clear main file
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Clear main file

This command clears the main file record from the current record buffer. The command
does not clear the values taken from the other files.

The Clear main file command does not redraw the window so remember to include an
explicit Redraw window-name command if you want the screen to reflect the contents of the
buffer.

The Prepare for update mode is unaffected.

Clear main file

Redraw DataEntryWin

Clear method stack
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Clear method stack

This command cancels all currently executing methods and clears the method stack. A
Clear method stack at the beginning of a method terminates all the methods in the chain
which called the current method but without quitting the current method. $control() methods
are not cleared.

As each method calls another, a return point is stored so that control can pass to the
command following Do method or Do code method as the called method terminates. When
the current method terminates, control returns to the method which was running before it
was called.

The Clear method stack command clears all the return points and is used if the method
commences a completely new operation. This command followed by a Quit method is the
same as Quit all methods.

WARNING  It is unwise to clear the method stack if local variables have been passed as
fieldname parameters and you continue executing the current method. This will break all
local variables on the stack.



164 Chapter 5—Commands

; Calling method

Calculate CVAR1 as 1

Do method Message

; the following message never gets displayed

Do CVAR1+1

OK message {CVAR1=[CVAR1]}

; Message

Clear method stack

Do CVAR1+1

; This message prints CVAR1=2

OK message {CVAR1=[CVAR1]}

Quit method

Clear range of fields
Reversible: YES Flag affected: NO

Parameters: First data name
Final data name

Syntax: Clear range of fields first-data-name to final-data-name

This command clears the specified range of fields from the current record buffer.

When used in a reversible block, the fields cleared are restored when the method terminates.

; declare local vars Char1, Char2, Char3 of Character type

Call procedure (Char1,Char2,Char3) {Initialize}

Clear range of fields Char1 to Char3

Clear search class
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Clear search class

This command clears the current search class so you can print a report using all records.
This also frees the memory required by the search class.

If you use Clear search class in a reversible block, the search class reverts to its former
setting when the method terminates.



Commands 165

Set report name REPORT1

Set search name SITEMS_OS

Yes/No message {Do you want to use the search?}

If flag false

Clear search class

End If

Print report (Use search)

Clear selected files
Reversible: YES Flag affected: NO

Parameters: List of files

Syntax: Clear selected files [{file1[,file2]...}]

This command clears the current record buffer of records from the specified files. The
command is particularly useful in a multi-user system where it may be necessary to remove
only certain files so that they are not locked.

In the method editor, a list of files is displayed. You can Ctrl/Cmnd-click on the file names
to select multiple names. If no file name or file list is specified, the command does nothing.

Clear selected files {fInvoices, fCustomers}

Redraw window instance wInvoices ;; clear the window

Clear sort fields
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Clear sort fields

This command removes the sort fields that are currently active. This enables the data to be
printed without any sorting taking place. Alternatively, the command removes the current
sort fields so you can specify new sort levels with Set sort field.

If you use Clear sort fields in a reversible block, the original sort values are restored when
the method terminates.

Clear sort fields

Set sort field TITLE (Upper case)

Send to screen

Print report



166 Chapter 5—Commands

Clear timer method
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Clear timer method

This command clears or cancels the current timer method. Usually a timer method remains
in operation until the library is closed or an error occurs. In a reversible block, the current
timer method is restored when the method terminates.

; Set Timer

Set timer method (60 sec) MENU/Timer

OK message {Now play the minute waltz!}

; Timer

OK message {Timer method triggered once only}

Clear timer method

Close all designs
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Close all designs

This command closes all the design windows currently open, including all Browser and
instances of the method editor.

Close all windows
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Close all windows

This command closes all open window instances in all open libraries, and automatically
cancels any working message. The Close all windows command does not close private
instances which do not belong to the current task.

Update files

Yes/No message {Have you deleted all for now?}

If flag true

Close all windows

End If

or you can do it like this

Do $iwindows.$sendall($close)



Commands 167

Close check data log
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Close check data log

This command closes the check data log if it is open. The command is not reversible and the
flag is not affected.

; Check Data

Check data (Check records) {MYDATA.ACCOUNT}

If flag true

Yes/No message {View log?}

If flag true

   Open check data log (Do not wait for user)

End If

; leaves log window open

Else

OK message {The check data file command could not be carried out,
please make sure that only one user is logged onto the data file}

End If

; Close Log

Close check data log



168 Chapter 5—Commands

Close client import file
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Close client import file

This command closes the current client import file. After finishing with the current import
file, be sure to close it using this command. If the file is already closed, nothing will happen.
If it is open, OMNIS will ensure that all current data is flushed to the file and the file is
closed. You must close the import file before you import the data into an OMNIS data file.

; Get file from VAX

Set client import file name {xprImportFile}

Open client import file

Perform SQL {select * from customers}

Retrieve rows to file

Close client import file

If flag true

OK message {Comms with VAX successful}

Else

OK message {Comms with VAX unsuccessful}

Quit method

End If

; next, you import the fields from the file using a While loop with

; Import field from file. Not a good way of downloading, but the

; file could be imported by another program such as a spreadsheet.

Close cursor
Reversible: NO Flag affected: YES

Parameters: Cursor name

Syntax: Close cursor [{cursor-name}]

This command closes the named cursor. If cursor-name is not given the current cursor is
closed. If there is only one remaining cursor in the session this command quits the session.
It is the same as

Set current cursor {SQL_1}

Quit cursor(s) (Current)



Commands 169

Close data file
Reversible: NO Flag affected: YES

Parameters: Internal name (of open data file)

Syntax: Close data file [{internal-name}]

This command closes the open data file with the specified internal name, or closes all the
open data files if no name is specified. It sets the flag if at least one data file is closed. It
clears the flag and does nothing (that is, does not generate a runtime error) if the specified
internal name does not correspond to an open data file.

If #UL > 4

Close data file {Data1}

Open data file {Data2}

Set main file {fPictures}

Close DDE channel
Reversible: NO Flag affected: NO

Parameters: � All channels

Syntax: Close DDE channel [(All channels)]

DDE command, OMNIS as client. This command closes the current channel. If you use the
All channels option, all open DDE channels are closed. No error occurs if the current
channel is not open.

Set DDE channel number {2}

Open DDE channel {OMNIS|COUNTRY}

If flag false

OK message {Country library not running}

Else

Do method TransferData

Close DDE channel

OK message {Update finished}

End If



170 Chapter 5—Commands

Close design
Reversible: NO Flag affected: YES

Parameters: Class name

Syntax: Close design {class-name}

This command closes the specified design window.  Trying to close a class which is not
open simply clears the flag.

Close design  {MYMENU}

Close import file
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Close import file

This command closes the current import file. You should use it once the data has been read
in.

Set import file name {Data}

Prepare for import from file {Delimited (commas)}

Import data {list1}

End import

Close import file

Close library
Reversible: NO Flag affected: YES

Parameters: Internal name (default is all libraries)

Syntax: Close library [{internal-name}]

This command closes the open library file with the specified internal name, or closes all the
open library files if no name is specified. It sets the flag if at least one library file is closed.
It clears the flag and does nothing if the specified internal name does not correspond to an
open library.

Note that the internal name for a library defaults to its physical file name from which the
path and DOS extension has been removed. The Open library command also lets you
specify the internal name (see the example below).



Commands 171

Closing a library closes all windows, reports, and menus belonging to that library which are
open or installed. It also disposes of the CRBs for the file classes and class variables
belonging to that library, closes all lookup files opened by that library, and if there is a
running method from that library on the stack, clears the method stack. If the method stack
is cleared, the command following the current executing command will not execute, and it is
not possible to test the flag value returned from the command.

Open library MYLIB.LBR

Open library YOURLIB.LBR/ALIAS

Close library  MYLIB

Close library ALIAS

Close lookup file
Reversible: NO Flag affected: YES

Parameters: Lookup name

Syntax: Close lookup file [{lookup-name}]

This command closes the lookup file which matches the reference name given in the
parameters. Each lookup file is given a reference label when it is opened. For example,
"City" in:

Open lookup file {City/LOOKUP.DF1/FCITIES}

OK message {The city you require is [lookup('City',S1)]}

Close lookup file  {City}

If the reference label given in the Open lookup file command is omitted, you can omit the
lookup name in the Close lookup file command. If the specified lookup file is closed, the
flag is set; if the lookup file doesn't exist, the flag is cleared.

Close other windows
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Close other windows

This command closes all but the top window instance. As window instances are not
automatically closed in OMNIS, you can use this command to close all window instances
except the top window instance. The Close other windows command does not close private
instances which do not belong to the current task.

If sys(51)  ;; more than 1 window open?

Close other windows ;;  close the others

End If



172 Chapter 5—Commands

Close port
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Close port

This command closes the current port. You should use it after the data has been transferred.

Set port name {1 (Modem port)}

Set port parameters {1200,n,7,2}

Repeat

Import field from port into CVAR1

Until CVAR1='start data'

Do method ImportData

Close port

Close print or export file
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Close print or export file

This command closes the current print or export file. You use it after the data has been
written to the file. If the file is left open, subsequent data printed to the file is added to the
end of the earlier data.

Send to file

Set print file name {MyText}

Set report name MyReport

Print report

Close print or export file

Close task instance
Reversible: NO Flag affected: NO

Parameters: Task instance name

Syntax: Close task instance task-instance-name

This command closes the specified task instance. Alternatively you can use the $close()
method to close a task instance.



Commands 173

Close top window
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Close top window

This command closes the top window instance. As window instances are not automatically
closed in OMNIS, you can use this command to close the top window. No error occurs if
there is no window open. This command clears the flag and does nothing if the top window
is a private instance not belonging to the current task.

If sys(50) = wCustomerEntry ;; check the top window

Close top window

End If

or do it like this

Do $topwind.$close()

Close window
Reversible: NO Flag affected: YES

Parameters: Window instance name

Syntax: Close window window-instance-name

This command closes the specified window instance. Close window clears the flag and does
nothing if the window is a private instance belonging to the current task. Alternatively you
can use the $close() method to close a window instance.

Open window instance WEXPORT/winst1

Do method ExportData

Close window  winst1

or you can do it like this

Do $iwindows.WINDOWINST.$close()



174 Chapter 5—Commands

Close working message
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Close working message

This command closes the current working message. No error occurs if there is no working
message displayed. Working messages close themselves when methods stop running and
control returns to the user.

Once a working message is displayed, a call to another method leaves the message on the
window. The message is not cleared automatically until the first method ends.

Working message {[LVAR1]} ;; show the message

Do method PrintReport ;; Working message still there

Close working message ;; Working message gone

; Comment
Reversible: NO Flag affected: NO

Parameters: Message (comment text)

Syntax: ; [comment-text]

This command adds a comment to a method. When entering a method, you can select the
Comment command from the command list by typing a semicolon. OMNIS prefixes
comments in your code with a semicolon ";". Also, you can add “in-line” comments to all
commands at the bottom of the method editor screen. These are prefixed by two semicolons
";;". Comments have no effect in your code, but do slow down method execution. Therefore
you should avoid placing comments inside for and repeat loops, or any code that is called
repeatedly.

You can turn lines of code into comments by selecting them and using the Comment
Selected Lines menu item in the debugger. Alternatively, you can press Ctrl/Cmnd-;
(semicolon) to comment selected lines of code, or Ctrl/Cmnd-' (apostrophe) to uncomment
code. Code will uncomment only if it has valid syntax, otherwise it will remain commented
out. When you uncomment existing comments that also contain in-line comments, the in-
line comments will be lost.

; here are some comments

; variable delay set by LVAR2

; adjust Until calculation to suit computer speed if required

Calculate LVAR1 as 1

Repeat       ;; this is an in-line comment

Calculate LVAR1 as LVAR1+1

Until LVAR1 >= LVAR2*10



Commands 175

Commit current session
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Commit current session

This command commits any changes made to the server tables following an Execute SQL
script, that is, it issues an explicit instruction to make permanent any changes made to the
server. It allows a finer control of transaction management than the default Autocommit
action. With Autocommit (On), OMNIS will commit all uncommitted statements after a
successful Execute SQL script at the next Begin SQL script, Logoff from host or Reset
session and rollback all unsuccessful statements after an unsuccessful Execute SQL script.
You can use Commit current session only when Autocommit is off.

Autocommit (Off)

; must be off for Commit to work

Begin SQL script

SQL: Delete Elements where ATNO > 50

End SQL script

Execute SQL script

If flag true

Commit current session

Else

Rollback current session

End If

Autocommit waits for the next Begin SQL script before committing. Some servers close
cursors on committing and dispose of the select table by waiting for the next Begin SQL
script.

Context help
Reversible: NO Flag affected: YES

Parameters: Command mode
Help file name
Context id

Syntax: Context help {command-mode [(‘help-file-name’[,context-id])]}

This command provides context help to the user.  You specify a command mode option, and
depending on the mode you can specify the help file name and context id. The command
mode options are constants listed in the Catalog.

kHelpContextMode
initiates context help mode, showing a ‘?’ cursor.



176 Chapter 5—Commands

kHelpContext (’helpfile name’, context id)
opens a general help window for the topic specified.

kHelpContextPopup (’helpfile name’, context id)
opens a popup help window for the topic specified.

kHelpContents (’helpfile name’)
opens the help file at the contents page.

kHelpQuit  (’helpfile name’)
closes window mode help.

Some options do not work on all platforms.

To implement context help for an object or area, you set the help id as a decimal value in
the $helpid property of a class or object, including windows, menus, and toolbars. You can
make your custom help file which must be placed in the Help folder and the name entered in
the library preference property $clib.$prefs.$helpfilename.

When the user clicks on an object with the help cursor or presses the F1/Help key, OMNIS
looks for the help id.  If it finds none for a window object, menu line, or toolbar control, it
then looks in the next higher containing object.

Context help {kHelpContext (‘MyHelp.hlp’,56789)}

; shows help topic 56789 from MyHelp.hlp in a general help window

Context help {kHelpContextPopup (‘MyHelp.hlp’,56789)}

; shows help topic 56789 from MyHelp.hlp in a popup help window

Context help {kHelpContextMode}  ;; shows ? cursor and awaits click:

; when user clicks, shows a popup window with topic $cobj.$helpid

; from $clib.$prefs.$helpfilename located in the Help folder



Commands 177

Copy list definition
Reversible: NO Flag affected: YES

Parameters: List or row name
� Clear list

Syntax: Copy list definition list-name [(Clear list)]

This command redefines the column headings of the current list by copying the columns and
data structure from the specified list. If the current list contains data and you do not clear
the list, no change is made to the internal structure of the list; in this case, columns are
neither added nor removed, merely renamed and the command is similar to Redefine list.

When the current list is empty or the Clear list option chosen, the command is the
equivalent to 'Define the list so that it matches the specified list'.

Set current list LIST1

Define list {Field1Date, Field2Num, Field3Char}

Add line to list

Set current list LIST2

Define list {Field4Date, Field5Num, Field6Char}

Add line to list

; Now change list LIST2 definition to that of LIST1

Copy list definition  LIST1 (Clear list)

or you can do it like this

Do LIST.$copydefinition(other LIST)

Copy to clipboard
Reversible: NO Flag affected: YES

Parameters: Field name

Syntax: Copy to clipboard [field-name]

This command copies the contents of the specified field or current selection and places it on
the clipboard. In the case of a null selection when the cursor is merely flashing in a field and
no characters are selected, the Copy to clipboard command will literally copy "nothing".

; copies one field to another then clears the first field

Copy to clipboard  C_NAME

Paste from clipboard C_COMPANY (Redraw field)

Clear data C_NAME (Redraw field)



178 Chapter 5—Commands

Create data file
Reversible: NO Flag affected: YES

Parameters: � Do not close other data
Data file name
Internal name (of new data file)

Syntax: Create data file [(Do not close other data)]
{data-file-name [/internal-name]}

This command creates and opens a new and empty, single segment data file, which becomes
the "current" data file. You can specify the path name of the file to be created and the
internal name for the open data file.

The Do not close other data option lets you have multiple open data files. If you uncheck
this option ,all open data files are closed even if the command fails.

If the disk file with the specified path name cannot be created (and opened), the flag is
cleared. Otherwise, the flag is set if the data file is successfully created and opened.

WARNING  If the file and path name is the same as an existing data file, all segments for
that data file are deleted before the new file is created. If the data file was open, it is closed
and deleted; a new and empty data file is then reopened.

Yes/No message {Do you wish to add a new company}

If flag true

Do method InsertCompany

Create data file  (Do not close other data)[CoCode].df1/[CoCode]

Open data file (Do not close other data)[CoCode].df1/[CoCode]

End If

or do it like this

Do $datas.$add(path,create,name)



Commands 179

Create library
Reversible: NO Flag affected: YES

Parameters: � Do not close others
Library file name
Internal name

Syntax: Create library [(Do not close others)] {library-name[/internal-name]}

This command creates and opens a new library file. You specify the file name (and
pathname if you wish) and internal name of the library. The internal name is an alias that
you supply and use in your methods to refer to that library file.

If no internal name is specified, the default internal name is the disk name of the file with
the path name and suffix removed. For example, under Windows the internal name for
'C:\MYFILES\TESTLIB.LBR' is TESTLIB. Similarly, under MacOS the internal name for
'hd:myfiles:testlib.lbr' is 'testlib'.

A Do not close others option can also be specified so that you can open multiple libraries.
If the disk file with the specified path name cannot be created (and opened), the flag is
cleared and no libraries are closed. Otherwise, if the option is not specified, all other open
libraries are closed (see Close library for the consequences of closing a library).

WARNING  If the path name is the same as an existing library, the existing library is
overwritten. If the existing library is open, it is closed and deleted and a new, empty library
is opened.

Switch sys(6)=‘M’

Case kTrue

Create library  {HD200:OMNIS:MyLib/MyAlias}

Default

Create library  {C:\OMNIS\MYLIB.LBR/MyAlias}

End Switch

; or do it like this

Do $libs.$add(path,create,name)



180 Chapter 5—Commands

Cut to clipboard
Reversible: NO Flag affected: YES

Parameters: Field name
� Redraw field
� All windows

Syntax: Cut to clipboard [field-name] [([Redraw field][ ,All windows])]

This command cuts the contents of the specified field or current selection and places it on
the clipboard. In the case of a null selection when the cursor is merely flashing in a field and
no characters are selected, Cut to clipboard will literally cut "nothing".

Cut to clipboard  FIELD1 (Redraw field)

Paste from clipboard FIELD2 (Redraw field)

Declare cursor
Reversible: NO Flag affected: YES

Parameters: Cursor name
SQL script

Syntax: Declare cursor cursor-name for sql-script

This command defines a cursor for the current session and lets you send a SQL statement.
The Declare cursor command takes a new cursor-name and a SQL-script for that cursor
that is to be executed for the current session. This command opens a session for the named
cursor if one does not exist.

Declare cursor EMP_CURSOR for SELECT * FROM EMP FOR UPDATE

Open cursor { EMP_CURSOR }

This command is the same as:

Set current cursor

Begin SQL script

SQL: SELECT * from EMP FOR UPDATE

End SQL script



Commands 181

Default
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Default

This command marks the block of commands to be run when there is no matching case in a
Switch statement. When a Switch–Case construct is used, the Default command marks the
start of a block of commands that are executed if none of the preceding Case statements are
executed.

Switch cTEXT

Case 'Fred'

OK message {Fred}

Break to end of switch

OK message {I never execute}

Case 'Jim'

OK message {Got Jim}

Break to end of switch

OK message {I never execute}

Default

OK message {Neither Fred nor Jim}

End Switch



182 Chapter 5—Commands

Define list
Reversible: YES Flag affected: NO

Parameters: List of variables, file class field names, or file class name

Syntax: Define list {variable|field1[,variable|field2]...}

This command defines the variables or file class field names to be used as the column
definitions for the current list; it should follow Set current list. The variables or fields used
in the definition also describe the data type and length for each column of data held. This
command clears the definition and data in the current list. When reversed, the contents and
definition of the current list are restored to their former values. Duplicate names are ignored
in your list of variables or fields.

; declare variable LIST1 of List type

Set current list LIST1

Define list  {Field1,Field2,Field3}

; defines columns Field1, Field2, Field3 for the current list

Define list  {Field1,Field2,Field3,Field1}

; same as above, ignores duplicate reference to Field1

Define list  {FileName}

; includes all the fields in the file class

Alternatively you can use the $define() method to define a list; in this case you don’t need
to set the current list before executing this method

Do LIST1.$define(var1,var2,var3)

; defines columns var1, var2, var3 for LIST1

Do LIST1.$definefromtable(tablename)

; defines a list from a table class

Fixed Length Columns
Normally the length of a column is set by the type or length of the variable or field defined
for the column, therefore the column length for a default Character variable would be 10
million. However, when you define the list you can truncate the data stored in a column
using the notation VariableName/N. For example, to use the first 10 characters of the
variable CVAR1 in column 1 use

Define list  {CVAR1/10,CVAR2,CVAR3}



Commands 183

Define list from SQL class
Reversible: YES Flag affected: NO

Parameters: Table name
Parameters list

Syntax: Define list from SQL class sql-class-name
[(parameter1[,parameter2]...)]

This command defines the column names and data types for the current list based on the
specified schema, query, or table class. You can use it to redefine the format of the current
list, but usually it should follow a Set current list command. When reversed, the contents
and definition of the list are restored to their former values.

Set current list cList

Define list from SQL class {MySchema}

or do it this way

Do LIST.$definefromsqlclass(MySchema)

Delete
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Delete

This command deletes the current record in the main file without prompting the user to
confirm the command, so you should use it with caution. The flag is set if the record is
deleted, or cleared if there is no main file record. The flag is also cleared if the Do not wait
for semaphores option is on and the record is locked.

The following example deletes records selected by a search class.

Set main file {f_clients}

Set search name S_no_money

Find first on SURNAME (Exact match)

Repeat

Delete

Next

Until flag false



184 Chapter 5—Commands

This example checks the semaphore and tells the user if the record is locked:

Do not wait for semaphores

Delete

If flag false

OK message (Sound bell) {Record in use and can't be delete d}

End If

Delete class
Reversible: NO Flag affected: YES

Parameters: Class name

Syntax: Delete class {class-name}

This command deletes the specified library class. It is not possible to delete a file class, an
installed menu or an open window. It is also not possible to delete a class if one of its
methods is currently executing, that is, if it is somewhere on the method stack. Deleting a
class does not reduce the library file size. It does, however, create free library file blocks so
that creation of another class may be possible without further increase in library size. Errors,
such as attempting to delete a name that does not exist, simply clear the flag and display an
error message.

Delete class  {S_User}



Commands 185

Delete client import file
Reversible: NO Flag affected: NO

Parameters: Client import file name

Syntax: Delete client import file {file-name}

This command deletes the current import file that was named with Set client import file
name. It removes the file if possible but does not warn you if the file is open or if it doesn't
exist. You are responsible for deciding if the client import file name set previously is the
correct one.

Set client import file name {xprImportFile}

Open client import file

Begin SQL script

SQL: select cust_name, cust_city, credit_line from customer

End SQL script

Execute SQL script

Retrieve rows to file

Close client import file

Do method UseModem

If flag true

Delete client import file  {xprimportFile}

End If

Delete data
Reversible: NO Flag affected: YES

Parameters: File class name (that is, slot name)

Syntax: Delete data {file-name}

This command deletes all the data and indexes for a specified file in a data file.  The data
and indexes for a file class are called a "slot". You can delete a slot only if and when one
user is logged onto the data file.

If a specified file name does not include a data file name as part of the notation, the default
data file for that file is assumed. If the file is closed or memory-only, the command does not
execute and returns flag false.  If you are not running in single user mode, the command
automatically tests that only one user is using the data file (the command fails with the flag
false if this is not true), and further users are prevented from logging onto the data until the
command completes.

If a working message with a count is open while the command is executing, the count will
be incremented at regular intervals. The command may take a long time to execute, and it is
not possible to cancel execution even if a working message with cancel box is open.  The



186 Chapter 5—Commands

command sets the flag if it completes successfully and clears the flag otherwise. It is not
reversible.

Delete data  {MYDATA.FILE1}

If flag true

OK message {Data for FILE1 deleted}

Else

OK message {Data could not be deleted; too many users}

End If

or do it like this

Do $datas.DATAFILE.$slots.SLOTNAME.$delete()

Delete line in list
Reversible: NO Flag affected: YES

Parameters: Line number (can be a calculation, default
is current line)

Syntax: Delete line in list [{line-number}]

This command deletes the specified line of the current list by moving all the lines below the
specified line up one line. If the line number is not specified or if it evaluates to 0, the
current line LIST.$line is deleted. The line in a list selected by the user can determine the
value of LIST.$line and is the line deleted if no parameters are specified. LIST.$line is
unchanged by the command unless it was the final line and that line is deleted; in this case
LIST.$line is set to the new final line number. The command never releases any of the
memory used by the list.

The flag is cleared if the list is empty or if the line is beyond the current end of the list;
otherwise, the flag is set.

This example deletes the first five lines of the current list. LVAR1 is used as a counter; each
time through the loop, the first line is deleted and all the following lines move up one line

Calculate LVAR1 as 5  ;; LVAR1 is the loop counter

Calculate LIST.$line as 1

Repeat

Delete line in list   ;; deletes line number LIST.$line

Do LVAR1-1

Until LVAR1=0

; LIST.$line is still equal to 1

or do it like this

Do LIST.$remove(row number)



Commands 187

Delete selected lines
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Delete selected lines

This command deletes all the selected lines from the current list. This is carried out in
memory and has no effect on the lists stored in the data file unless a Prepare for
Edit/Update command is performed. LIST.$line is unaffected unless it is left at a value
beyond the end of the list, in which case it is set to LIST.$linecount. The following example
results in a list of one line, with a value of 3 stored in it:

Set current list LIST1

Define list {LVAR1}

Calculate LVAR1 as 1

Repeat

Add line to list

;  Adds lines to end of list

Calculate LVAR1 as LVAR1+1

Until LVAR1=6

Select list line(s) (All lines) ;;  selects all the lines

Invert selection for line(s) {3}

Delete selected lines  ;;  deletes all but line 3

Redraw lists  

Delete with confirmation
Reversible: NO Flag affected: YES

Parameters: Message (text)

Syntax: Delete with confirmation [{message}]

This command displays a message asking the user to confirm or cancel the deletion and, if
confirmation is granted, deletes the current record in the main file. An error is reported if
there is no main file.

If a message is not specified, OMNIS uses a default message. The message can contain
square-bracket notation which is evaluated when the command is executed. If the current
record is deleted, the flag is set, otherwise it is cleared. If the Do not wait for semaphores
option is on, the flag is cleared if the record is locked.



188 Chapter 5—Commands

This example allows selected records in the main file to be deleted:

Set main file {f_clients}

Set search name S_no_money

Open window instance W_show_balance

Find first on SURNAME (Use search)

While flag true

Redraw W_show_balance

Delete with confirmation  {Delete [SURNAME]'s record?}

Next (Use search)

End While

Describe cursors
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Describe cursors

This command creates a select table that lists all the available cursors within the current
session. There is one row for each open cursor. The resulting list has one column only:

Column 1

Cursor name

You can read the select table into a list using Build list from select table. When you create a
session with multiple cursors, you can build a list of the cursors as follows:

; declare class variable CLIST of List type

; declare class variable COL of Character type

Set current list CLIST

Define list {COL}

Describe cursors

Build list from select table



Commands 189

Describe database
Reversible: NO Flag affected: YES

Parameters: Tables or Views option

Syntax: Describe database (Tables|Views)

This command creates a select table for either Tables or Views available to the current
session.

Tables
When the Tables option is specified, the Describe database command creates a select table
with one row for each Table available to the current session.

Column 1

Table name

A data dictionary query is sent to the server and you can read the select table into a list
using Build list from select table. This example builds a select table of available Tables and
reads it into the current list:

; declare class variable TLIST of List type

Set current list TLIST

Define list {#S5}

Describe database  (Tables)

Build list from select table

Views
When the Views option is specified, Describe database creates a select table with one row
for each View available to the current session.

Column 1

View name

This example builds a list of available views and creates special file classes within OMNIS
so that server data can be mapped to them:

Set current list LVIEWS ;; LVIEWS contains a column called VIEWNAME

Describe database  (Views)

Build list from select table

For each line in list from 1 to $linecount step 1

Describe server table (Columns) {[lst(VIEWNAME)]}

Make schema from server table {[lst(VIEWNAME)]}

End For



190 Chapter 5—Commands

Describe results
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Describe results

This command creates a list which describes the columns in the select table. The data
returned by Describe results is placed automatically into the current list.

When processing a select table, you can use Describe results at any point to create a list
which describes the columns in the select table. This is done without disturbing the select
table and no fetches are done. Also, no calls to Build list from select table or Fetch next row
are required.

The information returned by Describe results is as follows:

Col Column description

1 Column name

2 OMNIS data type for each column in the select table

3 Defined or maximum data length (for Character columns only)

4 Number of dp (for numeric columns); empty for floating numbers

5 NULL or NOTNULL (for SQL Server only.)

This example builds a simple select table and uses Describe results to make a list of
columns and their types:

Set current list LIST_RESULTS

Define list {COL1..COL7}

Begin SQL script

SQL: Select Name, Town, Tel from Clients

SQL: Where Town = 'London'

End SQL script

Execute SQL script

Describe results



Commands 191

Describe server table
Reversible: NO Flag affected: YES

Parameters: Columns or Indexes option
Server table name

Syntax: Describe server table (Columns|Indexes) {server-table-name}

This command creates a select table which describes the Columns or Indexes for the
specified remote server table.

Columns
When you specify the Columns option, the Describe server table command creates a select
table with one row for each Column of the specified remote server table.  The information
about the Columns of a remote server table is listed as follows:

Col Description

1 Column name

2 Standard SQL data type for each column

3 Column length (for Char columns)

4 Number of decimal places (for numeric cols only), empty for floating Nos.

5 NULL or NOTNULL; where available

6 Empty; reserved for index info

7 Description for the column; where available

You can obtain this information by issuing a query to the server data dictionary and
converting the base data types to OMNIS data types.

; declare class variable CLIST of List type

; declare class vars COL1, COL2, COL3 of Character type

Set current list CLIST

Define list {COL1,COL2,COL3}

Describe server table  (Columns) { MyTable }

Build list from select table

OK message {There are [CLIST.$linecount] columns in the table}

You can make a schema class based on the select table created by the Describe server table
(Columns) command using the Make schema from server table command, as follows

Describe server table  (Columns) {TableName}

Make schema class from server table {SchemaName}



192 Chapter 5—Commands

Indexes
When you specify the Indexes option, the Describe server table command creates a select
table that lists the unique indexes for the specified remote server table.

Col Description

1 Unique indexed column name

2 Name of the index used for the column (in column 1 of the list)

3 Numeric position of the column within a composite index
(defaults to 1 for non-composite indexes)

You can obtain a list of non-unique indexes by adding the /N switch to the command, for
example

Describe server table  (Indexes) {MyTable/N}

You can obtain a list of all indexes by adding the /A switch to the command. The default
switch /U lists the unique indexes, and can be left in or out of the command. This command
lets you write general purpose data handling methods, for example

; declare class variable KEY_LIST of List type

; declare class variable KEY_NAME of Character type

; declare parameter variable TABLE of Character type

; Pass name of table to this method

Set current list KEY_LIST

Define list {KEY_NAME}

Describe server table  (Indexes) {[TABLE]}

Build list from select table

Begin SQL script

SQL: Delete from CUSTOMERS where wherenames(^KEY_LIST)

End SQL script

Execute SQL script

If flag false

OK message {Can't delete row for [TABLE]}

Else

OK message {Row deleted}

End If

; Assumes that you have set up a specification

; for the record to delete in the OMNIS field



Commands 193

Describe sessions
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Describe sessions

This command creates a select table that lists all the available sessions. There is one row for
each open session, that is, one row per cursor/session combination. You can read the select
table into a list using Build list from select table. The columns in the select table are:

Column 1 Column 2 Column 3

Cursor name Session name Remote database

When you create multiple sessions, you can build a list of them as follows:

; declare class variable CLIST of List type

; declare class vars COL1, COL2, COL3 of Character type

Set current list CLIST

Define list {COL1,COL2,COL3}

Describe sessions

Build list from select table



194 Chapter 5—Commands

Deselect list line(s)
Reversible: NO Flag affected: YES

Parameters: Line number (can be a calculation, default is
current line)
� All lines

Syntax: Deselect list line(s) [(All lines)] [{line-number}]

This command deselects the specified list line. The specified line of the current list is
deselected and is shown without highlight on a window list field when redrawn. You can
specify the line number as a calculation. The All lines option deselects all lines of the
current list. When a list is saved in the data file, the line selection state is stored. The
following example selects all but the middle line of the list:

Set current list LIST1

Define list {LVAR1}

Calculate LVAR1 as 1

Repeat

Add line to list

Calculate LVAR1 as LVAR1+1

Until LVAR1=6

Select list line(s) (All lines)

Deselect list line(s)  {LIST1.$linecount/2} ;; rounds to 3

; Or we could use Deselect list line(s)  3

Redraw lists

or do it like this

Do LIST.$selected.$assign(kfalse)

Disable all menus and toolbars
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Disable all menus and toolbars

This command disables all built-in OMNIS menus currently installed on the menu bar,
except Edit,  and all toolbars including floating toolbars. OMNIS also disables any menus
and toolbars installed after the Disable command is executed. The menu lines and toolbar
controls are grayed out and cannot be selected. The Apple, Help, and Application menus
under MacOS are unaffected.

WARNING  You should use Disable all menus and toolbars  in a reversible block.
Otherwise, if you disable all menus using this command and a Quit all methods command is



Commands 195

executed or an error occurs, the computer may have to be switched off and the program
restarted to reinstate the menus.

You can reverse this command with the Enable all menus and toolbars command.

Begin reversible block

Disable all menus and toolbars

End reversible block

; do something with standard menus disabled

; menus are enabled when method ends

or do it like this

Do $imenus.$sendall($disable)

Disable automatic publications
Reversible: YES Flag affected: YES

Parameters: None

Syntax: Disable automatic publications

This command turns off the automatic publication of all published fields. It affects only
those fields which have been published automatically, that is, whose publisher options have
been set up. The command can be reversed by using Enable automatic publications and if
used within a reversible block, the Disable automatic publications command is reversed,
restoring the automatic publications to their former state when the method terminates.

When a library is launched, automatic publications are enabled. The command clears the
flag and does nothing if System 7 is not running. If System 7 is running, the command sets
the flag.

Publish field CNAME {HD80:Public:Sales-Name}

Publish field CTOTAL {HD80:Public:Sales-Total}

Set publisher options (Publish on save) {CNAME,CTOTAL}

..

Disable automatic publications

Prepare for edit

Enter data

Update files if flag set

Enable automatic publications



196 Chapter 5—Commands

Disable automatic subscriptions
Reversible: YES Flag affected: YES

Parameters: None

Syntax: Disable automatic subscriptions

This command turns off the automatic update of all subscribed fields. It affects only those
fields which have been subscribed automatically, that is, whose subscriber options have
been set up. The command can be reversed by using Enable automatic subscriptions and if
used within a reversible block, the Disable automatic subscriptions command is reversed,
restoring the automatic publications to their former state, when the method terminates. The
command clears the flag and does nothing if System 7 is not running. If System 7 is running,
the command sets the flag.

When a library is launched, automatic subscriptions are enabled.

Subscribe field CNAME {HD80:Public:Sales-Name}

Subscribe field CTOTAL {HD80:Public:Sales-Total}

Set subscriber options (Subscribe automatically) {CNAME,CTOTAL}

..

Disable automatic subscriptions

Prepare for edit

Enter data

Update files if flag set

Enable automatic subscriptions

Disable cancel test at loops
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Disable cancel test at loops

This command prevents OMNIS from quitting a loop when the user presses Ctrl-Break
under Windows or Cmnd-period under MacOS. Normally, when a Repeat or While
command is executed, OMNIS tests for a break command. Also, periodic Cancel tests are
performed during lengthy commands such as searches and Build lists. You use Disable
cancel test at loops to turn off the test when updating files, for example.

Cancel keys and clicks on a Cancel pushbutton are ignored even if a working message with
a Cancel box is included in the method but you can use If canceled to include an explicit
check for Cancel within the loop.  The command is reversed with Enable cancel test at
loops, whenever a new library is selected, or if placed in a reversible block.



Commands 197

; This deletes all records where code = 'ABC'

Calculate CODE as 'ABC'

Find on CODE

Disable cancel test at loops

While flag true

Working message (Repeat count)

Delete

Next on CODE (Exact match)

End While

Disable enter & escape keys
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Disable enter & escape keys

This command disables the Enter and Escape keys or Cmnd-period under MacOS, that is, it
disables the keyboard equivalents of the OK and Cancel pushbuttons. You can use it during
enter data mode to prevent the user from prematurely updating records by hitting the Enter
key, to attempt to start a new line, for example. The option will remain set until either it is
reversed with an Enable command, a new library is selected, or it is reversed as part of a
reversible block.

Before using this command in a method that initiates an Enter data command, ensure that
the user has some way of ending data entry, that is, by installing an OK and a Cancel
pushbutton, or by using a $control() method that detects the end of data entry.

Begin reversible block

Disable enter & escape keys

End reversible block

Set main file {FCLIENTS}

Prepare for edit

Enter data

Update files if flag set

Disable fields
Reversible: YES Flag affected: NO

Parameters: Field name or list of field names

Syntax: Disable fields {field1[,field2,...]}

This command disables the specified field or list of fields, making them inactive during
Enter data and Prompted find. Thus the data entry cursor skips a disabled entry field when
in data entry mode, find, and so on, and disabled pushbuttons cannot be clicked. If an entry



198 Chapter 5—Commands

field with scroll bar is disabled, you can tab to it but not change the data. You can reverse
Disable fields or enable a display field using Enable fields.

Begin reversible block

Disable fields {Entry1,Entry2}

End reversible block

Do method CheckCredit

; method ends and fields are enabled

or to disable all the fields on the current window

Do $cwind.$objs.$sendall($ref.$enabled.$assign(kFalse))

Disable menu line
Reversible: YES Flag affected: NO

Parameters: Menu instance name
Menu line number

Syntax: Disable menu line menu-instance-name/menu-line-number

This command disables the specified line of a menu instance, that is, the menu line becomes
grayed out and cannot be selected. You specify the menu-instance-name and the number of
the menu line you want to disable. You can disable a complete menu instance by disabling
line zero, that is the menu title.

You can reverse Disable menu line with the Enable menu line command or, you can use it
in a reversible block. Nothing happens if the specified menu instance is not installed on the
menu bar.

Install menu STARTUP/minst1

Begin reversible block

Test for menu installed {minst1}

If flag true

Disable menu line  minst1/1

End If

Do method ProcessData

End reversible block

; now menu line is enabled

or do it like this

Do $menus.MENU.$obj.LINE.$enabled(kfalse)



Commands 199

Disable receiving of Apple events

Reversible: YES Flag affected: NO

Parameters: � Disable compulsory events

Syntax: Disable receiving of Apple events [(Disable compulsory events)]

This command prevents OMNIS libraries from being sent Apple events. When you launch
an OMNIS library, receiving of Apple events is disabled by default: you use this command
to reverse the Enable receiving of Apple events command. All Apple events are disabled
except the four compulsory events (Open application, Quit application, Open documents
and Print documents), unless you check the Disable compulsory events option.

When received by OMNIS, the compulsory events do the following:

� Open application launches OMNIS,

� Quit application quits OMNIS,

� Open document loads a library or report,

� Print document opens a library, and prompts the user for a report to print.

Disable receiving of Apple events

Prepare for edit

Enter data

Update files if flag set



200 Chapter 5—Commands

Disable relational finds
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Disable relational finds

This command reverses the action of Enable relational finds. The default situation is
reinstated, that is, the main file and its connected parent files are joined using the OMNIS
connection.

Set main file {INVOICES}

Enable relational finds {CUSTOMERS, INVOICES}

Set search as calculation {C_CODE = INVC_CODE}

Set sort field INVNUMBER

Find first (Use search, use sort)

While flag true

; process invoices

Next

End While

Disable relational finds

Do
Reversible: NO Flag affected: NO

Parameters: Calculation
Return field

Syntax: Do calculation [returns return-field]

This command executes the specified calculation, which is typically some notation that
operates on a particular object or part of your library. It returns a value if you specify a
return-field, which can be a variable of any type.

Do $clib.$windows.win1.$open('win1',kWindowMaximize)

; opens a window instance maximized

Do $winds.winst1.$bringtofront()

; brings a window instance to the front

Do $topwind.$objs.EntryField1.$redraw()

; redraws EntryField1 on the top window

Do $winds.$sendall($ref.$objs.EntryField1.$redraw())

; redraws EntryField1 on all window instances

The optional return field can be used to check whether the operation succeeded.

You also use Do to assign a property

Do $cobj.textcolor.$assign(kRed) Returns myFlag



Commands 201

or to return an operation on a variable

Do iNum+5 Returns iNum

Do $clib.$windows.$makelist($ref.$name) Returns cWindowList

Note that where the return field is an item reference, the command sets the reference but
does not assign to it: you must do this with Calculate or Do Itemref.$assign(value).

Do code method
Reversible: NO Flag affected: NO

Parameters: Code class name
Method name
Parameters list
Return field

Syntax: Do code method code-class-name/method-name
[(parameter1[,parameter2]...)] [returns return-field]

This command runs the specified code class method, and accepts a value back from the
called method. The specified method-name must be in the code class code-class-name. The
command accepts a value back from the called method if you specify a return-field. The
return field can be a variable of any type.

When a code class method is executed using this command, control is passed to the called
method but the value of $cinst is unchanged, therefore the code in the code class method
can refer to $cinst. When the code class method has executed, control passes back to the
original executing method. The current task is not affected by execution moving to the code
class.

For example, the following method is placed behind a toolbar button and runs a general
purpose method PrintInvoice in a code class called PrintMethods.

On evClick  ;; toolbar button method

Do code method  PrintMethods/PrintInvoice

You could use the same code class method from a menu, such as

; line method for menu class

Do code method  PrintMethods/PrintInvoice



202 Chapter 5—Commands

Passing Parameters
You can include a list of parameters with the Do code method command which are passed
to the called method. For example, the following command calls the method named
EndOfMonth in the CINVOICE code class, and passes the current values in InvDate,
InvTotal, and the result of the calculation InvNet*15/100. The values are received by the
parameter variables in the order they appear in the variable pane of the called method. If the
called method has fewer parameters than values passed to it, the extra values are ignored.

Do code method  CINVOICE/EndOfMonth (InvDate,InvTotal,InvNet*15/100)

; EndOfMMonth method

; Declare Parameter vars P1, P2, and P3 to receive values

Note that where the return field is an item reference, the command sets the reference but
does not assign to it: you must do this with Calculate or Do Itemref.$assign(value).

Do default
Reversible: NO Flag affected: YES

Parameters: Return field

Syntax: Do default [returns return-field]

This command is used within the code for a custom attribute, and performs the default
behavior for the built-in attribute with the same name as a custom attribute. Do default sets
the flag if some built-in processing for the attribute exists.

For example, you could define a custom attribute, called $horzscroll.$assign, that assigns a
horizontal scroll bar. If the window is over 20 pixels wide the default behavior for
$horzscroll.$assign is called, that is, a scroll bar is added, otherwise a scroll bar is not
allowed.

; $horzscroll.$assign

; Declare parameter Switchon of type Boolean

If Switchon & $cinst.$width < 20

Quit method  ;; window too narrow for a scroll bar

Else

Do default     ;; assign a horz scroll bar

End If

Note that where the return field is an item reference, the command sets the reference but
does not assign to it: you must do this with Calculate or Do Itemref.$assign(value).



Commands 203

Do inherited
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Do inherited

This command runs the superclass method with the same name as the currently executing
method in the current subclass. For example, you can use Do inherited in the $construct()
method of a subclass to execute the $construct() method of its superclass. Similarly you can
run the $destruct() method in a superclass from a subclass.

; $construct method

Do inherited    ;; do superclass construct

Do ......       ;; make your own settings

$destruct

Do ......       ;; reverse your own settings

Do inherited    ;; do superclass destruct

The flag is set if a method with the name of the current method is found in one of the
superclasses.

Normally a method in the current class takes precedence, but the inherited version of the
method can be executed using the Do inherited command. Alternatively you can use the
$inherited property with a method name

; $init method

Do inherited   ;; this is the same as Do $inherited.$init



204 Chapter 5—Commands

Do method
Reversible: NO Flag affected: NO

Parameters: Method name
Parameters list
Return field

Syntax: Do method method-name [(parameter1[,parameter2]...)]
[returns return-field]

This command runs the specified method in the current class, and accepts a value back from
the called method. If you use the Do method command in a field or line method, OMNIS
searches for the specified method in the field or line methods for the class, and then
searches in the class methods. If the specified method is not found there is an error.

The command accepts a value back from the recipient or receiving method if you specify a
return-field, which can be a variable of any type. Note that where the return field is an item
reference, the command sets the reference but does not assign to it: you must do this with
Calculate or Do Itemref.$assign(value).

When another method is executed using this command, control is passed to the called
method.  When the called method has executed, control passes back to the original
executing method. Note that you should use Do code method if you want to run a method in
a code class, that is, a method outside the current class.

Do method  ProcessData

; OMNIS calls the method named ‘ProcessData’, then returns

; here and continues execution in this method

You can use the notation for the called method, for example

Do method  $cclass.$methods.//ProcessData//

You can use $cinst, $cfield, and $ctask to specify a method in the current instance, field, or
task. For example

Do method  $cinst.methodname

Do method  $cfield.methodname

Do method  $ctask.methodname



Commands 205

Passing Parameters
You can include a list of parameters with Do method which are passed to the called method.
For example, the following command calls the method named EndOfMonth and passes the
current values in INV_DATE, INV_TOTAL, and INV_NET*15/100. The parameters are
taken in the order they appear in the parameter list and placed in the parameter variables in
the called method.

Do method  EndOfMonth (INV_DATE,INV_TOTAL,INV_NET*15/100)

; EndOfMMonth

; Declare Parameter vars P1 and P2

; now do something with these values...

; note that in this case the third parameter is ignored

Passing by Reference
You can pass a reference to a field by using the special parameter variable type Field
reference.  This means that the called method can make changes to the field passed to it. For
example

Do method  SetParameters (NUMBER1)

; SetParameters method

; Declare parameter var P1 with type Field reference

Calculate P1 as 25

; NUMBER1 and P1 are now changed to 25

Recursion
OMNIS allows a method to call itself, but will eventually run out of memory. For example

; Loop method

; command lines

Do method  Loop



206 Chapter 5—Commands

Do not flush data
Reversible: YES Flag affected: YES

Parameters: None

Syntax: Do not flush data

This command causes all data file operations to be carried out without writing the changed
data to disk at each Update files or Delete. The command is designed to speed up data file
operations when the user is prepared to take the extra risk of data loss.

The command operates best when there is a single user logged into the data file. It is
unlikely to cause speed increase if the data is on a network volume (that is, shared by
several users).

If you use Test for only one user at the beginning of the method, further users are prevented
from opening the data file until the method terminates.

The command sets the flag if the state of the 'Do not flush data' mode is changed. When
placed in a reversible block, the command restores the previous state of the 'Do not flush'
flag upon the termination of the method.

; fast import via window

Test for only one user

If flag true

Do not flush data

Drop indexes

End If

Open window instance W_IMPORT

Set current list List1

Prompt for import file

Prepare for import from file {Delimited(tabs)}

Import data {List1}

End import

Close import file

For each line in list from 1 to $linecount

Prepare for insert ;; transfer list to file

Load from list

Update files

End For

Flush data now ;; writes the data immediately to disk

Rebuild indexes

Flush data ;; Changes mode back to 'Flush data'



Commands 207

Do not wait for semaphores
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Do not wait for semaphores

This command causes all commands which set semaphores to return with a flag clear if the
semaphore is not available.

If Do not wait for semaphores is run first in a method, it will ensure that any subsequent
commands that lock records, such as Prepare for..., Update commands, do not wait for
records to be released. It causes the command to return a flag false and control to return
immediately to the method, if a record is locked.

Semaphores
Semaphores are internal flags or indicators set in the data file to show other users that the
record has been required elsewhere for editing. Semaphores are only set when running in
multi-user mode, that is, the data file is located on a networked server, a Mac volume or on
a DOS machine on which SHARE has been run.

The commands which set semaphores are Prepare for edit, Prepare for insert, Update files
and Delete, and also, if prepare for update mode is on and the file acted upon is Read/Write,
Single file find, Load connected records, Set read/write files, all types of Find, Next, and
Previous. Update files commands lock the whole data file while indexes are re-sorted.

The Edit/Insert commands always wait for a semaphore, as do automatic find entry fields.

Do not wait for semaphores

Prepare for edit

If flag true

Set read-only files {FLOOKUP}

Single file find on LO_CODE (Exact match)

If flag false

OK message {Can't find record [LO_CODE]}

Cancel prepare for update

Quit method kFalse

End If

Repeat

Working message (Cancel) {Locking record [LO_CODE]}

Set read/write files {FLOOKUP}

Until flag true

Repeat

Update files

Until flag true

End If



208 Chapter 5—Commands

This method illustrates how any command which causes a change in record locking
requirements can fail (returning flag false). If, when in ‘Prepare for’ mode, a Single file find
cannot lock the new record, it returns a flag false. This could mean either that the record
could not be found, or that it was in use by another workstation. For this reason, it was made
read-only before the Single file find and then changed to read/write. Note also that Update
files can fail if the file cannot be locked while the indexes are re-sorted, that is:

Repeat

Update files

Until flag true

Do redirect
Reversible: NO Flag affected: YES

Parameters: Notation for the object
Return field

Syntax: Do redirect notation [returns return-field]

This command redirects execution from a custom attribute to any other method. You specify
the notation (or a calculation which evaluates to a reference to an object) for the recipient.
The recipient of the attribute being processed is $crecipient. The flag is set if the recipient
exists and handles the attribute with a built-in or custom attribute.  For example

$method1

Do $cwind.$setup ;; the call to $setup in current instance ..

$setup  ;; for current instance

Do redirect $cwind.$objs.1005 ;; .. is diverted ..

$setup  ;; for object 1005 ;; .. to here

Drop indexes
Reversible: NO Flag affected: YES

Parameters: File class name

Syntax: Drop indexes {file-name}

This command deletes all the indexes for the specified file apart from the record sequence
number index. This enables intensive operations such as data import to proceed without the
overhead of updating all the indexes. You can use Build indexes to rebuild the indexes
which were dropped.

If the specified file name does not include a data file name as part of the notation, the
default data file for that file is assumed. If the file is closed or memory-only, the command
does not execute and returns with the flag false.



Commands 209

If you are running on a shareable volume, OMNIS automatically tests that only one user is
logged onto the data file (the command fails with flag false if this is not true) and further
users are prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will
be incremented at regular intervals. The command may take a long time to execute, and it is
not possible to cancel execution even if a working message with cancel box is open.

The command is not reversible: it sets the flag if it completes successfully and clears it
otherwise, for example if there is more than one user logged onto the data file.

; Fast import via a window

Do not flush data

Drop indexes  MFILE

Open window instance WIMPORT/winst1

Do method ImportData

Close window instance winst1

Duplicate class
Reversible: NO Flag affected: YES

Parameters: Class name/New name

Syntax: Duplicate class {class-name/new-name}

This command creates a new library class by duplicating an existing one. The name for the
new class is specified in addition to the class you want to duplicate. Errors, such as
attempting to use a name that is already in use, simply clear the flag and display an error
message.

Typical uses of this command are to allow users to make changes to reports and searches.

Duplicate class  {S_Area/S_USER}

If flag true

Modify class {S_USER}

Set search name S_USER

Print report (Use search)

End If



210 Chapter 5—Commands

Else
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Else

This command is used after an If command to mark the beginning of some commands that
are carried out if the condition in the preceding If command is false.

In the example below, the value of SEX is tested against the condition specified in the If
statement. If the condition fails, control branches to the first Else If statement in the method.
If the condition again fails, control branches to the Else command.

If SEX='M'

OK Message SEX {Record is MALE}

Else  If SEX='F'

OK Message SEX {Record is FEMALE}

Else

OK Message SEX (Sound bell) {Unknown for this record}

End If

; is the same as...

Switch SEX

Case ‘M’

OK Message SEX {Record is MALE}

Case 'F'

OK Message SEX {Record is FEMALE}

Default

OK Message SEX (Sound bell) {Unknown for this record}

End Switch

Else If calculation
Reversible: NO Flag affected: NO

Parameters: Calculation

Syntax: Else If calculation

This command is used after an If command to mark the beginning of some commands that
are carried out if the condition in the preceding If command is false, or the calculation in the
Else If command is true.

In the example below, the value of SEX is tested against the condition specified in the If
statement. If the condition fails, control branches to the first Else If statement in the method.
If the condition fails again, control branches to the Else command.



Commands 211

If SEX='M'

OK Message {Record is MALE}

Else If  SEX='F'

OK Message {Record is FEMALE}

Else

OK Message {Sex unknown for this record}

End If

Else If flag false
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Else If flag false

This command is used after an If statement and provides a marker before a series of
commands that have to be carried out if the flag is false.

Open window instance WCHOOSE

Enter data

If VALUE >= 100

Print record

Else If flag false  ;; User canceled in Enter data mode

Close window WCHOOSE

End If

Else If flag true
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Else If flag true

This command follows an If statement and provides a marker before a series of commands
that have to be carried out if the flag is true and if the value does not meet the condition
specified in the If statement.

; you use the Yes/No message to set or clear the flag

Yes/No message {Set flag with Yes or No}

If flag false

OK message {flag is 0}

Else If flag true

OK message {flag is 1}

End If



212 Chapter 5—Commands

Enable all menus and toolbars
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Enable all menus and toolbars

This command enables all menus and toolbars. It reverses the action of Disable all menus
and toolbars. This command will not enable a menu which has been disabled by disabling
line zero. This menu can only be enabled by enabling line zero with Enable menu line.

User-defined windows with the property enablemenubarandtoolbars turned off use a call
to Disable all menus and toolbars to prevent menu bar access.

Disable all menus and toolbars

Prepare for edit

Enter data

Update files if flag true

Enable all menus and toolbars

or do it like this

Do $imenus.$sendall($ref.$enable)

Do $itoolbars.$sendall($ref.$enable)



Commands 213

Enable automatic publications
Reversible: YES Flag affected: YES

Parameters: None

Syntax: Enable automatic publications

This command turns on the automatic publication of all published fields. It affects only
those fields which have been published automatically, that is, whose publisher options have
been set up as Publish on save. The command can be reversed by using Disable automatic
publications and if used within a reversible block, the Enable automatic publications
command is reversed, restoring the automatic publications to their former state when the
method terminates.

When a library is launched, automatic publications are enabled. If System 7 is not running,
the command clears the flag and does nothing.

Publish field CNAME {HD80:Public:Sales-Name}

Publish field CTOTAL {HD80:Public:Sales-Total}

Set publish options (Publish on save) {CNAME,CTOTAL}

..

Enable automatic publications

Prepare for edit

Enter data

Update files if flag set

Disable automatic publications



214 Chapter 5—Commands

Enable automatic subscriptions

Reversible: YES Flag affected: YES

Parameters: None

Syntax: Enable automatic subscriptions

This command turns on the automatic update of all subscribed fields. It affects only those
fields which have been subscribed automatically. The command can be reversed by using
Disable automatic subscriptions and if used within a reversible block, the Enable automatic
subscriptions command is reversed, restoring the automatic publications to their former
state when the method terminates.

When a library is launched, automatic subscriptions are enabled. If System 7 is not running,
the command clears the flag and does nothing.

Subscribe field CNAME {HD80:Public:Sales-Name}

Subscribe field CTOTAL {HD80:Public:Sales-Total}

Set subscriber options (Subscribe automatically) {CNAME,CTOTAL}

.

Enable automatic subscriptions

Prepare for edit

Enter data

Update files if flag set

Disable automatic subscriptions



Commands 215

Enable cancel test at loops
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Enable cancel test at loops

This command causes OMNIS to test for the break key at the end of each loop in the
method. It reverses the Disable cancel test at loops command. Unless OMNIS has executed
a Disable cancel test at loops, this test is carried out automatically. The break key is when
the user presses Ctrl-Break under Windows or Cmnd-period under MacOS.

; this method deletes all records where code = 'ABC':

Calculate CODE as 'ABC'

Find on CODE

Disable cancel test at loops

While flag true

Working message  (Repeat count)

Delete

Next on CODE (Exact match)

End While

Enable cancel test at loops

Enable enter & escape keys
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Enable enter & escape keys

This command enables the Enter and the Escape keys (or Cmnd-period under MacOS). It
reverses the action of the Disable enter & escape keys command.

In some libraries where the user may accidentally press Enter and terminate enter data
mode, it is useful to disable the Enter key.



216 Chapter 5—Commands

Enable fields
Reversible: YES Flag affected: NO

Parameters: Field name or list of field names

Syntax: Enable fields {field1[,field2,...]}

This command enables the specified field or list of fields. You can use it to reverse the
Disable fields command, or turn Display fields into Entry fields temporarily.

Begin reversible block

Enable fields {Entry1,Entry2}

End reversible block

Prepare for insert

Enter data

Update files if flag set

; method ends and fields are now disabled

or to enable all the fields on the current window

Do $cwind.$objs.$sendall($ref.$enabled.$assign(kTrue))

Enable menu line
Reversible: YES Flag affected: NO

Parameters: Menu instance name
Menu line number

Syntax: Enable menu line menu-instance-name/menu-line-number

This command enables the specified line of a menu instance. It reverses the Disable menu
line command. However, you cannot enable a line using this command if you have no
access to it, or if there is no current record. You specify the menu-instance-name and the
number of the menu line you want to enable. The command clears the flag if the menu
instance is not installed or if the line cannot be enabled.

Install menu STARTUP/minst1

Test for menu installed {minst1}

If flag true

Enable menu line  minst1/3 ;; enables menu line 3

End If

or do it like this

Do $imenus.MENU.$objs.LINE.$enable.$assign(kTrue)



Commands 217

Enable receiving of Apple events
Reversible: YES Flag affected: YES

Parameters: None

Syntax: Enable receiving of Apple events

This command enables the receiving of Apple events. When you launch an OMNIS library,
receiving of Apple events is disabled by default, apart from the compulsory events. You can
disable the compulsory events using the Disable receiving of Apple events command with
the Disable compulsory events option checked.

The Apple events OMNIS receives may have been created by itself, another OMNIS
library, or by another System 7 application. A library in which Enable receiving of Apple
events has been executed is able to receive the full range of Apple events implemented
under OMNIS.

When received by OMNIS, the compulsory events do the following:

� Open application launches OMNIS,

� Quit application quits OMNIS,

� Open document loads a library or report,

� Print document opens a library, and prompts the user for a report to print.

When enabled, OMNIS accepts events from the Core event suite, the Database event suite,
and the Finder event suite. The Core events received include Send data, Get data and Do
script; see the Send core event command. The Database events are described with the Send
database event command. The Finder events are described with the Send Finder event
command.

Include the following line in your STARTUP menu if you want to enable Apple Events:

Yes/no message {Do you want to accept Apple Events?}

If flag true

Enable receiving of Apple events

End if



218 Chapter 5—Commands

Enable relational finds
Reversible: YES Flag affected: NO

Parameters: � Use connections
List of files

Syntax: Enable relational finds [(Use connections)] {file1,file2[,file3]...}

This command causes all find tables to be built relationally, ignoring the main file. The file
list is a list of files to be joined and, if Use connections is checked, all connections between
the joined files are made when building the table. In effect, the connections provide the
relational joins, that is, "sequence number = sequence number". So if there are three files:
F1, F2 and F3, with F1 (child file) connected to F2 (parent file) and F2 connected to F3:

Enable relational finds  (Use connections) {F1,F2,F3}

Print report

will result in a child/parent/grandparent report. If you provide no other search conditions,
you would generate the SQL where clause for this report from the internal OMNIS
connections which would look like this: "...where F1.connection_number =
F2.sequence_number and F2.connection_number = F3.sequence_ number". When you use
key fields to join records, you use a search to set up the "Where" condition, for example:

Set search as calculation {(F1.city=F2.city) & (F1.date>=#D)}

Enable relational finds  {F1,F2}

Build list from file (Use search)

This will generate a list containing fields from records from F1 and F2 which have the same
values in the "city" fields and with F1.date greater than today's date (and ignoring the
connection between F1 and F2 as well as the main file).

When relational finds are enabled, the index field specified for find and build list commands
is ignored. It is necessary to use a sort to determine the order of the table.

The Disable relational finds command causes a reversion to the default situation where the
main file and its connected parent files are joined using the connections. The Enable
relational finds and Disable relational finds commands are both reversible and do not affect
the flag.



Commands 219

Enclose exported text in quotes
Reversible: NO Flag affected: NO

Parameters: � Enable

Syntax: Enclose exported text in quotes [(Enable)]

This command specifies that all text exported in tab-delimited and comma-delimited format
is enclosed in quotes; to enable this option you must run the command with the Enable
option checked. This command sets the $exportedquotes library preference which is
enabled (set to kTrue) by default. Exported literals that are already quoted will be further
enclosed in quotes, for example, "hello" becomes ""hello"". You can turn off this option by
executing the command with the check box unchecked, or using the notation.

Set report name R_EXPORT1

Send to file

Prompt for print file

Enclose exported text in quotes (Enable)

Print report

or to disable the option with the notation

Do $clib.$prefs.$exportedquotes.$assign(kFalse)   ;; turns it off

End export
Reversible: NO Flag affected: NO

Parameters: None

Syntax: End export

This command ends the export of data from an OMNIS list or row variable.

Set print or export file name {Export.txt}

Prepare for export to file {Delimited (commas)}

Export data LIST1

End export



220 Chapter 5—Commands

End For
Reversible: NO Flag affected: NO

Parameters: None

Syntax: End For

This command ends a For loop. The two For loops For field value and For each line in list
perform looping type operations. The End For command terminates both these commands.

For LVAR1 from 1 to 10 step 2

; do something

End For

For each line in list from 1 to LIST.$linecount step 2

; do something

End For

End If
Reversible: NO Flag affected: NO

Parameters: None

Syntax: End If

This command terminates an If statement once OMNIS has executed the commands inside
the If statement; it also marks the end of the commands to be executed as part of the If...Else
If block. Once the commands associated with the If...Else If block have been executed,
control passes to the next command after End If. For every If command, you should have a
corresponding End If command.

Calculate Count as Count + 1

If Count = 25

OK message {Halfway through now}

Else If Count = 50

Calculate Count as 1

End If



Commands 221

End import
Reversible: NO Flag affected: NO

Parameters: None

Syntax: End import

This command ends the import of data without closing the port, DDE channel, or file
through which data is being imported.

Prompt for import file

Prepare for import from file {Delimited (commas)}

Import data {list1}

End import

Close import file

End print
Reversible: NO Flag affected: YES

Parameters: Report instance name

Syntax: End print [{report-instance-name}]

This command terminates the specified report and prints the totals section. If you omit the
report instance name the End print command terminates the most recently started report
instance. The flag is cleared if no report instances exist.

End print cancels the Prepare for print mode. You must include it after a Prepare for print
command even if a totals section is not required.

You can print running totals of fields in the Record section by including the same fields in
the Totals section of the report. Provided you choose the Totaled property for the field in
the Record section, OMNIS automatically maintains a running total.

Set main file {f_client}

Set report name r_letters

Send to screen

Prepare for print

While flag true

Print record

Next

End While

End print

or do it like this

Do $ireports.REPORT.$endprint()



222 Chapter 5—Commands

End print job
Reversible: NO Flag affected: YES

Parameters: None

Syntax: End print job

This command terminates a print job initiated with Begin print job and sends it to the
printer.

End print job clears the flag and returns an error if a job has not been started. It sets the flag
if it succeeds: in this case, the document is now available for the operating system to print.

Once a print job is started, any attempt to set the report destination fails, that is, you cannot
select a new destination until you have issued an End print job.

Issuing End print job immediately after Begin print job may result in an empty document
being printed.

OMNIS automatically issues End print job at shutdown; it does not do this at any other
time.

End reversible block
Reversible: NO Flag affected: NO

Parameters: None

Syntax: End reversible block

This command defines the end of a reversible block of commands. All reversible commands
enclosed within the commands Begin reversible block/End reversible block are reversed
when the method containing this block finishes. However, a reversible block in the
$construct() method of a window class reverses when the window is closed—not when the
method is terminated as is normally the case.

See Begin reversible block for more information on reversible blocks.



Commands 223

End SQL script
Reversible: NO Flag affected: NO

Parameters: None

Syntax: End SQL script

This command defines the end of a block of SQL statements and text which are placed in
the SQL buffer before being sent with the Execute SQL script command. The marker for the
start of the block is the Begin SQL script command. When Autocommit is on, the statements
between the Begin SQL script and End SQL script commands are committed or rolled back
automatically.

The Perform SQL command is an alternative to the Begin–End–Execute SQL script
sequence, and allows SQL statements to be executed while bypassing the SQL buffer.

Begin SQL script

Describe server table (Columns)

Build list from select table

SQL: Insert table_name Col1, Col2 values

SQL: ([lst(1,Col1)], [lst(1,Col2)])

End SQL script

Execute SQL script

; If flag is true, there were no errors and the transaction is

; committed at the next Begin SQL script

End text block
Reversible: NO Flag affected: NO

Parameters: None

Syntax: End text block

This command marks the end of a block of text which is placed in the global text buffer.
You build up the text block using the Begin text block and Text: commands. Following an
End text block, you can return the contents of the text buffer using the Get text block
command.

; Declare var cTEXT of Character type

Begin text block

Text: To be, or not to be,

Text: those are the parameters.

End text block

Get text block cTEXT



224 Chapter 5—Commands

End Switch
Reversible: NO Flag affected: NO

Parameters: None

Syntax: End Switch

This command terminates a Switch statement and defines the point where method execution
continues after each Case statement.

For example, the following method selects the correct graph window depending on the
graph type selected in the GraphType  parameter.

; Graph Options

; Declare Parameter GraphType (Short integer (0 to 255))

Switch GraphType

Case kGraphPie

Do method GraphPieWindow/Open Window

; calls method and jumps to End switch

Case kGraphBars,kGraphArea,kGraphLines

Do method Graph2DWindow/Open Window

; calls method and jumps to End switch

Case kGraph3D

Do method Graph3DWindow/Open Window

; calls method and ends switch

End Switch

End While
Reversible: NO Flag affected: NO

Parameters: None

Syntax: End While

This command marks the end of a While loop. When the condition specified at the start of
the loop is not fulfilled (testing the flag or calculation) the command after the End While
command is executed. Each loop that begins with a While command must terminate with an
End While command, otherwise an error occurs.

Calculate Count as 1

Repeat ;; Repeat loop

Calculate Count as Count+1

Until Count >= 3

OK message {Count=[Count]} ;; prints ‘Count=3’



Commands 225

Calculate Count as 1

While Count <= 3 ;; While loop

Calculate Count as Count+1

End While

OK message {Count=[Count]} ;; prints ‘Count=4’

Enter data
Reversible: NO Flag affected: YES

Parameters: Termination condition

Syntax: Enter data [condition]

This command puts OMNIS into enter data mode which allows data to be entered via the
current window. An error is generated if there is no open window. It initiates an internal
control loop which does the following:

1. Places the cursor in the first entry field,

2. lets the user enter data from the keyboard,

3. Detects the use of Tab, Shift-Tab and other cursor movements such as click and moves
the cursor to the appropriate field,

4. Waits for an OK, setting flag true before allowing control to pass to the command
following Enter data in the method,

5. Detects a Cancel which aborts data entry with a false flag.

Open window instance W1

Enter data

If flag true

OK message {User has pressed Return}

Else

OK message {User has canceled}

End If

By default, the Enter data command waits for an evOK or evCancel event. When these
events are triggered enter data mode is terminated (assuming the window is not in modeless
enter data mode). However you can include a termination condition with Enter data and, in
this case, the command waits until the expression becomes true. For example

Calculate instvar as 0

Enter data  until instvar>0

causes enter data mode to continue until the variable becomes greater than zero. In this case,
the evOK or evCancel events do not cause the enter data to terminate, but they are reported
to the window’s $event() method in the usual way.



226 Chapter 5—Commands

Execute SQL script
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Execute SQL script

This command executes the contents of the SQL buffer, that is, the SQL statement or
transaction contained within the previously specified Begin SQL script and End SQL script
commands.

After the evaluation of the square bracket notation and indirect square bracket notation, the
content of the SQL buffer is sent to the remote database as a series of SQL statements.

Syntax errors in commands generate errors and return a false flag. Non-fatal errors during a
command do not prevent further commands from executing. This means that it is important
to test the flag after an Execute SQL script. The function sys(131) returns the error code
reported by the server and sys(132) returns the error text supplied by the server.

Begin SQL script

SQL: Create table TABLE1 createnames(file1)

End SQL script

Execute SQL script

If flag false

OK Message {Create failed: [sys(132)]}

Reset cursor(s)

Quit all methods

End If

The default action for a session is to commit all uncommitted statements after a successful
Execute SQL script and to rollback all uncommitted statements after an unsuccessful
Execute SQL script at the next Begin SQL script, Reset cursor(s) or Logoff from host. The
Autocommit (Off) command allows the automatic commit and rollback to be disabled so that
you can use Commit current session and Rollback current session commands to control
transaction management.

The commands Begin SQL script, Execute SQL script, Perform SQL, and Reset cursor(s) all
empty the SQL statement buffer for the current session.



Commands 227

Export data
Reversible: NO Flag affected: NO

Parameters: List or row variable name

Syntax: Export data list|row-name

This command exports data from an OMNIS list or row variable.

Set print or export file name {Export.txt}

Prepare for export to file {Delimited (commas)}

Export data  LIST1

End export

Fetch current row
Reversible: NO Flag affected: YES

Parameters: Cursor name (Current is the default)
List of files and/or fields

Syntax: Fetch current row [from cursor-name] [into
{file|field1[,file|field2]...}]

This command fetches or reads the current row of the select table. The flag is set if a row is
fetched. If a list of fields is added to the Fetch, the current map is overwritten and the
columns are mapped into the fields listed.

See the Fetch next row command for more information about fetching data.

Fetch first row
Reversible: NO Flag affected: YES

Parameters: Cursor name (Current is the default)
List of files and/or fields

Syntax: Fetch first row [from cursor-name] [into {file|field1[,file|field2]...}]

This command fetches or reads the first row of the select table. The flag is set if a row is
fetched. If a list of fields is added to the Fetch, the current map is overwritten and the
columns are mapped into the fields listed.

A Fetch first row command followed by a series of Fetch next row commands enables the
select table to be processed on a row-by-row basis in a descending order.

See the Fetch next row command for more information about fetching data.



228 Chapter 5—Commands

Fetch last row
Reversible: NO Flag affected: YES

Parameters: Cursor name (Current is the default)
List of files and/or fields

Syntax: Fetch last row [from cursor-name] [into {file|field1[,file|field2]...}]

This command fetches or reads the last row of the select table. The flag is set if a row is
fetched. If a list of fields is added to the Fetch, the current map is overwritten and the
columns are mapped into the fields listed.

A Fetch last row command followed by a series of Fetch previous row commands enables
the select table to be processed on a row-by-row basis in an ascending order.

See the Fetch next row command for more information about fetching data.

Fetch next row
Reversible: NO Flag affected: YES

Parameters: Cursor name (Current is the default)
List of files and/or fields

Syntax: Fetch next row [from cursor-name] [into {file|field1[,file|field2]...}]

This command fetches or reads the next row of the select table. The flag is set if a row is
fetched. If you add a list of fields to the Fetch, the current map is overwritten and the
columns are mapped into the fields listed. A series of Fetch next row commands enables the
select table to be processed on a row-by-row basis in descending order.

You can fetch the previous, first, last, or current row using one of the other Fetch...
commands. Their behavior is the same as Fetch next row except that they fetch a different
row.

Set report name R_SQL1

Prepare for print

Fetch next row

While flag true

Print record

Fetch next row

End While

; Last fetch found empty select table

End print



Commands 229

The following example prints an OMNIS report using data from the select table:

Set report name REL

Begin SQL script

SQL: Select * from FELEMENTS where ATNO < '50';

End SQL script

Execute SQL script

If flag false

OK message SQL Error (Icon) {Select error//[sys(132)]}

Reset cursor(s) (Current)

Quit all methods

End If

Fetch next row ; ; gets the first row of the select table

If flag true

Prepare for print

Repeat

Print record

Fetch next row

Until flag false  ;; this indicates end of select table

End print

Else

OK message {No rows were selected to print}

End If

or do it like this

Do TableBasedList.$fetch(1)

Fetch previous row
Reversible: NO Flag affected: YES

Parameters: Cursor name (Current is the default)
List of files and/or fields

Syntax: Fetch previous row [from cursor-name]
[into {file|field1[,file|field2]...}]

This command fetches or reads the next row of the select table. The flag is set if a row is
fetched. If a list of fields is added to the Fetch, the current map is overwritten and the
columns are mapped into the fields listed.

A series of Fetch previous row commands enables the select table to be processed on a row-
by-row basis in an ascending order.

See the Fetch next row command for more information about fetching data.



230 Chapter 5—Commands

Find
Reversible: YES Flag affected: YES

Parameters: Field name (must be indexed)
Calculation
� Exact match
� Use search

Syntax: Find on field-name [([Exact match][,Use search])] [{calculation}]

This command builds a find table and locates the first record in the table, that is, it loads the
main and connected files into the current record buffer. The flag is false and the buffer is
cleared if no record is found.

You use the Find command to locate records within a file. If you don’t use a search, the file
is searched in the order specified by the indexed field until the value given in the calculation
line is matched. In this case, the current find table is the same as the chosen Index.

When the closest match is found, the main and connected files are read into the current
record buffer and the flag is set true. If the indexed field is from a connected file, the search
is repeated automatically until the record having a connected entry in the main file is found.

A blank calculation indicates that the Find is to be performed using the current value of the
selected index field. Thus, if you precede the command with a Clear main file, it is the same
as a Find first.

OMNIS can perform a Find with an Exact match requirement. In this case, the value in the
"field found" record must correspond in every detail (for example, upper or lower case
characters) to the current value of the indexed field in the current record buffer. A flag true
indicates a successful Find, otherwise a flag false results, and the main and its connected
files are cleared.

You use the exact match option to locate child records connected to a current parent record.

Clearing the find table
The find table is cleared if:

1. A Clear find table command is executed with the same main file setting.

2. A new Find is carried out on the same file.

3. A Next/Previous command with a new (non-blank) index or a Use Search or Exact
match option where the original Find had none, is used.



Commands 231

The following example illustrates a find table used to print and process records:

Set main file {F_CLIENTS}

Set search as calculation {C_CREDIT>=1000}

Clear main file

Find  on C_NAME (Use search)

If flag true

Prepare for print

Repeat

Print record

Do method LogPrintOut

Next

Until flag false

End print

End If

Reversibility
If you use a Find command in a reversible block, the records modified by the Find are
restored when the method containing the reversible block finishes. Although the main and
connected records are recovered, the data within the record may not be recovered if it has
been deleted or changed. The current index is not reversed.

Examples using Find
; Delete

; Deletes records with confirmation using a search

Set main file {LCUST}

Set search name SRCH001

Clear main file

Find  on LNAME (Use search)

While flag true

Working message (Repeat count)

Delete with confirmation {Delete record [LNAME]?}

Next (Use search)

End While



232 Chapter 5—Commands

; Find children

; Finds all connected children for current parent

Begin reversible block

Single file find on P_CODE (Exact match)

End reversible block

; The reversible block ensures that the parent

; record is restored when the method ends

Set main file {F_CHILD}

Clear main file

Find  on P_CODE (Exact match)

While flag true

OK message {Found child [C_CODE]}

Next on P_CODE (Exact match)

End While

; Note that parent has been lost by the last Next command

; but it is restored when the reversible block reverses

Find first
Reversible: YES Flag affected: YES

Parameters: Field name (must be indexed)
� Use search
� Use sort

Syntax: Find first on field-name [([Use search][,Use sort])]

This command automatically locates the first record in a file using the index for the
specified field. If no field is given, the record sequence number is used. The main and
connected files are read into the CRB if a valid first record is found. The flag is set false if
no record is found.

You use the Use search option in conjunction with the specified indexed field to select the
first record which fulfills the search specification. If the search is a calculation, the
optimizer will choose the best index if the index field is left blank.

You use the Use Sort option in conjunction with the current sort fields (see Set sort field) to
create a table of entries from the data file which are sorted into an order set by up to nine
sort fields.

The find table is cleared if:

1. A Clear find table command is executed with the same main file setting.

2. A new Find is carried out on the same file.

3. A Next/Previous command with a new (non-blank) index or a Use Search or Exact
match option where the original Find had none, is used.



Commands 233

If you use the Find first command within a reversible block, it is reversed when the method
finishes, that is, the main and connected records are restored. However, if the data within
the original record has been deleted or changed, it will not be possible to completely restore
the buffer.

Begin reversible block

Clear sort fields

Set sort field NAME

Set sort field TOWN

Set main file {FINVOICES}

Find first  on INV_NUMBER (Use sort)

End reversible block

While flag true

Enter data

Next

End While

Find last
Reversible: YES Flag affected: YES

Parameters: Field name (must be indexed)
� Use search
� Use sort

Syntax: Find last on field-name [([Use search][,Use sort])]

This command automatically locates and displays the last record in a file using a specified
indexed field. You can use the Find last command to locate the last record added to a file
by using the record sequencing number as the index. The flag is set false if no record is
found.

You use the Use search option in conjunction with the specified indexed field to select the
last record which fulfills the search specification. If the search is a calculation, the optimizer
will choose the best index if the index field is left blank.

Whenever you use a Find command, a find table is created which determines the order in
which records are displayed using subsequent Next and Previous commands. Once a find
table has been created, subsequent Next or Previous commands will use the table provided
the commands have an empty or the same Index, and the same (or empty) Search and
Exact match conditions. A Clear find table, a new Find on the same file or Next/Previous
commands with a new (non-blank) index or a Search or Exact match where the original
Find had none, will clear the find table.

The Use Sort option works in conjunction with the current sort fields (see Set sort field) to
create a table of entries from the data file which are sorted into an order set by up to 9 sort
fields. Refer to the Find command for details of the find table and its use.



234 Chapter 5—Commands

Begin reversible block

Set main file {FINVOICES}

Find last  on INV_NUMBER

End reversible block

OK message {Last invoice record inserted was RSN [I_SEQ]}

Floating default data file
Reversible: YES Flag affected: NO

Parameters: File or list of files

Syntax: Floating default data file {file1[,file2]...}

This command sets the default data file as the current data file and changes whenever the
current data file changes. You use Floating default data file in libraries which open more
than one data file at once. The default behavior in OMNIS is that, as each new data file is
opened, it becomes the "current" data file. The concept of a current data file is important
when your commands refer to file classes without specifying a data file. So, for example, the
command

Set main file {FCUSTOMERS}

is ambiguous if more than one data file is open at the same time. To specify the data file to
be used, you can use Set default data file to associate a file class with the current data file.
For example, to associate FCUSTOMERS with DATA1.DF1, you can use:

Set current data file {DATA1}

Set default data file {FCUSTOMERS}

References to FCUSTOMERS are now equivalent to references to
DATA1.FCUSTOMERS. The association between FCUSTOMERS and DATA1 remains in
effect even if the current data file is set to a different data file. To return to the default state
where the default data file "floats" to whatever the current data file is, you can use:

Floating default data file  {FCUSTOMERS}

The Floating default data file command sets the default data file, for the specified list of
files, to be equal to the current data file and allows it to change (float) whenever the current
data file changes.

The command does not change the flag but is reversible, that is, the previous default data
files are restored when the method containing the command in a reversible block terminates.



Commands 235

Flush data
Reversible: YES Flag affected: YES

Parameters: None

Syntax: Flush data

This command reverses Do not flush data and reverts to the default mode where the
changed data is immediately written to disk after each Update files or Delete command.

The command sets the flag if the state of the 'Do not flush data' mode is changed and is
reversible, restoring the previous state of the 'Do not flush' flag when reversed. If the
previous mode was 'Do not flush data', Flush data will cause any modified data which has
not been written to disk, to be written on the next Update files or Delete.

; fast import via window

Test for only one user

If flag true

Do not flush data

Drop indexes

End If

Open window instance W_IMPORT

Set current list List1

Prompt for import file

Prepare for import from file {Delimited(tabs)}

Import data {List1}

End import

Close import file

For each line in list from 1 to $linecount

Prepare for insert ;; transfer list to file

Load from list

Update files

End For

Flush data now ;; writes the data immediately to disk

Rebuild indexes

Flush data ;; Changes mode back to 'Flush data'



236 Chapter 5—Commands

Flush data now
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Flush data now

This command causes any modified data which has not been written to disk to be
immediately written to disk. This command will only do something if a Do not flush data
command has been executed.

This command leaves the flag unaffected and is not reversible.  See Flush data for an
example.

For each line in list
Reversible: NO Flag affected: NO

Parameters: � Selected lines only
� Descending
Start value (line number of list)
End value (line number of list)
Step value (default is 1)

Syntax: For each line in list [([Selected lines only][ ,Descending])] from
start-value to end-value step step-value

This command marks the beginning of a loop that processes the lines of the current list. You
must specify the current list before executing the For loop. The For loop is a convenient
way to write While/End While loops to step through each line of a list. With the Selected
lines only option, the loop will skip over any lines encountered that are not selected.

The Start value specifies the line in the list at which method execution of the For loop
starts. The loop continues until the processed line exceeds or is equal to the End value. If
the Step value is not specified, the default value of 1 is used. The values involved must all
be integers. The Descending option tells OMNIS to step through the list from a high line
number to a low line number. The Start and End values are swapped if the End value is less
than the Start value.

You can use Jump to start of loop within the loop to continue the next iteration of the loop.
Similarly, Break to end of loop will exit the loop prematurely.

For each line in list operates on the current list. The matching End For will also operate on
the current list. Unpredictable behavior will result if the current list is changed and not
restored within the For/End For construct.



Commands 237

Prepare for print

Set current list F_LIST

For each line in list  from 1 to LIST.$linecount step 1

Load from list

Print record

End For

End print

; this is equivalent to the method below

Prepare for print

Set current list F_LIST

Calculate LIST.$line as 1

While LIST.$line<=LIST.$linecount

Load from list

Print record

Calculate LIST.$line as LIST.$line+1

End While

End print

For field value
Reversible: NO Flag affected: NO

Parameters: Field name or variable
Start value
End value
Step value (default is 1)

Syntax: For field-name from start-value to end-value step step-value

This command marks the beginning of a For loop which defines a series of commands to be
repeated a number of times. You use field-name as a counter that is automatically
incremented by the step-value each time the End For statement is reached.

The values involved must all be numbers, preferably integers. If start-value is greater than
end-value, and step-value is positive, the command will perform no loops. Similarly, no
loops are performed if start-value is less than end-value, and step-value is negative.

You can use Jump to start of loop within the loop to continue the next iteration of the loop.
Similarly, Break to end of loop will exit the loop prematurely.



238 Chapter 5—Commands

The following example builds a list containing the sales totals for four regions.

; declare local vars LV_Sales, LV_Expenses of type Short number 0 dp

Set current list GRAPHLIST

Define list {Division,NetSales}

For  LVARI from 1 to 4 step 1

Do method PopulateDrilldownList (LVAR1)

Set current list GRAPHLIST2

Calculate LV_Sales as tot(Sales)

Calculate LV_Expenses as tot(Expenses)

Calculate NetSales as LV_Sales - LV_Expenses

Calculate Division as pick(LVARI-1,'North','East','South','West')

Set current list GRAPHLIST

Add line to list

End For

Calculate TotNetSales as totc(NetSales)

; etc.

Get SQL script
Reversible: NO Flag affected: YES

Parameters: Field name or variable

Syntax: Get SQL script {field-name|variable}

This command loads the contents of the SQL buffer for the current session into a specified
field or variable. It provides direct access to the SQL statement buffer. The field name
parameter can be any OMNIS character field or variable. The SQL buffer holds all SQL
statements and text entered since the last Begin SQL script which have not yet been
executed. The square brackets and SQL functions will have been evaluated but the values of
indirect @[] square bracket notation will not be available.

The commands Begin SQL script, Execute SQL script, Perform SQL and Reset cursor(s) all
empty the SQL statement buffer for the current session. Therefore, using Get SQL script
after Perform SQL will do nothing.



Commands 239

Begin SQL script

SQL: Insert into [TABLE] insertnames(FTABLE)

End SQL script

Get SQL script  {S1}

Yes/No message {Do you want to send '[S1]'}

If flag true

Execute SQL script

Else

Reset cursor(s)

End If

Get text block
Reversible: NO Flag affected: NO

Parameters: Field name or variable

Syntax: Get text block {field-name|variable}

This command loads the current contents of the global text buffer into the specified field or
variable. You build up the text block using the Begin text block and Text: commands.
Following an End text block, you can return the contents of the text buffer using the Get text
block command.

; Declare var cTEXT of Character type

Begin text block

Text: To be, or not to be,

Text: those are the parameters.

End text block

Get text block cTEXT

Go to next selected line
Reversible: NO Flag affected: YES

Parameters: � From start
� Backwards

Syntax: Go to next selected line [([From start][ ,Backwards])]

This command scans a list for selected lines and goes to the first one it finds. It sets the
current line (LIST.$line) for the current list (#CLIST) equal to the next selected line in that
list.

The Go to next selected line command steps through the list starting at the current line (if no
options are selected) until a selected line is found. When a selected line is located,
LIST.$line is set equal to that line number. If a selected line is not found, the flag is cleared
and LIST.$line is unchanged.



240 Chapter 5—Commands

The Backwards option causes the list to be searched in descending order; the From start
option causes the list to be searched from the start. If both options Backwards and From
start are selected, the list is searched from the end. The following example loads the list
with values 1 to 5 and ends with values: 3, 2, 3, 4, 3:

Set current list LIST1

Define list {LVAR1}

Calculate LVAR1 as 1

Repeat

Add line to list

Calculate LVAR1 as LVAR1+1

Until LVAR1=6

Calculate LIST.$line as 3

Load from list ;; transfers value 3 from list to LVAR1 in CRB

Select list line(s) {1}

Select list line(s) {5}

Go to next selected line  (From start) ;; selects line 1

Replace line in list

; takes value of LVAR1 (that is, 3) and uses it

; to replace the value in line 1 of the list

Go to next selected line  ;; selects line 5

Replace line in list

Redraw lists

Hide docking area
Reversible: NO Flag affected: NO

Parameters: Docking area (a constant)

Syntax: Hide docking area {docking-area-name}

This command closes either the top, bottom, left, or right docking area. The docking area is
specified using one of the docking area constants: kDockingAreaTop,
kDockingAreaBottom, kDockingAreaLeft, or kDockingAreaRight.

When you close a library, OMNIS does not automatically close any docking areas  that are
open. You must explicitly hide each docking area using Hide docking area. Leaving
docking areas open and closing the library containing those docking areas can cause
problems in your application.

Show Docking Area { kDockingAreaLeft }

Install Toolbar {TDESK} ;; toolbar installed on Left Docking Area

; When the library closes...

Hide docking area { kDockingAreaLeft } ;; hides current docking area

Alternatively you can use



Commands 241

Do $root.$prefs.$dockingarea.$assign(kDockingAreaNone)

Hide fields
Reversible: YES Flag affected: NO

Parameters: Field name or list of field names

Syntax: Hide fields {field1[,field2,...]}

This command hides the specified field or list of fields. You can display hidden fields with
Show fields.

Yes/No message {Do you want to hide fields?}

If flag true

Begin reversible block

Hide fields {Field1,Field2,Field3]

End reversible block

End If

For Count from 1 to 20 step 1 ;; delay loop

End For

OK message {Fields will now reappear after method has run}

To hide a single field on the current window you can use

Do $cwind.$objs.FIELD.$visible.$assign(kfalse)

or to hide all fields on the current window

Do $cwind.$objs.$sendall($ref.$visible.$assign(kFalse))

If calculation
Reversible: NO Flag affected: NO

Parameters: Calculation

Syntax: If calculation

This command tests the result of the calculation and branches if zero. If the result of the
calculation is non-zero, the result of the test will be true; a result of zero is interpreted as
false. As with all If commands, control passes to the next command in the method if the
result is true, otherwise to the next End If, Else or Else If in the method.

If SECURITY > 4

Disable menu line MREPORTS/4

End If



242 Chapter 5—Commands

If canceled
Reversible: NO Flag affected: NO

Parameters: None

Syntax: If canceled

This command tests whether a Cancel function has been selected and branches if false. The
condition is true if either a working message Cancel button is clicked, or the Escape key
(under Windows) or Cmnd-period (under MacOS) is pressed. The condition is false if none
of these events happens. If Enable cancel test at loops is switched on, a loop may detect a
Cancel and quit all methods before it is detected by an If canceled command.

Disable cancel test at loops

Working message (Cancel box)

Repeat

Redraw working message

If canceled

Sound bell

OK message (Icon) {Method Terminated.}

Quit method

End If

Until flag false

If flag false
Reversible: NO Flag affected: NO

Parameters: None

Syntax: If flag false

This command lets you implement a branch or change of processing order within a method
depending on the result of the previous command. It tests the flag and if it is false, the
commands following the If flag false are executed. However, if the flag is true, control
branches to the next Else, Else If or End If in the method.

Test for window open {w_calendar_date}

; If the window is closed, flag will be false

If flag false

Set main file {f_constant}

Clear main file

Next

End If



Commands 243

If flag true
Reversible: NO Flag affected: NO

Parameters: None

Syntax: If flag true

This command lets you implement a branch or change of processing order within a method
depending on the result of the previous command. It tests the flag and if it is true, the
commands following the If flag true are executed. However, if the flag is false, control
branches to the next Else, Else If or End If in the method.

Open window instance w_calendar

Enter data

If flag true

Open window instance w_schedule

Enter data

Close window w_schedule

End If

Import data
Reversible: NO Flag affected: YES

Parameters: List or row name

Syntax: Import data list|row-name

This command reads the next data item into the the specified list or row variable. You use
the Import data command to import data from a file or port. Once you select an import file
or port, and issue a Prepare for import command, Import data adds the data to the specified
list or row variable.

If a record is successfully read from the file or port, OMNIS sets the flag. An error occurs if
the import file or port is closed or if the specified list or row variable does not exist. The
flag is set after reading a record successfully.

After the import is complete, you should follow Import data with an End import and the
appropriate Close import file or Close port.



244 Chapter 5—Commands

There is a one-to-one mapping between the columns or fields in the import file and the
columns in the list or row variable. Therefore, if there are fewer columns or fields in the
import file than in the list or row, the excess import columns or fields are ignored. Likewise,
if there are more columns in the list or row than in the import file, the excess columns are
left blank.

Set port name {2 (Printer port)}

Set port parameters {1200,n,7,2}

Prepare for import from port {Delimited (tabs)}

Import data  IMPORTLIST

End import

Close port

Import field from file
Reversible: NO Flag affected: YES

Parameters: Field name
� Single character
� Leave in buffer

Syntax: Import field from file into field-name
[([Single character][ ,Leave in buffer])]

This command reads a line of characters from the current import file to the specified field. It
lets you read fields from a file without using a window and Import data. Usually the
command reads a whole line at a time but there are options which modify this.

The Single character option tells OMNIS to read a single character at a time. If the field is
a Character or a National field, it is set to have a length of one, containing the single
character imported from the file. If the field is a Number field, the field value is set to the
ASCII code of the single character imported from the file.

The Leave in buffer option tells OMNIS to read the string or single character but not
remove it from the buffer. Therefore, the next Import field from file will read exactly the
same value.

An error will occur if the import file has not been opened; OMNIS clears the flag on
reaching the end of the file. Do not mix Import data and Import field from file because they
use the input buffer in different ways.

Set import file name {Data.TXT}

Prepare for import from file {Delimited (tabs)}

Repeat

Import field from file  into CVAR1

Until CVAR1='start data'

Do method ImportData

Close import file



Commands 245

Import field from port
Reversible: NO Flag affected: YES

Parameters: Field name
� Single character
� Leave in buffer
� Clear buffer
� Do not wait

Syntax: Import field from port into field-name [([Single character]
[,Leave in buffer][,Clear buffer][,Do not wait])]

This command reads a line of characters from the current port to the specified field. Import
field from port lets you read fields from a port without using a window and Import data.
Usually the command reads a whole line at a time but there are options which modify this:

Single character tells OMNIS to read a single character at a time. If the field is a Character
or a National field, it is set to have a length of one, containing the single character imported
from the port. If the field is a Number field, the field value is set to the ASCII code of the
single character imported from the port.

Leave in buffer tells OMNIS to read the string or single character but not remove it from
the buffer. Therefore, the next Import field from port command will read exactly the same
value.

Clear buffer clears the import buffer so that previously received values are ignored.

Do not wait prevents OMNIS from waiting until a string or character is available.

An error will occur if the import port has not been opened; OMNIS clears the flag if nothing
has been read. Do not mix the Import data and Import field from port commands because
they use the input buffer in different ways.

Set port name {1 (Modem port)}

Prepare for import from port {One field per line}

Repeat

Import field from port  into CVAR1

Until CVAR1='start data'

Do method Importdata

Close port



246 Chapter 5—Commands

Insert line in list
Reversible: NO Flag affected: YES

Parameters: Line number (can be a calculation, default is current line)
Field values

Syntax: Insert line in list [{[line-number] [(value1[,value2]...)]}]

This command takes the current field values and inserts them at a particular line in the list.
The new line is inserted before the specified line and all the lines below the specified line
are moved down one place.

If a set of comma-separated values is included as a parameter, these values are read (in
order) into the columns of the new line. In this case, the field names for the columns are not
used to specify the data for the new line, for example

Define list {BOOL,NUM,CHAR}

Insert line in list  {('Yes',LVAR1,'Good')}

You can specify the line number using a calculation. However, if the parameter for the
command is empty or evaluates to zero, the current line is used, that is, the field values are
inserted at the current line and all other lines are moved down one place.

If there is no current line (LIST.$line = 0), the field values are added at the end of the list. If
the line is beyond the current end of the list (for example, the LIST.$line given is greater
than LIST.$linecount), Insert line in list is equivalent to Add line to list. The flag is cleared
if the list is already at its maximum size (LIST.$linemax).

; this example inserts 50 calculated lines into the list

Set current list LIST2

Define list {LVAR1,S4}

For LVAR1 from 1 to 50 step 1

Calculate S4 as rnd(1/LVAR1,6)

Insert line in list

End For

Redraw lists (All windows)

; in this example two values are added to the list

; and a third is inserted between them

Set current list cList

Define list {NAME}

Insert line in list  {('John')}

Insert line in list  {('Mary')}

Calculate cList.$line as 2 ;; sets current line as line 2

Insert line in list  {('Piggy')}

Redraw lists (All windows)



Commands 247

Alternatively you can use the $addbefore() and $addafter() methods to add lines to the
current list.

Install menu
Reversible: YES Flag affected: YES

Parameters: Menu class name
Instance name
Parameters list

Syntax: Install menu menu-name[/instance-name]
[(parameter1[,parameter2]...)]

This command installs an instance of the specified menu class on the main menu bar and
assigns an instance name. The default instance name is the name of the menu class. The flag
is set if the menu is installed.

You can choose the menu class from a list containing your own menus in the current library,
and the standard menus *File , *Edit , and so on. When the menu instance is installed its
$construct() method is called.

Passing parameters
You can send parameters to the menu’s $construct() method. In the following example,
three values are passed as parameters and used to set up the conditions required by the
menu options.

Install menu  MREPORTS/rep1 (CVAR1,LVAR1,CO_NAME)

; the $construct() method for MREPORTS

; declare parameter variable MODE of Character type

; declare parameter variable SECURITY of type Number 0 dp

; declare parameter variable COMPANY of type Field reference

If SECURITY > 4

Disable menu line MREPORTS/4

End If

Three values are passed to the method. This allows the menu to perform different functions
depending on the parameters passed to it when installed.

If you use the Install menu command in a reversible block, the menu instance is removed
from the menu bar when the method terminates. However, the order of the menus on the
menu bar may not necessarily be the same as before.

You can install a menu using the $open() method.

Do $clib.$menus.MENU.$open()



248 Chapter 5—Commands

Install toolbar
Reversible: NO Flag affected: NO

Parameters: Toolbar class name
Instance name (default is class name)
Docking area (a constant)
Parameters list

Syntax: Install Toolbar {class-name[/instance-name][/docking-
area][(parameter1/[,parameter2]...)]}

This command installs the specified toolbar class into the named docking area. You specify
the docking area  using one of the toolbar constants: kDockingAreaTop,
kDockingAreaBottom, kDockingAreaLeft,  kDockingAreaRight, or kDockingAreaFloating.
If you omit the docking area name the toolgroup is installed into the docking area specified
in the class. You can install multiple toolbars onto the same docking area.

Show docking area {kDockingAreaTop}

Show docking area {kDockingAreaLeft}

Install Toolbar  {T_Format}/Top

Install Toolbar  {T_Style}/Left

Install Toolbar  {T_Utils/kDockingAreaTop}

You can install a toolbar using the $open() method.

Do $clib.$toolbars.TOOLBAR.$open()

Invert selection for line(s)
Reversible: NO Flag affected: YES

Parameters: Line number (can be a calculation, default is current line)
� All lines

Syntax: Invert selection for line(s) [(All lines)] [{line-number}]

This command inverts the selection state of a line, that is, from selected to deselected or
vice-versa. You can specify a particular line in the list by entering either a number or a
calculation. You can show the selection state on the window by invoking the Redraw lists
(Selection only) command.



Commands 249

The All lines option inverts the selection states of all lines of the current list. If no line
number is given, the current line selection is inverted. When a list is saved in the data file,
the selection state of each line is stored. The following example selects all but the middle
line of the list:

Set current list LIST1

Define list {LVAR1}

For LVAR1 from 1 to 6 step 1

Add line to list

End For

Select list line(s) (All lines)

Invert selection for line(s)  {LIST1.$linecount/2}

; Or use Invert selection for line(s)  {3}

Redraw lists

Jump to start of loop
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Jump to start of loop

This command jumps to the Until or While command at the beginning of the current loop,
missing out all commands after the jump. When used in a While–End While loop, Jump to
start of loop jumps to the start of the loop so that OMNIS can make the While test; the loop
continues or terminates depending on the result of this test, whereas, Break to end of loop
automatically terminates the loop regardless of the value of the condition. Placing a Jump
outside a loop causes an error.

Repeat

Next

Prepare for edit

Enter data

If flag false

Jump to start of loop

End If

Calculate TOTAL as CREDIT

Until TOTAL > 10000



250 Chapter 5—Commands

Launch program

Reversible: NO Flag affected: YES

Parameters: � Do not quit OMNIS
MacOS program name
Document or file name (full pathname of document or file)

Syntax: Launch program [(Do not quit OMNIS)]
{program-name[/document-name]}

This command launches the specified MacOS program. If you include a file name, the
application is launched with the file name as a document. If the specified file name
represents a document which the program cannot understand, it will be ignored. You must
specify pathnames for the program and document, as shown in the example below.

The default action is to quit OMNIS, but the Do not quit OMNIS option lets you keep
OMNIS open. If you choose this option, OMNIS will continue to run in the background,
concurrently with the new program. A new program launched by OMNIS will always be
opened on top, even if OMNIS is already in the background.  The flag is set false if an error
is detected, for example, if a program or file name cannot be found. Once you attempt a
Launch program, control passes from your application to the operating system and there is
no automatic way of returning to OMNIS.

Launch program  {Word 6/mac HD:Admin:Memo}

; Note full path for document or file name

If flag false

OK message (Icon,Sound bell) {Couldn't find Word 6}

End If



Commands 251

Load connected records
Reversible: YES Flag affected: YES

Parameters: File class name

Syntax: Load connected records {file-name}

This command loads the connected records for the specified file. The Load connected
records command ensures that the identity of the current connected records for the current
record is correct. As OMNIS automatically loads connected records of the main file into the
current record buffer, this command is not usually required. However, in multi-user systems,
this command ensures that, if any other workstation makes changes to the way in which
records are connected, these changes will be reflected at the current workstation.

The flag is cleared if there is no current record for the specified file class, and in the event
that no file class is specified, OMNIS uses the main file. This command does not clear the
Prepare for update mode but does cause multi-user semaphores to be set and should be
avoided when in Prepare for... mode.

If a parent record requires locking, another user is editing it, and the Wait for semaphores
command is on, the lock cursor will be displayed. If the user cancels the lock, the flag is
cleared and the parent record is not loaded. The Do not wait for semaphores command
prevents the user from having to wait for the record and returns a flag false if the parent
record is not available.

If placed in a reversible block, the parent record reverts to its former value when the method
terminates. If you need to read in grandparent records, you can add this command to the
usual Next command:

Next

Load connected records  {FPARENT}

Redraw MyWindow



252 Chapter 5—Commands

Load error handler
Reversible: YES Flag affected: NO

Parameters: � All libraries
Number or name/number (of custom menu method)
First error code number
Last error code number

Syntax: Load error handler [(All libraries)] [class-name/]number [(first-error-
number[,last-error-number])] [ {method-name}]

This command loads a specified method which handles errors which may occur within a
library. You can specify a range of error codes to be handled by the handler by giving the
first and last error number. If no range is specified, the handler is called for all errors. Errors
are either Fatal or Warning.

Error codes such as kerrUnqindex, kerrBadnotation, kerrSQL, can also be used as
parameters. The Catalog window lists all the constants available in OMNIS.

Fatal errors
A fatal error is one that normally stops method execution and drops into the debugger if
available. The error code #ERRCODE is displayed on the status line in the debugger and is
greater than 100,000.

Warning errors
A warning error is one that does not normally quit the method nor report an error
description. The error code #ERRCODE is displayed on the status line in the debugger, if
invoked, and is less than 100,000.

The check box option All libraries  is provided. If this is not checked, the handler is called
only for errors encountered in the library which loaded the error handler. This command
leaves the flag unaffected and is reversible; that is, the handler is unloaded when the
command is reversed. An error handler remains loaded until it is unloaded or the library
containing the handler method is closed. Error handlers loaded within an error handler
always unload when that error handler terminates.

Here is a typical error handler:

; declare local variable LCODE of Long integer type

; declare local variable LTEXT of Character type

Calculate LCODE as #ERRCODE

Calculate LTEXT as #ERRTEXT

If LCODE = kerrBadnotation

; handle error

End If



Commands 253

An alternative to assigning #ERRCODE and #ERRTEXT to local variables is to pass them
as parameters to the error handler. You must define LCODE and LTEXT as parameter
variables (with the same types) in the error handling method.

An error handler can use one of the Set error action commands (SEA) to set what it requires
the next action to be. If the error handler quits without making a Set error action and there
is another handler capable of accepting the error, the second handler is called. Otherwise,
the default action for the error is carried out, depending on whether it is a fatal error or
warning.

If an error occurs within an error handler, that error is handled in the usual way except that
the original error handler will not be used (even if it could handle that error). It is possible
to load error handlers within an error handler; these are meant to deal with errors within the
handler and are unloaded automatically when the error handler completes execution.  The
following example handles the error returned by the data manager when an attempt to
duplicate a unique index occurs on update:

Load error handler  Code1/ErrorHnd(kerrUnqindex)

Prepare for edit

Enter data

Update files if flag set

ErrorHnd ;; Error handler

If #ERRCODE = kerrUnqindex

OK message (Icon) {You have entered a duplicate field value. I am
appending 'X' to your entry}

Calculate INDVAL as con(INDVAL,'X')

Enter data

If flag true

SEA repeat command

Else

SEA continue execution

End If

End If



254 Chapter 5—Commands

Load event handler
Reversible: YES Flag affected: YES

Parameters: Library name
Routine name
Parameters list

Syntax: Load event handler [library-name/]routine-name
[(parameter1[,parameter2]...)]

This command makes the specified external routine an event handler, enabling the routine
to show its own windows, put its own menus on the menu bar, act as its own event filter,
and so on.

Event handlers are modules of code which, when loaded, form part of the OMNIS event-
processing loop. Events are passed to the external before being handled by OMNIS. As
each call to the external takes place, it can identify whether to take appropriate action. If the
event handler returns a flag false, OMNIS knows that the event was meant for OMNIS and
the external has ignored it.

You can enter the routine name as the parameter. If the library/resource is not in the
EXTERNAL folder, the name of the file containing the library/resource and the name of the
library/resource within that file are given as parameters. If no file name is given, the current
dynamic link library/resource is searched for the specified routine name.

When the method is called, any existing event handler is not unloaded but continues to be
called along with the new handler. The flag is cleared if the routine cannot be loaded.

If you use Load event handler in a reversible block, the event handler is unloaded when the
method containing the reversible block terminates.

You can pass parameters to the external code by enclosing a comma-separated list of fields
and calculations. If you pass a field name, for example, Call external Maths1
(LVAR1,LVAR2), the external can directly alter the field value. Enclosing the field in
brackets, for example, Call external Maths1 ((LVAR1),(LVAR2)), converts the field to a
value and protects the field from alteration.

In the routine itself, the parameters are read using the usual GetFldVal or GetFldNval with
the predefined references Ref_parm1, Ref_parm2, and so on, Ref_parmcnt gives the
number of parameters passed. If the field name is passed as a parameter, you can use
SetFldVal or SetFldNval with Ref_parm1, and so on, to change the field's value.

Load event handler EventHand



Commands 255

Load external routine
Reversible: YES Flag affected: YES

Parameters: Routine name or
Library name/routine name
Parameters list

Syntax: Load external routine [file-name/]routine-name
[(parameter1[,parameter2]...)]

This command loads the specified external code into memory. You can enter the routine
name as the parameter. If the library/resource is not in the EXTERNAL folder, the name of
the file containing the library/resource and the library/resource name within that file are
given as parameters.

If the library/resource is already loaded or is not found, the flag is cleared and no action is
taken. If this command is included in a reversible block, the library/resource is unloaded
when the method terminates. If the library/resource is loaded in, it is called with the mode
set at ext_load.

You can pass parameters to the external code by enclosing a comma-separated list of fields
and calculations. If you pass a field name, for example, Call external Maths1
(LVAR1,LVAR2), the external can directly alter the field value. Enclosing the field in
brackets, for example, Call external Maths1 ((LVAR1),(LVAR2)), converts the field to a
value and protects the field from alteration.

In the routine itself, the parameters are read using the usual GetFldVal or GetFldNval with
the predefined references Ref_parm1, Ref_parm2, and so on, Ref_parmcnt gives the
number of parameters passed. If the field name is passed as a parameter, you can use
SetFldVal or SetFldNval with Ref_parm1, and so on, to change the field's value.

Load external routine {mathslib/sqroot} (value,CVAR1)



256 Chapter 5—Commands

Load from list
Reversible: NO Flag affected: YES

Parameters: Line number (can be a calculation, default is current line)
List of field or variables

Syntax: Load from list [{[line-number] [(field1[,field2]...)]}]

This command transfers field values from the current list to the corresponding fields in the
current record buffer. However, if you include a list of fields, the values in the current list
are transferred to the specified fields (see example). Each column value, taken in the order it
was defined, is copied to the corresponding field in the field list.

Field names parameter list
The command Load from list with '0 (CVAR1,,CVAR12)' specified will load the first
column of the current line of the list into CVAR1, ignore the second column, and load the
third column into LVAR12. If too few field names are specified, the other columns are not
loaded. If too many field names are specified, the extra fields are cleared. Any conversions
required between data types are carried out.

If the line number specified in the command line is empty, or if it evaluates to zero, the
values are loaded from the current line. If the list is empty or if the line evaluates to a value
greater than the total number of lines in the list, the flag is cleared and the fields in the
parameter list or in the list definition are cleared.

Set current list LIST2

Define list {CODE,NAME,CREDIT}

Build list from file on CLIENTS

Load from list  {4(,CVAR3,LVAR1)}

If flag false

OK message (Sound bell) {Line 4 is beyond the end of list}

Else

OK message {CVAR3=[CVAR3], LVAR1 is [LVAR1]}

;  CVAR3 is lst(4,NAME), LVAR1 is lst(4,CREDIT)

End If



Commands 257

Logoff from host
Reversible: No Flag affected: YES

Parameters: None

Syntax: Logoff from host

This command causes a logoff from the current session without disconnecting from the
remote database. A Commit is carried out on any uncommitted transactions. You can use
another Set hostname, Set username, Set password and Logon to host sequence to log the
session onto another database, or the same database as another user, for the same remote
database. Alternatively, you can issue another Start session to disconnect from the current
remote database and set up communication with another remote database. Logoff from host
places OMNIS in an “off-line” state, in which case you must execute another Logon to host
before proceeding with the next SQL transaction.

Set current session {ORACLE2}

Logoff from host

Set current session {SYBASE2}

Logoff from host

Logon to host
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Logon to host

This command issues a logon to the current session. If you have correctly supplied the Set
hostname, Set username and Set password commands, OMNIS will log onto the remote
computer and will initialize communications with the server.

Set username {SA}

Set password {Lion}

Set hostname {Serve300}

Logon to host

If flag false

OK message (Icon,Sound bell) {Logon failed}

Else

OK message {Logon was successful}

End If

There are some important differences in the way you specify the logon parameters for
different servers. Refer to OMNIS Studio Data Access Manager manual for details.



258 Chapter 5—Commands

Make schema from server table
Reversible: NO Flag affected: YES

Parameters: Schema class name

Syntax: Make schema from server table {schema-name}

This command makes a schema class from a select table of column definitions. It is
typically used after Describe server table (Columns) which creates a select table defining a
table on your server.

Make schema from server table{schema-name} creates or redefines an OMNIS schema
class using the current select table. The select table should have the same structure as that
created by Describe server table (Columns). One column in the schema class is defined for
each row in the select table. The command will generate an OMNIS schema class with the
same column names as the server table column names, provided that the column names are
valid OMNIS column names.

The Make schema class from server table command tries to convert column names and data
types to the OMNIS schema class and does not usually generate errors. In some cases,
however, it may be necessary to modify the schema class to produce the desired result. If
the schema name already exists, the old class will be overwritten by the new one thus
redefining the schema class. Any references throughout the library to columns from the old
schema, either as field names or in calculations, will become references to the columns in
the same positions in the new schema class. This does not apply to literals containing the
field names such as parameters to the fld() function.

Describe server table (Columns) {TableName}

Make schema class from server  table  {SchemaName}

Describe server table (Columns) {table-name} creates a select table with one row for each
column of the specified server database table. The following example creates a set of
OMNIS schemas for each available table on the server:

; declare var LTABLES of List type and give it column TABLE

Set current list LTABLES

Describe database (Tables)

Build list from select table

If LTABLES.$linecount    ;; if the list has data

For each line in list from 1 to LTABLES.$linecount

Describe server table (Columns) {[lst(TABLE)]}

Make schema class from server table  {[lst(TABLE)]}

End For

End If



Commands 259

Making a schema class from a list
You can use Make schema class from server table to create a schema class from a schema
definition held in a table-based list using the ^ notation, for example

Make schema class from server  table  {SchemaName,^LIST}

You can use the Make schema class from server table command to generate schema classes
even when not using the DAM.  The schema specification used by Make schema class from
server table and created by a Describe server table (Columns) is:

Col Column description

1 Column name

2 SQL data type for the column

3 Column width

4 Number of decimal places (for numeric columns); empty for floating Numbers

5 NULL or NOTNULL; for some servers only

6 Empty; for future expansion

7 Description for the column where available

Maximize window instance
Reversible: NO Flag affected: NO

Parameters: Window instance name

Syntax: Maximize window instance window-instance-name

This command maximizes the specified window instance, that is, it sizes the window to the
maximum size of the OMNIS application window (the Finder window under MacOS). You
can maximize a window only if it has a maximize button.

Maximize window instance  MyWin2

; full screen for data entry, etc.

Minimize window instance MyWin2

; reduces window to an icon at the bottom of screen

You can maximize a window using the $maximize() method. To maximize the current
window use

Do $cwind.$maximize()



260 Chapter 5—Commands

Merge list
Reversible: NO Flag affected: YES

Parameters: List or row name
� Clear list
� Use search

Syntax: Merge list list-name [([Clear list][,Use search])]

This command adds the specified list to the end of the list previously specified as the
current list. Once the list reaches its maximum size, the command finishes and clears the
flag. OMNIS does not check that the same fields are stored in the two lists (which they
should be). If the same fields are not present, data is not transferred.

If you use the Clear list option, the current list is initially cleared and defined to hold the
same fields as the specified list. This is the same as copying a list.

If you use the Use search option, only lines matching the search class are merged or added
to the current list. All lines match if there is no current search class.

In the following example, list LIST1 is merged or added to the current list, namely, LIST2.

Set current list LIST2

Set search name SRCH001

Merge list  LIST1 (Clear list,Use search)

If flag true

Sort list

Else

OK message {Merge failed at line [LIST1.$linecount]}

End If

This example appends selected lines only.

Set current list LIST2

Set search as calculation {#LSEL}

Merge list  LIST1 (Use search)

or do it like this

Do LIST.$merge(AnotherList)



Commands 261

Message timeout
Reversible: NO Flag affected: NO

Parameters: Interval (in seconds)

Syntax: Message timeout {interval}

This command specifies the time OMNIS has to wait for DDE responses to messages sent
to other applications. There is a default value of 30 seconds when OMNIS is started.

The following general purpose method sets up a DDE channel by increasing the message
timeout by 5 seconds until successful. You pass three parameters to the method, that is, the
initial timeout, the channel number and the program 'name|document'.

; Open DDE

; declare Parameter LNUM (Short integer (0-255))

; declare Parameter LCHAN (Short integer (0-255))

; declare Parameter LPROGDOC (Character)

Set DDE channel number {LCHAN}

Repeat

Message timeout  {LNUM}

Open DDE channel {LPROGDOC}

If flag false

Yes/No message {Give up 'Open DDE channel'?}

End If

Calculate LNUM as LNUM + 5

Until flag true

Minimize window instance
Reversible: NO Flag affected: NO

Parameters: Window instance name

Syntax: Minimize window instance window-instance-name

This command minimizes the specified window instances, that is, the window is shown as
an icon at the bottom of the OMNIS application window (or the Finder window under
MacOS).

Open window instance WCUSTOMERS/wcust1/20/30/270/230

; let the user enter data, etc.

Minimize window instance  wcust1 ;; reduces window to an icon

You can minimize a window using the $minimize() method. To minimize the current
window use

Do $cwind.$minimize()



262 Chapter 5—Commands

Modify class
Reversible: NO Flag affected: YES

Parameters: Class name (Search or Report only)

Syntax: Modify class {class-name}

This command opens a library class in design mode. Method execution continues and does
not wait for the design window to be closed. Modify class lets users modify new search and
report classes created with the New class command. Opening a class in design mode when
one of its methods is running causes a Quit all methods to be carried out before the design
window opens. If the class does not exist, the command clears the flag.

New class {Search/S_CUSTOMERS}

Modify class  {S_CUSTOMERS}

; Now you can:

Set search name S_CUSTOMERS

Print report (Use search)

Modify methods
Reversible: NO Flag affected: YES

Parameters: Class name

Syntax: Modify methods {class-name}

This command opens the method editor for the specified class. Method execution continues
and does not wait for the design window to be closed. Opening a method in design mode
first causes a Quit all methods if one of the methods for that class is running. The flag is
cleared if the specified class does not exist, or if it is a file, search, or report class.

New class {Window/W_CUSTOMERS}

Modify methods  {W_CUSTOMERS}

; Opens at the $construct() method for window W_CUSTOMERS



Commands 263

New class
Reversible: NO Flag affected: YES

Parameters: Class type
New class name

Syntax: New class {class-type/new-class-name |  super-class-name}

class type can be one of the following:
File, Task, Window, Report, Menu, Search, Code, Toolbar, Schema, Table

This command creates a new class with the specified type and class name. For example, you
can use New class in association with Modify class to allow users to create new search and
report classes. Attempting to create a class with the same name as one which already exists
clears the flag and displays an error message.

New class  {Window/W_CUSTOMERS}

Modify class {W_CUSTOMERS}

Next
Reversible: YES Flag affected: YES

Parameters: Field name (must be indexed)
� Exact match
� Use search

Syntax: Next [on field-name] [([Exact match][,Use search])]

This command locates the next record using the current find table. The Next command
works in the same way as the corresponding option on the Commands menu but with no
redraw, allowing you to work through a file. It is usually used after a Find command which
creates a find table of records.

If the Index field, Exact match and/or Search option used in the Next is incompatible with
the preceding Find, a new find table is built. Normally, the parameters in this command are
left blank so that the current find table is used.

If the Next command does not follow a Find, a find table is built for the current main file
before doing the Next.

If an indexed field is specified, Next on SU_NAME for example, the find table is just the
index order for the field. The Use search option creates a find table for the current main file
in which the search specification is implicitly stored. Thus, changes to the search do not
affect the find table once it is created.

Once the next record is located, the main and connected files are read into the current
record buffer.



264 Chapter 5—Commands

An error occurs whenever a Next on FIELD command is performed on a non-indexed field
or if the field is not in the main file or its connected files.

If the next record is found, the flag is set; if not, it is cleared.

If the Exact match option is chosen, the next record is loaded where the index value of the
specified field matches the current value.

If you use Next with a search, it builds a find table if necessary and finds the next record
listed on the find table which meets the search criteria.

In the following example, Next is used without an exact match in order to work
systematically through the file. As each next record is found, the flag is set and the
commands in the loop are executed. When a next record cannot be found, the flag is cleared
and the Repeat–Until loop terminated.

Find first on SEQ ;; creates a table equal to the SEQ index

While flag true

Working message {Processing records}

Prepare for edit

Calculate PRICE as PRICE*1.2

Update files

Next

End While ;; Loop terminates at end of table

; This finds all the records where CODE = CVAR1

Single file find on CODE {CVAR1}

While flag true

OK message {Found [NAME]}

Next  (Exact match)

End While

No/Yes message
Reversible: NO Flag affected: YES

Parameters: Title (for message box)
� Icon
� Sound bell
� Cancel button
Message (text)

Syntax: No/Yes message [title] [([Icon] [,Sound bell]
[,Cancel button])] {message}

This command displays a message box containing the specified message and provides a No
and a Yes pushbutton. Also, you can include a Cancel button by checking the Cancel
button option. When the message box is displayed method execution is halted temporarily;



Commands 265

it remains open until the user clicks on one of the buttons before continuing. The No button
is the default button and can therefore be selected by pressing the Return key.

The number of lines displayed in the message box depends on your operating system, fonts
and screen size. In the message text you can force a break between lines (a line return) by
using the notation "//". Also you can add a short title for the message box.

For greater emphasis, you can select an Icon for the message box (the default “info” icon
for the current operating system), and you can force the system bell to sound by checking
the Sound bell check box.

You can insert a No/Yes message at any appropriate point in a method. If the user clicks the
No button, the flag is cleared; otherwise, a Yes sets the flag. You can use the
msgcancelled() function to detect if the user pressed the Cancel button.

No/Yes message  (Icon,Sound bell) {The balance in this account is now
[LBAL1].//Are you sure you want to increase the credit limit?}

If flag true

Do method IncreaseCredit

End If

OK message
Reversible: NO Flag affected: NO

Parameters: Title (for message box)
� Icon
� Sound bell
� Cancel button
Message (text)

Syntax: OK message [title] [([Icon][,Sound bell] [,Cancel button])] {message}

This command displays the specified message and waits for the user to click the OK  or
Cancel button before continuing. Method execution is halted temporarily while the message
box is displayed. The number of message lines displayed depends on your operating system,
fonts and screen size. In the message text you can force a break between lines (a line return)
by using the notation "//". Also you can add a short title for the message box.

For greater emphasis, you can select an Icon for the message box (the default “info” icon
for the current operating system), and you can force the system bell to sound by checking
the Sound bell check box.

The message box displayed by this command has an OK  button by default, but you can add
a Cancel button by checking the Cancel button option. After executing an OK message,
the flag is unchanged, but you can use the msgcancelled() function to detect if the user
pressed the Cancel button.

You can use square bracket notation in the message text to display the current value of
fields and variables. For example, the following method executes the SQL text passed to it



266 Chapter 5—Commands

and displays the SQL error number and text (sys(131) and sys(132), respectively) if there is
an error.

; ExecSQL

; declare Parameter pSQL (Character 10000000)

; declare Parameter pAction (Character 100)

; pSQL holds the SQL text, and pAction holds the SQL command

Perform SQL {[pSQL]}

If flag false

OK message  [pAction] (Icon,Sound bell) {A SQL error occurred
while executing [pAction].//[sys(131)]: [sys(132)]}

End If

On
Reversible: NO Flag affected: NO

Parameters: Event constant or list of event constants

Syntax: On event-constant[,event-constant,...]

This command is used in an event handling method and marks the beginning of a code
segment that executes when the specified event (or one of a number events) is received by
the current event handling method. An On command also marks the end of any preceding
On statement. You specify the event or list of events using the event constants.

When OMNIS generates an event it sends the event information as a series of event
parameters to the appropriate event handling method. The first parameter is always an event
constant. Further parameters, if any, depend on the event and further describe the event.
This event information is interpreted by the On statements in the event handling methods.
Window field events are sent to the $event() method behind the field, then to the $control()
method for the window instance, and then to the $control() method for the current task.
Events that occur in the window itself, such as a click on the window background, are sent
to the class method called $event(), then to the $control() method for the current task. A
particular event is sent to the first On command which applies, and when the next On
command is encountered quits the method.

You should place any code which is to be executed for all events before the first On
command. You cannot nest On commands or put them in an If or Else statement. You can
use On default to handle any events not handled by an earlier On event command.  The On
commands must be in event handling methods only: if used elsewhere they are not executed.
The function sys(86) at the start of a method reports any events received by the object.



Commands 267

The following example shows a typical event handling method for a window field.

On evBefore

; whatever code is needed for evBefore event

On evAfter

; whatever code is needed for evAfter event

On evClick, evDoubleClick

; whatever code is needed for evClick and evDoubleClick events

Seealso Quit event handler.

On default
Reversible: NO Flag affected: NO

Parameters: None

Syntax: On default

This command is used in an event handling method and handles any events not handled by
the preceding On commands. You use the On command to mark the beginning and end of
an On statement. You should place any code which is to be executed for all events before
the first On command.

On evClick, evDoubleClick

; whatever code is needed for evClick and evDoubleClick events

On default

; this bit handles all other events

Open check data log
Reversible: YES Flag affected: NO

Parameters: � Do not wait for user

Syntax: Open check data log [(Do not wait for user)]

This command opens the check data log. If the Do not wait for user option is specified,
execution continues with the next command, otherwise execution stops until the user has
closed the log. You use the check data log to manage the problems encountered in a data
file after the Check data command is run. The data log window lets you repair any problems
listed in the window, print the contents of the log, or clear the log.

Check data (Check indexes)

Open check data log



268 Chapter 5—Commands

Open client import file
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Open client import file

This command will open the import file specified with the Set client import file name
command. If the file already exists, OMNIS will open it and move to the end of the file
where the incoming data will be appended. However, if the file does not already exist,
OMNIS will create and open it. This lets you have an import file that is repeatedly added to
until you are ready to import its entire contents. By preceding the Open client import file
command with a Delete client import file {file-name} command, you can guarantee an
empty file for the next SQL transaction.

Set client import file name {VAX_FILE.TXT}

Begin SQL script

SQL: Select Name, Title from Authors

End SQL script

Execute SQL script

If flag true

Open client import file

If flag true

Retrieve rows to file

Else

OK message {couldn't open file for import}

End If

Else

OK message {error selecting rows from server}

End If

Open cursor
Reversible: NO Flag affected: YES

Parameters: Cursor name

Syntax: Open cursor [{cursor-name}]

This command opens the specified cursor and executes any SQL statement set for that
cursor. The cursor-name must be a currently valid cursor, but when omitted the current
cursor is used. You can pass the SQL statement to be executed by this command to the
named cursor using Declare cursor. The command is the same as:

Set current cursor {CURSOR_NAME}

Execute SQL script



Commands 269

Open data file
Reversible: NO Flag affected: YES

Parameters: � Do not close other data
� Read-only Studio/OMNIS 7
Data file name
Internal name

Syntax: Open data file [(Do not close other data)] [(Read-only
Studio/OMNIS 7)] {data-file-name[/internal-name]}

This command opens the specified data file and makes that file the "current" data file. It
clears the flag if the data file cannot be found or opened. If the Do not close other data
check box option is not specified, all existing data files are closed even if the command
fails. Opening a data file which is already open will close and reopen that data file. The
Read-only Studio/OMNIS 7 check box causes the data file to be opened in read-only
mode. This lets you open an OMNIS 7 data file in read-only mode in OMNIS Studio
without conversion taking place.

You can override the default internal name by specifying your own in the parameter for the
command, for example

Open data file  {Clients.df1/Names}

If an opened data file uses more than one segment, all segments are opened. The rules for
finding the additional segments which form part of the data file are as follows. Under
Windows, the PATH and the paths given in the OMNIS environment variable are searched.
Under MacOS, root directories of all mounted volumes are searched as well as the folders
containing the first segment and the most recently opened library.

; example 1

Open data file  {SALES.DF1/SALES}

If flag true

Find first

If flag true

Open data file  {PURCH.DF1/PURCHASES}(Do not close other data)

If flag true

Calculate PURCHASES.FIELD2 as SALES.FIELD1

Prepare for insert with current values

Enter data

Update files if flag set

End If

End If

End If



270 Chapter 5—Commands

; example 2

; Transfer from data file 1 to data file 2

Open data file  {PORDERS1.DF1/PORDERS1}

If flag true

Set main file {ORDERS}

Find first on ORDERNUM

While flag true

Prepare for insert with current values

Open data file  {PORDERS2.DF1/PORDERS2}

Update files if flag set

Open data file  {PORDERS1.DF1/PORDERS1}

Next on ORDERNUM

End While

End If

Open DDE channel
Reversible: YES Flag affected: YES

Parameters: Program name|Topic name (include the pipe)

Syntax: Open DDE channel {program-name|topic-name}

This command opens the current channel for exchanging data. If there is a valid response,
the flag is set and the channel is successfully opened. If the channel is already open, the
existing conversation is closed.

When entering the command in a method, you use the parameters to specify the program
and the topic to which the message is to be addressed. Note that the "pipe" (or vertical bar)
between the program name and topic name is required.

This command is reversible, that is, a previous conversation will reopen if this command is
contained within a reversible block.

When the command is used in a method containing a reversible block, and if a new
conversation is initiated using the same channel number as an existing conversation, the
original continues to process incoming messages only, and at the end of the method, the new
conversation is stopped and the original becomes fully active.



Commands 271

Set DDE channel number {2}

Open DDE channel  {OMNIS|COUNTRY}

If flag false

OK message {Country library not running}

Else

Do method TransferData

Close DDE channel

OK message {Update finished}

End If

Open desk accessory
Reversible: NO Flag affected: YES

Parameters: Desk accessory name

Syntax: Open desk accessory {desk-accessory-name}

This command opens a specified desk accessory while OMNIS continues to run in the
background. Without MultiFinder, the DA opens immediately but cannot be used until
OMNIS stops running methods and waits for an input from the user.

The flag is set if the command opens the DA, and cleared if there is too little memory or the
DA is not found.

Yes/No message {Put this entry in SmartPad?}

If flag true

Open desk accessory  {SmartPad}

If flag false

OK message {Either there is too little memory

or SmartPad is not installed}

End If

End If



272 Chapter 5—Commands

Open library
Reversible: NO Flag affected: YES

Parameters: � Do not close others
� Do not open startup task
Library name
Internal name
Password
Parameters list

Syntax: Open library [([Do not close others] [,Do not open startup task])]
{library-name[/internal-name[/password]]
[(parameter1[,parameter2]...)]}

This command opens the specified library file and closes other libraries, if specified. You
specify the library name (including path name if required), internal name, password, and
startup method parameters of the library to be opened. If the disk file with the specified path
name cannot be opened or is not a valid library, the flag is cleared and no libraries are
closed.

If the internal name of an opened library is specified, a check is made to ensure the internal
name is unique among the open libraries, and a runtime error occurs if this is not the case. If
no internal name is specified, the default internal name is the disk name of the file with the
path name and suffix removed. For example, the internal name for 'hd:myfiles:testlib.lbr' is
'testlib'.

Do not close others
The Do not close others option lets you keep open all other libraries. Otherwise, all other
open libraries are closed (see the Close library command for the consequences of closing a
library). If an attempt is made to open a library which is already open, that library is closed
and reopened.

Startup task
If the Do not open startup task option is specified, the startup task construct for the
opened library is not called. Otherwise, the startup task $construct() method is called and
the parameters for it are passed.  The startup task instance name will be either the library
name or the library internal name if it has one: it is not called Startup_Task.

Passwords
If a password is specified, an attempt is made to open the library with that password. If it is
not a valid password or no password is specified, the library is opened in the usual way, that
is, if the library does not need a master password, it is opened at the master level; otherwise
the usual prompt for password dialog is opened (the library is closed and a flag false
returned if this dialog is closed without a password being entered).



Commands 273

Open library  {MYLIB.LBR} (Param 1)

Open library  (Do not close others) {SQLTOOLS.LBR}

The following method tries to open the named library, and uses GetFile if it fails. The
parameter variables accept the library name and internal name passed to the method.

; OpenLibrary method

; Libname and IntName are passed to this method

; declare Parameter Libname (Character 10000000)

; declare Parameter IntName (Character 10000000)

If pos('.',IntName)  ;; if IntName has an extension, strip it

Calculate IntName as mid(IntName,1,pos('.',IntName)-1)

End If

Do $root.$libs.$findname(IntName)

If flag false

Open library  (Do not close others) {[Libname]/[IntName]}

Do $root.$libs.$findname(IntName)

If flag false

OK message {Can't find library}

Get File (Libname,"Please locate the file")

Open library  (Do not close others) {[Libname]/[IntName]}

Do $root.$libs.$findname(IntName)

If flag false

OK message {Still can't open library!}

End If

End If

End If

Open lookup file
Reversible: YES Flag affected: YES

Parameters: Lookup reference or label
Data file name
File class name
Index field number

Syntax: Open lookup file {[lookup-reference/]data-file-name/file-
name/field-number}

This command opens an OMNIS data file for use as a lookup file. You give each lookup
file a reference name which you use in subsequent lookup() functions to select a particular
data file and file class.

You can open any OMNIS data file as a lookup file. In a lookup file, you can use the file
classes to look up field values based on an indexed search. Each file class should consist of



274 Chapter 5—Commands

at least two fields: the first is the index (usually a character field), the second is any field
type. For example, the data file LAREAS.DF1 has the following file structure:

File name Field1 Field2

FPIC Char Indexed Picture

FCITIES Char Indexed Char

The parameters for Open lookup are separated by  "/".  The first parameter is a label that
you create to become the reference to that lookup "channel". If you omit this label, OMNIS
assumes that you will use only one lookup file whereupon you can use lookup() without its
first parameter. The label you give to each lookup is case-insensitive and if you use the
same one twice, the previous lookup file is closed.  A flag true is returned if the data file is
found and opened. Here is a typical example:

Open lookup file  {City/HD:LOOKUP.DF1/FCITIES/1}

If flag true

OK message {The city you require is [lookup('City','I',2)]}

End If

This example opens a data file called LOOKUP.DF1 and assigns the label "City" to the
lookup channel. The City lookup uses the file class FCITIES within that data file and uses
the first index to search for the required data. The OK message uses lookup() to search the
first indexed field for an exact match with the value "I". If the match is found, the value of
field 2 in the matched record is returned and displayed as part of the OK message. If no
match is found, lookup() returns an empty value.

Note that the index and field are specified as numbers because your particular library may
not include the file class used in the lookup data file. If you omit either number, the default
is to use the first field as the index, and the second as the field value to be returned in the
lookup() function.

OMNIS looks for the data file using the following rules. Under Windows, the current PATH
and additional paths included in the OMNIS environment variable are searched. The
AUTOEXEC.BAT file sets up the environment variables, for example

PATH C:\;C:\WINDOWS;C:\DOS;C:\DOS\TOOLS

SET OMNIS=C:\WINDOWS\LOOKUPS

Under MacOS, the System folder, OMNIS folder and then the root of each mounted volume
is searched, in that order.

You can open more than one file class within a particular data file by assigning a different
label to each lookup, for example

Open lookup file  {City2/LOOKUP.DF1/FCITIES2}

Open lookup file  {City/LOOKUP.DF1/FCITIES}

Open lookup file  {Country/LOOKUP.DF1/FCOUNTRIES}



Commands 275

The flag is set if the lookup is successful, that is, the data file is opened, the file slot exists
and the indexed field is indeed indexed. The lookup file is closed if the command is
reversed (see Begin reversible block).

You can close lookup files using Close lookup file, but this is not necessary: all lookup files
associated with a library are closed automatically when the library quits.

You can maintain the data within the lookup file from within the library by:

1. Adding the appropriate file classes to your library,

2. Changing the data file to the lookup file using Open data file,

3. Opening a window and editing/ inserting data in the usual way, and

4. Returning to the original data file.

You can also load multiple data files with Open data file.

Open runtime data file browser
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Open runtime data file browser

This command opens a restricted version of the Data File Browser suitable for use in the
runtime version of OMNIS. The Runtime Data File Browser lets you check data files and
individual data slots. The IDE Data File Browser, and the runtime version are mutually
exclusive, that is, opening one closes the other. If the Runtime Data File Browser is already
open, executing this command brings it to the front.

Open data file {Salaries.df1}

Set current data file {Saleries}

Open runtime data file browser



276 Chapter 5—Commands

Open task instance
Reversible: NO Flag affected: NO

Parameters: Task class name
Instance name (the default is the class name)
Parameters list

Syntax: Open task instance task-class-name[/task-instance-name]
[(parameter1[,parameter2]...)]

This command opens the specified task and assigns an instance name. You can include a list
of parameters which are sent to the $construct() method in the task instance.  Note that
startup task instance is normally opened when the library opens: its name will be either the
library name or the library internal name if it has one.

Open task instance  Task1 (1)

; $construct for Task 1

; declare Parameter pMenu of type Boolean

If pMenu

Install menu mAccounts

End If

Open trace log
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Open trace log

This command opens the trace log.



Commands 277

Open window instance
Reversible: YES Flag affected: NO

Parameters: Window class name
Window instance name default is the class name
left/top/right/bottom/ to position and size window; no. of pixels
/CEN to center the window
/MAX to maximize the window
/MIN to minimize the window
/STK to stack the window
Parameters list

Syntax: Open window instance window-class-name[/window-instance-name]
[/left[/top[/right[/bottom]]]] [/ CEN] [/MAX] [/MIN] [/STK]
[(parameter1[,parameter2]...)]

This command opens an instance of the specified window class. You can specify the
position and size of the window instance (using the left, top, right, bottom coordinates in
pixels), and you can center, maximize, minimize, and stack the window. Furthermore, you
can send a list of parameters to the window’s $construct() method.

Open window instance lets you open multiple instances of the same window class. The
default instance name for a window is the class name, but if you want to open multiple
instances of the same window class you must assign a unique name to each instance.
Window instance names are case-sensitive.

Open window instance  WCLIENT/winst1/stk

Open window instance  WCLIENT/winst2/stk

; will open and stack two instances of the WCLIENT window

Alternatively you can let OMNIS assign enumerated names to multiple instances by
specifying ‘*’ as the instance name.

Open window instance  WCLIENT/*

Open window instance  WCLIENT/*

; will open two instances WCLIENT1 and WCLIENT2

Window Position and Size
You can specify the position of the top-left corner of the window instance by adding the
coordinates to the end of the window name/instance name parameter, that is,
window-name/instance-name/left/top. You specify the position in pixels, the origin being
/0/0, that is, under the menu bar. By providing all four coordinates, you can specify the
position and size of the window instance.

Open window instance  WCLIENT/winst1/20/30/200/300/stk

Open window instance  WCLIENT/winst2/20/30/300/400/stk

You can use variables to locate a window instance, for example



278 Chapter 5—Commands

Open window instance
WPALETTE/wpal1/[LVLeft]/[LVTop]/[LVRight]/[LVBott]

Centering and Stacking Windows
The /CEN option automatically centers the window instance. You can include the four
window size coordinates with the /CEN option so the window is sized and centered.

Open window instance  WCLIENT/winst1/20/30/200/300/CEN

The /STK option opens the window instance about 12 pixels (the stack offset) to the right
and down from the current top window. When a stacked window reaches the edge of the
screen, it is placed back at the top of the stack, offset slightly from the first window.

Open window instance  WPALETTE/wpal1/STK

Maximizing and Minimizing Windows
The /MAX  option opens and maximizes the window instance. If you include the position
and size coordinates with this option, the window is opened with the specified position and
size and then maximized.

Open window instance  WCLIENT/winst2/20/30/200/300/MAX

; opens the window at 20/30/200/300 and then maximizes it

The /MIN  option opens and minimizes the window instance. If you include the position and
size coordinates with this option, the window is opened with the specified position and size
and then minimized.

Open window instance  WCLIENT/winst3/30/40/250/350/MIN

; opens the window at 30/40/250/350 and then minimizes it

$construct() Method and Passing Parameters
When you open a window instance, the $construct() method for that instance is run. In this
method, you place commands which set up the conditions required by the window. For
example, you may want to set the main file, build particular lists, and so on. Just as with Do
method and Do code method you can send parameters to the window using Open window
instance, for example

Open window instance  WCLIENT/winst2 (CVAR1,LVAR1,CO_NAME)

In this case, the values held in CVAR1, LVAR1, and CO_NAME are passed to the
$construct() method for the WCLIENT window instance.

Reversible blocks in the $construct() method do not reverse until the window instance is
closed, unlike a normal method whose reversible blocks reverse on termination of the
method.

Alternatively you can use the $open() method to open a window.

$windows.WINDOW.$open(‘instancename’[,location,constructparams])



Commands 279

Optimize method
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Optimize method

This command stores an optimized form of the method so when the method is executed for
a second time it runs much faster. You should put this command at the beginning of a
method, except when you put it in a reversible block. Methods which are executed
frequently, such as control methods and loops, are best optimized. The command is
reversible and does not change the flag.

When Optimize method is executed for the first time it converts the method being executed
into its optimized form and continues execution. When the method terminates, the
optimized form of that method is kept in RAM; the optimized form is executed if the
method is called again. If Optimize method is in a reversible block the optimized form of the
method is disposed of when the method terminates; so it will be rebuilt each time the
method executes. The optimized method is also discarded whenever the design window is
open for the method or the method is modified using the notation.

Optimize method

Set main file fRequests

Set current list BookRequests

Define list {ReqId,BookName,CollegeName}

Set search name sPhysics

Find first on ReqId (Use search)

While flag true

Single file find on BookId (Exact match) {ReqBkId}

Single file find on CollegeId (Exact match) {ReqCollegeId}

Add line to list

Next

End While

WARNING  Optimizing too many methods will increase the memory used which may
eventually result in a slowdown or worse.



280 Chapter 5—Commands

OR selected and saved
Reversible: NO Flag affected: YES

Parameters: Line number (can be calculation, default is current line)
� All lines

Syntax: OR selected and saved [(All lines)] [{line-number}]

This command performs a logical OR of the Saved selection with the Current selection. To
allow sophisticated manipulation of data via lists, a list can store two selection states for
each line; the "Current" and the "Saved" selection. The Current and Saved selections have
nothing to do with saving data on the disk; they are no more than labels for two sets of
selections. The lists may be held in memory and never saved to disk: they will still have a
Current and Saved selection state for each line but they will be lost if not saved. When a list
is stored in the data file, both sets of selections are stored.

You can specify a particular line in the list by entering either a number or a calculation.

The OR selected and saved command performs a logical OR on the Saved and Current
states and puts the result into the Current selection. Hence, if either or both the Current and
Saved states are selected, the Current state becomes selected, but if both states are
deselected, the resulting Current state will remain deselected.

Logic Table (S=selected, D=deselected)

Saved Current Resulting Current
State

  S   S   S

  D   S   S

  S   D   S

  D   D   D

The All lines option performs the OR on all lines of the current list. The following example
selects all lines of the list.



Commands 281

Set current list LIST1

Define list {LVAR1}

Calculate LVAR1 as 1

Repeat

Add line to list

Calculate LVAR1 as LVAR1+1

Until LVAR1=6

Select list line(s) (All lines)

Save selection for line(s) (All lines)

Invert selection for line(s) {3}

OR selected and saved  (All lines)

Redraw lists

Paste from clipboard
Reversible: NO Flag affected: YES

Parameters: Field name
� Redraw field
� All windows

Syntax: Paste from clipboard [field-name] [([Redraw field][ ,All windows])]

This command pastes the contents of the clipboard into the specified field, current selection
or at the insertion point. When the field name parameter is specified, Paste from clipboard
pastes the contents of the clipboard into the field replacing the contents of the whole field.
However, when the field name parameter is not specified the command will paste the
contents of the clipboard at the current selection (a range of selected characters) or the
insertion point within the current field.

; copies one field to another then clears the first field

Copy to clipboard C_NAME

Paste from clipboard  C_COMPANY (Redraw field)

Clear data C_NAME (Redraw field)



282 Chapter 5—Commands

Perform SQL
Reversible: NO Flag affected: YES

Parameters: SQL script

Syntax: Perform SQL {sql-script}

This command sends a SQL statement direct to the current session without loading the SQL
buffer. It replaces the sequence

Begin SQL script

SQL: Select Name from Clients where Name like J

End SQL script

Execute SQL script

The flag is set if the server accepts the SQL statement. You can use the functions sys(131)
and sys(132) to report any errors returned from the server, for example

Set current session {Session_Ora}

Reset cursor(s) (Current)

Perform SQL  {Select Name from Clients where Name like J}

If flag false

OK message {Error returned: [sys(132)]}

End If

Popup menu
Reversible: NO Flag affected: YES

Parameters: Menu name
x coordinate, y coordinate

Syntax: Popup menu menu-name ([x-coordinate,y-coordinate])

This command installs the specified menu as a popup menu at the specified location. The
location is the x,y screen coordinate relative to the (0,0) position. Under Windows, the
coordinate (0,0) is the point directly under the menu bar within the OMNIS application
window. Under MacOS, (0,0) is literally the top left corner of the screen.  If you omit the
x,y coordinates the menu pops up at the current mouse position.

The mouseover() function returns the mouse position relative to the open window and not
the OMNIS application window. Using this function to specify the x and y position of the
popup menu may not produce the effect you want.

Popup menu behaves much like Popup menu from list except the source of the popup is a
user-defined menu. It clears the flag if the user does not select a menu line, otherwise, the
line selected from the popup is executed.



Commands 283

; $event for window class

On evRMouseDown

Popup menu mContext3

Popup menu from list
Reversible: NO Flag affected: YES

Parameters: List name
x coordinate, y coordinate

Syntax: Popup menu from list list-name ([x-coordinate,y-coordinate])

This command installs the specified list as a popup menu at the specified x,y screen
location. Under Windows, the coordinate 0,0 is the point directly under the menu bar within
the application area. Under MacOS, 0,0 is literally the top left corner of the screen. If you
omit the x,y coordinate from this command the menu pops up at the current mouse position.

Popup menu from list behaves much like Popup menu except the source of the menu is a
list. The specified list can contain any number of rows but only the first column and a
limited number of rows are displayed in the popup menu.

This command clears the flag if the user does not select a list line and LIST.$line is
unaffected. After the command has executed you can use lst() to return the line selected.

The mouseover() function returns the mouse position relative to the open window and not
the OMNIS application window. Using this function to specify the x and y position of the
popup menu may not produce the effect you want.

; $event for window class

On evRMouseDown

Popup menu from list cList

Prepare current cursor
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Prepare current cursor

This command sends the SQL statement given to the current cursor to the DAM in order
that it can interpret and understand the statement. This is normally done implicitly as part of
an execute, but you can make this explicit using this command. Consider that a statement
has 3 stages:

1. Prepare—always needed

2. Execute—always needed

3. Describe—only needed if the statement has results, a Select, for example



284 Chapter 5—Commands

When sending a SQL statement using Perform SQL and Execute SQL script the SQL script
is parsed and interpreted by the server.  Should you wish to send the same statement again,
this preparation stage can be bypassed to save time by using Prepare current cursor.  For
example:

Begin SQL script

SQL: INSERT INTO Sales(col1,col2,..) VALUES (@[col1],@[col2], .. )

End SQL script

Prepare current cursor

Execute SQL script

Subsequent use of Execute SQL script on the same cursor will execute the same statement
without having to set up the SQL buffer each time since the indirection and bind variables
are already prepared.  This can greatly speed up the process of, say, inserting many rows
into a server table within a loop.

Set current cursor { Cursor1 }

Repeat

; get next row

Execute SQL script ;; insert the row

Until ..  ;; no more rows to insert

Prepare for edit
Reversible: YES Flag affected: YES

Parameters: None

Syntax: Prepare for edit

This command prepares OMNIS for editing data. It brings records into memory ready for
updating and rereads the current records when in multi-user mode in case another user has
made a change to a record since it was read in. Your method can then alter the values of the
records. The contents of the current record buffer are not written back to disk until Update
files is encountered.

If there is a window open and you require data to be entered via that window, Enter data is
required after the Prepare for edit.

The Edit  option on the Commands menu is, in fact, equivalent to the commands:



Commands 285

Prepare for edit

Enter data

If flag true

Update files

Else

Clear main & connected

Redraw MyWindow

End If

Prepare for edit/insert mode is cleared only by a Cancel prepare for update, Update files or
Quit all methods command. You can build lists, print reports and change the main file in the
middle of an update without canceling the Prepare for... mode.

Multi-user considerations
Records in the current record buffer from Read/write files will be locked when Prepare for
edit is executed, so as to prevent simultaneous editing of a record. The lock is removed by
Update files or any command which cancels the Prepare for mode.

If Wait for semaphores is active, a Prepare for edit will wait for a record to become
available if another workstation has locked it. If the user presses Ctrl-Break (or Cmnd-
period under MacOS) while waiting for access, the command fails and processing halts.
With Do not wait for semaphores active, a record lock returns control to the method with
the flag false.

In the following method, the Edit mode is used to process the whole of a file. Enter data is
not used as no user intervention is required. Update files writes data to the disk and clears
the Prepare for.. mode and record locks.

In ‘Wait for semaphores’ mode:

Set main file MYFILE

Find first on MYINDEX

While flag true

Prepare for edit

Calculate CLBALN as CLBALN - TCCOST

Update files

Next

End while

In ‘Do not wait for semaphores’ mode:



286 Chapter 5—Commands

Set main file MYFILE

Find first on MYINDEX

While flag true

Repeat

Prepare for edit

Until flag true

Calculate CLBALN as CLBALN - TCCOST

Repeat

Update files

Until flag true

Next

End while

In the next Edit example, the Enter data command is included in the method so that the user
can edit the record from the keyboard. Again, the command Update files cancels the
Prepare for update mode and writes data to the disk.

Prepare for edit

Enter data

Update files if flag set

The next example has been written to control record locking by preventing OMNIS from
waiting for a record lock. It takes the form of general purpose 'prepare for edit' which you
can call with a number which tells it how many times to try for a lock if the record is locked
by another user:

; general Prepare for edit

; declare Parameter TRIES (Number 0 dp)

Do not wait for semaphores

Calculate COUNT as 1

Repeat

Prepare for edit

Calculate COUNT as COUNT+1

Until #F | (COUNT>TRIES)

; Keeps trying until flag true OR counter>TRIES

Wait for semaphores



Commands 287

Prepare for export to file
Reversible: NO Flag affected: YES

Parameters: Export format

Syntax: Prepare for export to file {export-format}

export-format is one of the following: Delimited (commas),
Delimited (tabs), One field per line, OMNIS data transfer

This command prepares to export records to a file in one of the specified data formats.  The
file must previously have been set using Set print or export file name.

Set print or export file name {Export.txt}

Prepare for export to file {Delimited (commas)}

Export data LIST1

End export

Prepare for export to port
Reversible: NO Flag affected: YES

Parameters: Export format

Syntax: Prepare for export to port {export-format}

export-format is one of the following: Delimited (commas),
Delimited (tabs), One field per line, OMNIS data transfer

This command prepares to export records to a port in one of the specified data formats.  The
file must previously have been set using Set port name or Prompt for port name.

Set port name {COM1:}

Prepare for export to port {Delimited (commas)}

Export data LIST1

End export



288 Chapter 5—Commands

Prepare for import from client
Reversible: NO Flag affected: YES

Parameters: Data format

Syntax: Prepare for import from client {data-format}

data-format is one of the following: Delimited (commas),
Delimited (tabs), One field per line, OMNIS data transfer

This command prepares to import records from the DDE client in the specified data format;
it is a DDE command, OMNIS as server. The data referred to in the subsequent Import data
commands are imported from the DDE client. A single DDE Poke message received from
the client contains a complete record. As each field is received, it is read into the fields in
the top window in field order.

If the imported record contains more fields than there are in the window, the extra ones are
ignored. Conversely, if there are too few, the extra fields in the window are left blank.

Open window instance W_import_data

Prepare for import from client  {Delimited (tabs)}

If flag true

Import data {ImportList}

End If

End import

Prepare for import from file
Reversible: NO Flag affected: YES

Parameters: Data format

Syntax: Prepare for import from file {data-format}

data-format is one of the following: Delimited (commas),
Delimited (tabs), One field per line, OMNIS data transfer

This command prepares OMNIS for a series of Import data commands. You must specify
the format for the import data as the parameter, otherwise an error will occur. The
parameter can contain square bracket notation but must evaluate to a valid import format
name. You should use the Set import file name command to specify the name of the file to
be read in.

If the data matches the specified import format, the flag is set. However, if the data does not
match the import format, the flag is cleared.

When data is imported via a method rather than the Utilities  menu, you must open a
window which defines the fields in which the incoming data must be placed. The example
below shows a typical import data method.



Commands 289

You can use a $control() method in conjunction with the Import data command.

Open window instance W_import_window

; Set control method (optional)

Set import file name {data1.DBF}

Prepare for import from file  {Delimited (tabs)}

If flag true

Import data {ImportList}

End If

End import

Close import file

If there are too few fields on the window, imported fields will be lost. If there are too many,
the extra fields are cleared. You can use the Do not flush command to speed up the import
when there is only one user logged into the data file.

Prepare for import from port
Reversible: NO Flag affected: YES

Parameters: Data format

Syntax: Prepare for import from port {data-format}

data-format is one of the following: Delimited (commas),
Delimited (tabs), One field per line, OMNIS data transfer

This command prepares OMNIS for importing data from a port. It is similar to the Prepare
for import from file command. The user can cancel the import of data while Prepare for
import is waiting for data from the port. If this happens, OMNIS clears the flag.

Set port name defines which port is used. Under MacOS, the choice is 1 (Modem port) or 2
(Printer port). Under Windows 3.x, the choices are Com1:, Com2:, and so on.

Open window instance W_import_window

; Set control method (optional)

Set port name {1 (Modem port)}

Set port parameters {1200,n,7,2}

Prepare for import from port  {Delimited (commas)}

If flag true

Import data {ImportList}

End If

End import

Close port



290 Chapter 5—Commands

Prepare for insert
Reversible: YES Flag affected: YES

Parameters: None

Syntax: Prepare for insert

This command prepares OMNIS for inserting new data into the main file. It clears the main
file and prepares to insert a new record into the main file. All Read/write non-main file
records in the current record buffer are reread if a record has been changed. You can edit
data in all the read/write files in the buffer, other than the main file.

Prepare for insert is not the same as the Insert option on the Commands menu which is in
fact equivalent to:

Prepare for insert

Enter data

If flag true

Update files

Else

Clear main & connected

Redraw MyWindow

End If

The Enter data command is required only if the user is to enter data via a window. Data is
not written to the disk until Update files is executed.

Prepare for edit/insert mode is cleared only by a Cancel prepare for update, Update files or
a Quit all methods command. You can build lists, print reports and change the main file in
the middle of an insert without canceling the Prepare for... mode.

If the main file is changed while in Prepare for insert mode, the main file at the time of the
Prepare for insert is used when Update files is encountered.

In multi-user mode, the Prepare for... commands reread the current records from the data
file if another user has edited a record.



Commands 291

Prepare for insert with current values
Reversible: YES Flag affected: YES

Parameters: None

Syntax: Prepare for insert with current values

This command prepares OMNIS for inserting new data into the main file using the values in
the current record buffer as a starting point. Prepare for insert with current values differs
from  Prepare for insert in that the fields in the main file are not cleared.

In multi-user mode, the Prepare for... commands reread the current records from the data
file if another user has edited a record.

Set main file {ORDERS}

Prepare for insert with current values

If flag false

Quit method kFalse

End If

Enter data

Update files if flag set

Prepare for print
Reversible: YES Flag affected: YES

Parameters: � Ask for job setup
� Do not finish other reports
Report instance name (default is the class name)
Parameters list

Syntax: Prepare for print [(Do not finish other reports)]
[{report-instance-name}] [(parameter1[,parameter2]...)]

This command prepares OMNIS for record-by-record report printing. You specify the
report instance name and you can add a list of $construct parameters for the report instance.
The default instance name is the name of the report class itself.

You must put Prepare for print after any Set report name, Select destination..., Set port
name, Set print file name, Set sort field and Report parameter commands and before the
first Print record command.

The Ask for job setup option opens the job setup dialog that lets you select the number of
copies, paper trays, the printer, and so on, for the current print job.

Prepare for print has the Do not finish other reports option which when checked allows
multiple reports to be in progress at the same time. If this is unchecked (the default) all
reports in progress are terminated before the new report is started, which is compatible with
earlier versions of OMNIS.



292 Chapter 5—Commands

The flag is set if the command is successful, errors cause a message to be displayed. If
placed in a reversible block, the Prepare for print mode is canceled and the totals printed
when the command is reversed.

All the Print commands give an error if no report is selected, or if the report is printed to a
port and no port is selected.

When reports are printed record-by-record using Print record in a loop, the sort fields set
up in the report class still trigger the subtotals. No sorting takes place and, therefore, you
must take care in the choice of index. You can trigger subtotals from the method by
including a variable on the first line of the report class, including it in the sort fields and
then using the method to change its value when required.

The Prepare for print mode is terminated or canceled by End print; You must include an
End print after a Prepare for print even if a totals section is not required.

Perform SQL {Select * from FELEMENTS}

Prompt for destination

If flag true

Fetch row

Set report name report1

Prepare for print

Repeat

Working message (Repeat count) {Printing}

Print record

Fetch row

Until flag false

End print

End If



Commands 293

; Example 2

; CVAR1, used to trigger subtotals section 1, is a sort field and

; placed on line 1 of the report class

Set report name RS_CONTACTS

Set main file {CONTACTS}

Prompt for destination

If flag true

Prepare for print

Find first

While flag true

Calculate CVAR1 as TOWN

Print record

Next

End While

End print

End If

Previous
Reversible: YES Flag affected: YES

Parameters: Field name (must be indexed)
� Exact match
� Use search

Syntax: Previous [on field-name] [([Exact match][,Use search])]

This command locates the previous record using the current find table. The Previous
command works in the same way as the corresponding option on the Commands menu but
with no redraw, allowing you to work through a file. It is usually used after a Find
command which creates a find table of records.

If the Index field, Exact match and/or Search option used in the Next is incompatible with
the preceding Find, a new table is built. Normally, the parameters in this command are left
blank so that the current find table is used.

If the Previous command does not follow a Find, a find table is built for the current main
file before doing the Previous.

If an indexed field is specified, Previous on SU_NAME for example, the find table is just
the index order for the field. The Use search option creates a table for the current main file
in which the search specification is implicitly stored. Thus, changes to the search do not
affect the find table once it is created.



294 Chapter 5—Commands

Once the previous record is located, the main and connected files are read into the current
record buffer and the flag is set, otherwise, the flag is cleared.  An error occurs whenever
Previous on FIELD is performed on a non-indexed field.

If the Exact match option is chosen, the previous record with the same index value is
found, or the flag is cleared if no previous records exist with the same index value.

If you use Previous with a search, it finds the previous record listed on the index table
which meets the search criteria.

In the following example, Previous is used without an exact match in order to work
systematically through the file. As each previous record is found, the flag is set and the
commands in the loop are executed. When a previous record cannot be found, the flag is
cleared and the Repeat–Until loop terminated.

Find last on SEQ ;;  this creates a table equal to the SEQ index

While flag true

Working message {Processing records}

Prepare for edit

Calculate PRICE as PRICE*1.2

Update files

Previous

End While

Print check data log
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Print check data log

This command prints the current contents of the check data log to the current report
destination. There is no need for the log to be open.

Check data (Check indexes)

If flag true

Print check data log

Else

OK message {Check data works only if one user is logged on}

End If



Commands 295

Print class
Reversible: NO Flag affected: NO

Parameters: Class name

Syntax: Print class class-name

This command prints the field list and methods (if any) for the specified class. The
following example prints the field list and/or methods for all the classes in the current
library.

; declare local variable FLIST of List type

Set current list FLIST

Calculate FLIST as $clib.$classes.$makelist($ref.$name)

Redefine list {CVAR5}

For each line in list

Print class  {[lst(CVAR5)]}

End for

Print record
Reversible: NO Flag affected: YES

Parameters: Report instance name

Syntax: Print record [{report-instance-name}]

This command prints a single record of the specified report instance. You use it when
printing a report on a record-by-record basis and usually within a loop. It provides greater
control over the report generator than Print report. If you omit the report instance name
Print record is applied to the most recently started report instance ($ireports.$first).

Each time Print record is encountered, a record section of the report is printed to the
selected output using the data in the CRB. Any page heading, subtotal heading and subtotal
sections before the record section are printed where necessary.

Subtotal sections are printed whenever the sort fields change value, provided that the fields
entered in the Sort Fields dialog have Subtotals set to True.

The flag is cleared if:

� no Prepare for print is used, or

� the user cancels the report by pressing Ctrl-Break or Cmnd-period, or

� there is an error.

These errors will not cause OMNIS to execute a Quit all methods. If the flag is cleared,
OMNIS will not execute any further Print record commands until it encounters another
Prepare for print.



296 Chapter 5—Commands

; example 1

Set main file {f_client}

Set report name r_letters

Send to screen

Prepare for print

Find first

While flag true

Print record

Next

End While

End print

; example 2

Perform SQL {Select C_CODE,C_NAME from CUST}

Set report name R_CUST

Prepare for print

Fetch row

While flag true

Print record

Fetch row

End While

End print

Print report
Reversible: NO Flag affected: YES

Parameters: � Ask for job setup
� Use search
� Do not finish other reports
Report instance name (default is the class name)
Parameters list

Syntax: Print report [([Use search][,Do not finish other reports])]
[{report-instance-name}] [(parameter1[,parameter2]...)]

This command prints the specified report instance to the selected output. You specify the
report instance name and you can add a list of $construct parameters for the report instance.
The default instance name is the name of the report class itself.

Subtotal sections are printed whenever the sort fields change value, provided that the fields
entered in the Sort Fields dialog have Subtotals set to True.



Commands 297

You specify sort fields and the main file or list as part of the report parameters. If the main
file has not been set in the report class, the current main file is used. You can override all
the parameters in the class using the appropriate commands, for example, Set left margin.

Print report does not use the current record buffer but a special memory buffer to load in
and sort records. Thus Print report does not affect Prepare for mode and does not lose
current records. If the report is printed from a list, data is read directly from the report main
list, as specified in the parameters for the report. LIST.$line is unaffected.

The Ask for job setup option opens the job setup dialog that lets you select the number of
copies, paper trays, the printer, and so on, for the current print job.

All records are printed unless the Use search option is specified. In this case, only the
records matching the current search class are printed. It is not necessary to use Prepare for
print before Print report.

The Do not finish other reports option allows multiple reports to be in progress at the
same time. If this is unchecked (the default) all reports in progress are terminated before the
new report is started, which is compatible with earlier versions of OMNIS.

The flag is cleared if the report is canceled before completion by the user or in the event of
an error. Most errors will display a message but will not cause OMNIS to Quit all methods.

Set report main file {f_client}

Set report name r_letters

Clear sort fields

Set sort field ORDERCODE

Send to screen

Print report

Print report from disk
Reversible: NO Flag affected: YES

Parameters: File name

Syntax: Print report from disk {file-name}

This command prints the contents of the specified disk file to the current report destination.
The specified file must contain output generated using the Disk printing device.



298 Chapter 5—Commands

Print report from memory
Reversible: NO Flag affected: YES

Parameters: Field or variable name

Syntax: Print report from memory var-name

This command prints the contents of the specified binary field or variable to the current
report destination. The specified field or variable must contain output generated using the
Memory printing device.

Print top window
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Print top window

This command prints the top window to the current print destination. It behaves the same as
the Window>>Print Top menu option.

Send to printer

Print top window

Process event and continue
Reversible: NO Flag affected: NO

Parameters: � Discard event

Syntax: Process event and continue [(Discard event)]

This command causes the current event to be processed immediately allowing the event
handler method containing the command to continue to execute. Normally, the default
processing for an event takes place when all the event handler methods dealing with the
event have finished executing. It is not possible to have active unprocessed events when
waiting for user input so the default processing is carried out for any active events after an
Enter data command has been executed or at a debugger break Therefore if required, you
can use this command to override the default behavior and force events to be processed
allowing the event handler method to continue.

The Discard event option lets you discard the active event. For example, in an event
handler for evOK the following code would cause the OK event to be thrown away before
the subsequent enter data starts.

On evOK

Process event and continue  (Discard event)

Open window instance {window2}

Enter data



Commands 299

Prompt for data file
Reversible: NO Flag affected: YES

Parameters: Internal name
� Do not close other data
� Read-only Studio/OMNIS 7

Syntax: Prompt for data file [(Do not close other date)] [(Read-only
Studio/OMNIS 7)] {internal-name}

This command prompts the user to enter the name of a data file. A dialog box is displayed
that lets the user choose a data file. An error message "Unable to find data file" is generated
if the selected file cannot be opened, and the user is forced to select another file name or
Cancel. If the user selects Cancel, the flag is cleared and the original data file remains
selected.

The selected file is opened in shared mode unless the volume does not support record
locking.

The existing open data files remain open if the Do not close other data option is selected.
In this case, the new data file becomes the "current" data file and this becomes the default
data file for file classes which have not been associated with a particular data file using the
Set default data file command. If the Do not close other data option is not specified, all
other open data files are closed even if the command fails.

If an attempt is made to open a data file which is already open, that data file is closed and
reopened. The Read-only Studio/OMNIS 7 check box causes the data file to be opened in
read-only mode. This lets you open an OMNIS 7 data file in read-only mode in OMNIS
Studio without conversion taking place.

Test if file exists {ORDERS.DF1}

If flag true

Open data file {ORDERS.DF1}

Else

Prompt for data file

If flag false

Quit method

End If

End If



300 Chapter 5—Commands

Prompt for destination
Reversible: YES Flag affected: YES

Parameters: None

Syntax: Prompt for destination

This command displays the Set report destination window so the user can select the
destination for the report. The user can choose the following destinations: printer, screen,
page preview, file, port, clipboard, or DDE channel.

If the command is part of a reversible block, the destination reverts to its former identity
when the method terminates. If the user selects the Cancel button on the dialog, the flag is
cleared.

Set report name Orders

Prompt for destination

If flag true

Print report

End If

Prompt for event recipient
Reversible: NO Flag affected: YES

Parameters: Recipient tag name

Syntax: Prompt for event recipient [{recipient-tag}]

This command prompts the user to select the name of an application which will become the
destination of all subsequent events. The "recipient tag" is entered also. Recipient tags may
have a maximum of 31 characters to comply with the MacOS Finder. Several recipients may
be prompted for, each with a different tag, but you can use only one at a time. A complete
list of current recipients is built with the Build list of event recipients command.

If no recipient tag is specified for the application, the tag will be supplied by OMNIS. Its
name will be capitalized and spaces removed. Once an event recipient has been tagged, you
can use the tag as a parameter for the Use event recipient command without further
prompting, thus allowing recipients to be changed easily.



Commands 301

; This example is a pushbutton method which sets up two recipients

On evClick

OK message {Locate the Excel spreadsheet for me}

Prompt for event recipient  {Sheet}    ;; tagged as "Sheet"

OK message {Locate the remote database for me}

Prompt for event recipient  {Data}     ;; tagged as "Data"

Set current list LIST1

Build list of event recipients

Redraw lists

Set event recipient {[LIST1(1,1)]}

; Uses the first recipient in list, that is, R1,C1

On default

Quit event handler

Prompt for import file
Reversible: YES Flag affected: YES

Parameters: None

Syntax: Prompt for import file

This command prompts the user to select the name of the import file. The flag is set if the
import file is successfully selected, otherwise a Cancel clears the flag, closes the current file
and closes the dialog. You use the selected file in any subsequent Import data commands.

If you use Prompt for import file in a reversible block, the import file is closed when the
method containing the reversible block terminates.

Open window instance W_IMPORT

Prompt for import file

Prepare for import from file {Delimited(tabs)}

If flag true

Import data {ImportList}

End If

End Import

Close import file



302 Chapter 5—Commands

Prompt for input
Reversible: NO Flag affected: YES

Parameters: � Sound bell
� Cancel button
� Upper case only
� Password entry
� Prompt above entry
Prompt text
Title
Icon id
Maximum characters
Return field

Syntax: Prompt for input [([Sound bell] [,Cancel button]
[,Upper case only] [,Password entry] [,Prompt above entry])]
prompt-text/[title]/[ icon-id]/[max-chars] Returns return-field

This command opens a message box requesting a value from the user. You can specify the
text for the prompt, title and icon for the message box, and the maximum number of
characters for the input. If the user enters a value and presses OK, the command sets the flag
and returns the user value. The command is not reversible.

The first parameter for the Prompt for input command is the prompt-text which is the
prompt displayed to the left of the entry field by default; you can place the prompt text
above the entry field using the Prompt above entry option. You can also enter a title for
the message box. The prompt and title default to empty. Note that if you want to enter an
empty title, you need to enter '/ /' to avoid ambiguity with the newline convention.

You can specify an icon for the message box using the icon-id of an icon from the
OMNISPIC or USERPIC icon data file. Zero is the default which means no icon. You can
use one of the icon size constants enclosed in square brackets with the icon id to specify a
non-default size, for example, [1710+k48x48]. You can specify the maximum number of
characters that the user can enter in max-chars. This defaults to the maximum length
defined in your return field. The return-field can specify an initial value for the entry field
on the message box, and receives the value entered after the user clicks OK.

The Sound bell option causes the system beep to sound when the message box opens. The
Cancel button option adds a Cancel button to the message box. The flag returns false if the
user presses the Cancel button. The Upper case only option forces all input to be upper
case, while the Password entry option hides the input, by displaying '*' for each character
entered.

Prompt for input  Please enter your name Returns lv_input (Sound
bell,Cancel button,Prompt above entry)

; lv_input now contains value entered by user



Commands 303

Prompt for library
Reversible: NO Flag affected: YES

Parameters: � Do not close others
� Do not open startup task
Internal name
Parameters list

Syntax: Prompt for library [([Do not close others] [,Do not open startup task])]
[{internal-name [(parameter1[,parameter2]...)]}]

This command prompts the user for a library file. You can specify the internal name and
startup task construct parameters of the library to be opened, together with the Do not close
others and Do not open startup task options.

If the internal name of an opened library is specified, a check is made to ensure the internal
name is unique among the open libraries; a runtime error occurs if this is not the case. If no
internal name is specified, the default internal name is the disk name of the file with the path
name and suffix removed. For example, the internal name for 'hd:myfiles:testlib.lbr' is
'testlib'.

If an attempt is made to open a library which is already open, that library is closed and
reopened. Refer to Close library for the consequences of closing a library. If the user
cancels the Select Library dialog, the flag is cleared and no libraries are closed.

Do not close others
The Do not close others option lets you keep open all other libraries. If the Do not close
others option is not selected, then all other open libraries are closed when the user opens a
new library, including the one containing the currently executing method.

Passwords
If the library does not need a master password, it is opened at the master level, otherwise the
usual prompt for password dialog is opened. The library is closed and a flag false returned
if this dialog is closed without a password being entered.

Startup task
If the Do not open startup task option is specified, the startup task construct for the
opened library is not called and there is no startup task instance. Otherwise, the startup task
$construct() method is called and the parameters for it are passed.

Prompt for library  {MyLbr (Param1)}

Prompt for library  (Do not close others) {SQLTool}



304 Chapter 5—Commands

Prompt for page setup
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Prompt for page setup

This command displays the Printer page setup dialog box. This dialog allows the page size,
orientation and printer's effects to be chosen before a report is printed. The flag is set if the
dialog is closed by clicking on the OK pushbutton. Cancel clears the flag and leaves the
page parameters unchanged. Note the Prepare for print and Print report commands have
the Ask for job setup option which opens the setup dialog before printing.

Prompt for page setup

If flag true

Print report

End If

; You will need to repeat the Prompt

; to reset the page setup to its former values

Prompt for port name
Reversible: YES Flag affected: YES

Parameters: None

Syntax: Prompt for port name

This command displays the Set port dialog box that lets the user select a port. The flag is set
if the port is successfully selected; if the user cancels, the flag is cleared and the port closed.

You can set the baud rate and other parameters for the port using Set port parameters.

If the command  is in a reversible block, the port is closed when the method terminates.

Open window instance WIMPORT

Prompt for port name

Prepare for import from port {Delimited (commas)}

If flag true

Import data {ImportList}

End If

End Import

Close port



Commands 305

Prompt for print or export file
Reversible: YES Flag affected: YES

Parameters: None

Syntax: Prompt for print or export file

This command displays the Select Print or Export File dialog. The flag is set if the file is
successfully selected. If the file exists already, a further dialog lets you delete it. If the user
cancels, the flag is cleared and the file is closed.

If the command  is in a reversible block, the file is closed when the method terminates.

Prompt for print or export file

If flag true

Send to file

Set report name R_Addresses

End If

Print report

Prompt for word server
Reversible: NO Flag affected: YES

Parameters: Word server tag

Syntax: Prompt for word server {word-server-tag}

This command prompts the user to specify an application for text checking using the
standard dialogs offered by the Apple interface. Apple Word Servers are available for both
spelling and grammar.

Once chosen, OMNIS will remember the checker, using an alias record in the OMNIS
Preferences file, and the checker need not be reselected each time the Library is opened.
Since you can open only one word server at a time, prompting for a new word server
replaces the original, which must be recalled with Prompt for word server if required.

By giving the command a tag parameter (Prompt for word server {NetSpeller}, for example)
you can use the tag name to quit the word server. This is useful if memory is running short.

Prompt for word server  {NetSpeller}

If flag true

OK message {Speller found, tagged 'NetSpeller'}

; NetSpeller is added to the Application Menu

Else

OK message {Your speller is not available}

Quit method

End If



306 Chapter 5—Commands

; following line could be under a radio button

; Send Core event {Quit Application ('NetSpeller')}

NetSpeller remains available until the Quit event, or until an alternative word server is
prompted for. You can use the next example behind a pushbutton to check a particular field.

On evClick

Prompt for word server ; ; opens a dialog box

Send Word Services event {Check field text('CVAR1')}

; checks the text in CVAR1 using the checker prompted for

Quit event handler

Prompted find
Reversible: YES Flag affected: YES

Parameters: � Exact match

Syntax: Prompted find [(Exact match)]

This command prompts the user to enter a value in an indexed field on the current window
and locates the record which most closely matches that value. The user can use the Tab key
to select an indexed field. The Find field is the current field for the window when the user
clicks on the OK button.

Once the user enters a value in the Find field and clicks OK, OMNIS locates the record
most closely matching this value, the main and connected files are read into the current
record buffer and the flag is set. If the indexed field is in a connected file, the find continues
until a record connected to a valid main file record is located. The current index, as used by
Next and Previous, is set to the Find field.

If the exact field value cannot be matched, the next highest value in the index is located.
You use the Exact match option if you want only the exact match.

Open window instance {wSuppliers}

Prompted find

If flag true

Redraw {wSuppliers}

End If



Commands 307

Publish field

Reversible: YES Flag affected: YES

Parameters: Field name
Edition name

Syntax: Publish field field-name [{edition-name}]

This command publishes the specified OMNIS field in the specified edition. A full
pathname can be given for the edition, that is, a specification for the volume and folder(s) in
which you want to create the edition. For example

If sys(113)

Publish field SALESTOTAL { HD80:Public Folder:OMNIS-MyLbr-Sales Total }

End If

This creates the edition file "OMNIS-MyLbr-Sales Total" in the folder "Public Folder" on
the hard disk volume HD80. If the edition already exists, the data is published using the
existing edition. Before other network users can "see" the edition, you must enable sharing
for the Public Folder, this is possible only from the System 7 Finder (see System 7 user
guide).

If you do not specify an edition name, the existing edition for that field is used; if there is no
existing edition for that field, the default edition name "library name-field name" is used.

The flag is set if the field is already published in that edition or if the field is successfully
published. The command does nothing and clears the flag if System 7 is not running. If the
command is used within a reversible block, the edition is canceled when the command is
reversed.

When a field is newly published, none of the publisher options are set, so a Publish now
command must be used to update the edition. If you want the edition to be updated
automatically, the Set publisher options command must be used.

Fields published with this command are not shown with borders and are invisible to the
user, that is, the Edit  menu's Publisher options... cannot affect them. If you publish a local
variable, its edition is canceled when the method terminates. Lists are published as tab-
delimited text and pictures as PICT.

Publish field CNAME {HD80:Public:Sales-Name}

Publish field CTOTAL {HD80:Public:Sales-Total}

Set publisher options (Publish on save) {CNAME,CTOTAL}

Prepare for edit

Enter data

Update files if flag set



308 Chapter 5—Commands

Publish now

Reversible: NO Flag affected: YES

Parameters: File or field list

Syntax: Publish now [{file|field1[,file|field2]...}]

This command updates the editions for the specified fields. Field values are written from the
current record buffer to the editions. The field list can take a file name (for all fields in a
file) or a range of fields, which includes a range of fields in the order listed in the Field
names window. If no file and/or field list is given, all publications for the library are
updated.

The flag is set if the command publishes one or more fields.

Publish field CNAME {HD80:Public:Sales-Name}

Publish field CTOTAL {HD80:Public:Sales-Total}

Find first

Publish now {CNAME,CTOTAL}

Queue bring to top
Reversible: NO Flag affected: NO

Parameters: Window instance name

Syntax: Queue bring to top window-instance-name

This command queues a "bring to top" event for the specified window instance as if the user
had clicked on the window instance with the mouse. The command brings the window
instance to the fore and generates evWindowClick and evToTop events. If, at runtime, the
specified window instance does not exist, the command will do nothing.

Open window instance WCLIENT/W1

Open window instance WCLIENT/W2

Queue bring to top  W1 ;; brings W1 to the top



Commands 309

Queue cancel
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Queue cancel

This command queues a "cancel" event as if the user had clicked on the Cancel button or
pressed the Cancel key combination, that is, the user pressed Ctrl-break under Windows or
Cmnd-period under MacOS.  The command takes no parameters.

; Timer method cancels enter data after 120 secs

Set timer method (120 sec) Win1/Timer

Prepare for edit

Enter data

Update files if flag set

; Timer method for Win1/Timer

Queue cancel

Queue click
Reversible: NO Flag affected: NO

Parameters: � Shift
� Command/Ctrl
Field name
Selection point or Start value, end value

Syntax: Queue click [([Shift][,Command/Ctrl])]
{field-name [(selection-point|start-value, end-value)]}

This command queues a "mouse click" event on a specified field, that is, it simulates a user-
generated mouse click/drag operation on a field. You must specify the name of the field as a
parameter, including the click positions within the field (that is, Start Row, Finish Row for
lists and Start Character, Finish Character for text field selection). The specified field will
get the focus.

There are options for including up to three modifier keys (that is, Shift, Ctrl/Cmnd) along
with the click.

The field name parameter must be the name of a window field, not the name of the method
associated with the field or the data name ($fieldname, not $dataname).

Queue click on Edit fields
You can specify a range of characters. For example, the parameter field-name (2,5),
highlights the characters within cursor positions 2 to 5 (that is, characters 3 to 5). Note that



310 Chapter 5—Commands

cursor position 0 is to the left of character 1, and cursor position 1 is to the right of
character 1 (or to the left of character 2).

If Shift is selected and 5 is passed as the selection point, all characters between the current
cursor position and cursor position 5 will be highlighted.

Queue click  {field-name (7,2)}

; Characters 3 to 7 will be highlighted

Queue click {field-name (5,9)}

; Characters 6 to 9 will be highlighted

Queue click (Shift) {field-name (8)}

; Current cursor is at 15

; Characters 9 to 15 will be highlighted

Queue click (Shift) {field-name (22)}

; Current cursor is at 15

; Characters 16 to 22 will be highlighted

Queue click (Shift) {field-name (7,9)}

; Current cursor is at 15

; Characters 10 to 15 will be highlighted

Queue click (Shift) {field-name (9,7)}

; Current cursor is at 15

; Characters 8 to 15 will be highlighted

As the examples show, the two parameters act as a "click on, drag to" key operation.

Queue click for lists
If the specified field is a window list box or grid, the range is interpreted as a range of list
lines. For example, the parameter list-field-name (2,5), selects the lines 2 to 5 (if
$multipleselect for the list field is set), and the current line will be set to 2. An evClick
event is generated after the specified lines have been selected.

Queue click  {List-field-name (7,3)}

; Lines 7 to 3 will be selected, the current line will

; be set to 7

Queue click  (List-field-name (2,9)}

; Lines 2 to 9 will be selected, the current line will

; be set to 2

Queue click  (Shift) {List-field-name (12)}

; The current line to line 12 will be selected,

; The current line does not change



Commands 311

Queue click  (Shift,Command/Ctrl) {List-field-name (13)}

; Line 13 will be selected and lines already selected will stay

; selected. The current line does not change

Queue click  (Shift,Command/Ctrl) {List-field-name (4,8)}

; Lines 4 to 8 will be selected and lines already selected will stay

; selected. The current line does not change

Queue click for pushbuttons
If the specified field is a pushbutton it is activated and an evClick event is generated as if
the user had clicked on the button.

Queue click for Radio buttons and check boxes
If the specified field is a check box or set of radio buttons, the check box field or group of
radio buttons is checked/unchecked accordingly, and an evClick event is generated.
Methods behind radio buttons and check boxes run as if the user had clicked on the window
fields.

Queue close
Reversible: NO Flag affected: NO

Parameters: Window instance name

Syntax: Queue close window-instance-name

This command queues a "close window" event for the specified window instance as if the
user had selected the close option (system menu under Windows or close box under
MacOS).

The specified window instance is closed, but an evClose event is not produced. If the
specified window instance does not exist, the command has no effect. If you omit the
window instance name, the top window instance at the time of execution will be closed. In
this case, a proper evClose event is generated.

Open window instance WCUSTOMERS/winst1

Open window instance WCUSTOMERS/winst2

; do something in winst2

Queue close        ;; closes winst2, the top instance



312 Chapter 5—Commands

Queue double-click
Reversible: NO Flag affected: NO

Parameters: � Shift
� Command/Ctrl
Field name
(Selection point or Start value, end value)

Syntax: Queue double-click [([Shift][,Command/Ctrl])]
{field-name [(selection-point|start-value, end-value)]}

This command queues a "double-click event" on the specified field, that is, it simulates a
user-generated double-click event on the field.  A double-click event always generates an
evClick before an evDoubleClick. You must specify the name of the field as a parameter,
including the click positions within the field (that is, Start Row, Finish Row for lists and
Start Character, Finish Character for text field selection).

There are options for including up to three modifier keys (that is, Shift, Ctrl/Cmnd) along
with the click.

The field name parameter must be the name of a window field, not the name of the method
associated with the field or the data name ($fieldname, not $dataname).

Queue double-click for edit fields
Double-clicks on text within an edit field will select the complete word. If a range was
specified, all COMPLETE words falling within the start and end positions will be
highlighted. For example, if the text in the field is:

Good books are the lifeblood of a master spirit

and the command is:

Queue double-click {field-name (7,23)}

The selected text will be:

books are the lifeblood

Queue double-click for list fields
Double-clicks on list fields will generate an evClick followed by an evDoubleClick. The
behavior in other ways is the same as described for Queue click.

Queue double-click for other field types
Pushbuttons, radio buttons and check boxes behave in the same way as described for Queue
click.  An evDoubleCLick event is not generated.

; method for pushbutton:  Opens a new window while in Enter data

; mode and selects all the text in field2



Commands 313

On evClick

Open window instance WCLIENTS

Queue double-click {field2}

On default

Quit event handler

Queue keyboard event
Reversible: NO Flag affected: NO

Parameters: Key sequence (can be a calculation)

Syntax: Queue keyboard event {key-sequence}

This command queues a "keyboard" event or series of events. It simulates keyboard entry
by the user from within your methods. You can enter the key sequence in several ways:

1. Recording a key sequence
You can use the Start Recording and Stop Recording buttons to specify the keys to be
generated. During the recording, all key events are echoed to the Key sequence
parameter field, and are not acted on by OMNIS in any other way (for example, pressing
Ctrl/Cmnd-Q will NOT suddenly quit OMNIS). Click events, however, behave normally
so you can click on Stop recording button.

2. Entering into the text field
You can enter the text representation manually to generate the keys. Syntax checking is
done at design time. When recording is off, you can edit the Key sequence parameter
manually. This lets you delete key combinations or enter key sequences by hand. Since
spaces are used to automatically separate key presses, the special key name SPACE will
have to be manually entered to generate a "space key" event.

3. Specifying a calculation
You can enter a calculation like concatenating text fields, which will contain the text
representation of the keys to be generated. Syntax checking is done at runtime. Incorrect
key sequence syntax will result in a runtime error. When you use a calculation, the
general calculation syntax applies, which is checked at design time.

Key names
Special keys or key combinations are represented using the names of the keys. When a
given key combination is run on another platform, a conversion is carried out internally so
that, for example, alt-c under Windows becomes opt-c under MacOS. The list below
summarizes the conversion:

Windows
Modifier Key names: shift-, alt-, ctrl-

Special Key names: Space, Up, Down, Left, Right, PgUp, PgDn, PgLeft, PgRight, Home,
End, Tab, Return, Enter, Bkspc, Clear, Cancel, Minus, Move, Del, Ins, Exit



314 Chapter 5—Commands

MacOS
Modifier Key names: shift-, opt-, com-

Special Key names: Space, Up, Down, Left, Right, PgUp, PgDn, PgLeft, PgRight, Home,
End, Tab, Return, Enter, Bkspc, Clear, Cancel, Minus, Move, Del.

Set current field
If queued key events are intended for an edit field or a list, it is advisable to queue a "set
current field" event before generating the key events. On the other hand, general key events,
for example, menu accelerators or shortcut keys, do not require a specific current field.

Key event restrictions under Windows
Under Windows, you can use alt-<key> sequences to select menu options from the menu
bar. Since the menu bar is handled by Windows, and Queue keyboard event generates
internal OMNIS events, queuing alt-<key> events will NOT drive the menu bar. Thus, for
example, queuing alt-f will not drop the File menu.

As a consequence of the above restriction, evKeyPress events are not generated for queued
alt-<letter> sequences either.

A second situation where evKeyPress events are not generated is when you queue alt-
control-<letter> events. These key combinations are normally used to produce accented
characters, and this facility exists only in some but not all keyboards. Since Windows does
not generate character messages, these events do not generate evKeyPress.

WARNING  When queuing events on pushbuttons a danger of recursion can occur under
Windows, but also under MacOS if buttons have been given Windows behavior, that is,
they get the focus. Normally, when the focus is on a pushbutton, you can activate it by
pressing the space bar. If that pushbutton receives an evClick event and has a queued space
key event WITHOUT a set current field, the space key event will be sent back to the
pushbutton, thereby generating another evClick, which again activates the space key event.
A recursion occurs and exhibits an apparent crash.

Key event restriction under MacOS
Under MacOS, you use opt-<letter> to generate extended characters. When queued key
events include such opt-<letter> sequences, evKeyPress is not generated.



Commands 315

; Button method

On evClick

Open window instance ADDRESS

Queue keyboard event  {Y o u r N a m e}

On default

Quit event handler

; Paste button

On evClick

Queue keyboard event  {com-v}   ;; does a paste operation

On default

Quit event handler

Queue OK
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Queue OK

This command queues an "OK" event. It simulates the user clicking on the OK button or
pressing the Enter key.

; This field method traps the Tab event and issues an OK event

On evTab

Queue OK

On default

Quit event handler



316 Chapter 5—Commands

Queue quit
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Queue quit

This command queues a quit event. It simulates the user selecting the Exit/Quit  option in
the File menu. In enter data mode, a Queue OK or Queue Cancel should precede a Queue
quit to close the enter data correctly.

; Button method to terminate data entry and quit

If flag true

Queue OK

Queue quit

Else

Queue cancel

Close top window

End If

Queue scroll
Reversible: NO Flag affected: NO

Parameters: � Page
Left|Right|Up|Down scroll direction
Field name
(Units), that is, the number of lines (up/down) or characters (left/right)

Syntax: Queue scroll (scroll-direction[,Page]) {field-name[(units)]}

This command queues a "scroll" event in the specified scrollable field, that is, it simulates a
mouse click or page key event on a scrollable field. With this command you can scroll a
field up or down, left or right provided the appropriate scroll bar is available. You cannot
use this command to scroll a window instance.

The field name parameter must be the name of a window field, not the name of the method
associated with the field or the data name ($fieldname, not $dataname).

The Units parameter specifies the number of lines to scroll up or down in a vertical scroll
bar for a field; one unit represents one line. For a horizontal scroll bar, the unit is
approximately one character.

If the Page option is selected, the event simulates clicking above or below the "thumb" and
is the same as using the Page up or Page down key.



Commands 317

; $construct() for window instance to display end of text field

Queue scroll (Down, Page) {FIELD1}

Queue scroll {LIST1 (5)}

; scrolls the field list by 5 lines

Queue set current field
Reversible: NO Flag affected: NO

Parameters: Field name

Syntax: Queue set current field {field-name}

This command queues a "set current field" event in the specified field, that is, it simulates a
user-generated click or tab to the specified field. In enter data mode, the contents of the
field is selected. The command does not generate an evClick. However it will produce
proper evBefore and evAfter events during Enter data.

The field name parameter must be the name of a window field, not the name of the method
associated with the field or the data name ($fieldname, not $dataname).

; field method to jump to another field on the window instance

On evAfter

Queue set current field {SALARY)  ;; jumps to SALARY field

On default

Quit event handler

Queue tab
Reversible: NO Flag affected: NO

Parameters: � Shift

Syntax: Queue tab [(Shift)]

This command queues a "tab" or "shift-tab" event. It simulates a user-generated tab event.
With the Shift option, it simulates a shift-tab keypress.

; Field method for field on a window instance to simulate auto tab

; when the 6th character is entered; $keyevents must be true

On evBefore

Calculate COUNTER as 0

On evKeyPress

Calculate COUNTER as COUNTER + 1

If COUNTER >= 4

Queue tab

End If

On default

Quit event handler



318 Chapter 5—Commands

Quick check
Reversible: NO Flag affected: YES

Parameters: � Perform repairs

Syntax: Quick check [(Perform repairs)]

This command performs a quick check on the current data file. It examines the status of the
current data file by reading only the internal tables in which records of any inconsistencies
are stored. These records indicate corruption caused by either hardware or software failure.
No attempt is made to systematically check the entire data file for problems (you use the
Check data command for this purpose).

The command is not reversible: it sets the flag if it completes successfully and clears it
otherwise.

If the Perform repairs option is specified, any repairs required are automatically carried
out, otherwise the results of the check are added to the check data log. The check data log is
not opened by this command but is updated if it is already open. If the Perform repairs
option is specified, the following applies:

If you are not running in single user mode, OMNIS automatically tests that only one user is
logged onto the data file (the command fails with flag false if not), and further users are
prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will
be incremented at regular intervals. The command may take a long time to execute and it is
not possible to cancel execution even if a working message with cancel box is open.

Quick check

Yes/No message {View the check data log}

If flag true

Open check data log

End If



Commands 319

Quit all if canceled
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Quit all if canceled

This command quits all methods that are running when the user clicks on a Cancel button
inside a working message dialog box. The keyboard equivalent to the Cancel pushbutton is
the Escape key under Windows or Cmnd-period under MacOS. Note that the test for cancel
is carried out in Working message only if Disable cancel test at loops has first been
executed.

Begin reversible block

Disable cancel test at loops

End reversible block

Repeat

Working message (Cancel box, Repeat count)

Quit all if canceled

Calculate LVAR1 as LVAR1+1

Until LVAR1=200

OK message {Finished method, counter = [LVAR1]}

Quit all methods
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Quit all methods

This command quits all methods that are running.

If the command is executed during a method which has been called, OMNIS quits both the
current method and the calling method.

; Calling method

Do method QuitMethod

OK message {This never runs}

; Quitmethod

Quit all methods



320 Chapter 5—Commands

Quit cursor(s)
Reversible: NO Flag affected: YES

Parameters: Current, Session, or All option (Current is the default)

Syntax: Quit cursor(s) (Current|Session|All)

This command disposes of the specified cursor and frees all memory it occupied. It has
three possible values: Current, Session, or All.

The Current  option quits the current cursor. If the current cursor is the only remaining
cursor, a logoff is carried out and communication with the remote database is disconnected.
All memory used by the cursor is released.  A new Set current session or Set current cursor
followed by Start session and Logon to host would be required to recreate the cursor.

This command will close any open import file and will close the SQL driver. If you have
used the automatic logon process, closing the driver will log off from the remote computer
and disconnect the modem, otherwise, it will leave you connected and logged on. After
Quit cursor(s) is executed, you cannot perform any other SQL transactions until another
Start session is issued.

The Session option performs a quit for all cursors in the session containing the current
cursor. A logoff and disconnect from the remote database used by that cursor will be carried
out.



Commands 321

The All  option performs a quit for all cursors. A logoff and disconnect from all the remote
databases in use will be carried out.

; select a cursor and close it

Set current cursor {SQL_1}

Quit cursor(s)  (Current)

; or use

Close cursor {SQL_1}

Quit event handler
Reversible: NO Flag affected: NO

Parameters: � Discard event
� Pass to next handler

Syntax: Quit event handler [([Discard event] [,Pass to next handler])]

This command is used to quit out of the currently executing event handling method and is
only used to terminate an On clause. It is not reversible and does not affect the flag.

If the Discard event option is checked, the event is thrown away and OMNIS quits the
event handling method.

If the Pass to next handler option is checked, the event is passed to the next level of
handler such as the window $control() method or task $control() method.

On evAfter

If CoName = ‘’

OK message {You must enter a name}

Queue set current field {eCompanyName}

Quit event handler  (Discard event)

End If

; $event() for a window field

On default

Quit event handler  (Pass to next handler)

; passes all events to the window $control() method



322 Chapter 5—Commands

Quit method
Reversible: NO Flag affected: NO

Parameters: Return field

Syntax: Quit method

This command quits the current method and returns control to the calling method, if any.

Do method Print

; Print

Set report name rStock

Prompt for destination

If flag false

Quit method

Else

.. print the report

Quit OMNIS
Reversible: NO Flag affected: NO

Parameters: � Force quit

Syntax: Quit OMNIS [(Force quit)]

This command quits OMNIS closing all libraries and data files. It is equivalent to the
Exit/Quit  option in the File menu. However, if the Force quit option is not checked Quit
OMNIS will set the flag false and do nothing if an instance or library cannot be closed.

If the Force quit check box is checked OMNIS will force any class instances to close so
that the quit can take place, even if they have custom $canclose logic which would normally
prevent them from closing.

Yes/No message {Do you want to quit OMNIS?}

If flag true

Quit OMNIS  (Force quit)

; closes all  instances and tasks, then quits OMNIS

End If



Commands 323

Redefine list
Reversible: NO Flag affected: NO

Parameters: List of file and/or field names

Syntax: Redefine list {file|field1[,file|field2]...}

This command redefines the column headings of the current list. No change is made to the
internal data type and structure of the list; columns can neither be added nor removed,
merely renamed. If you place more field names in Redefine list than there were in the
original list, the extra names are ignored. Changing the field name of a column may cause a
data conversion to take place as subsequent lines are added. List boxes on windows will no
longer display the data in the list unless you change their $calculation property to include
the new variable or field name(s).

Set current list LIST1

Define list {Field1Date,Field2Num,Field3Char}

Add line to list

Redefine list  {,,Field4Boolean}

; the third column is now defined Field4Boolean

Add line to list

; the Boolean field value is converted to a character field

; format 'YES' etc., then added to the list

or do it like this

Do List.$redefine(Field1Date,Field2Num,Field4Boolean)



324 Chapter 5—Commands

Redraw
Reversible: NO Flag affected: NO

Parameters: � Refresh now
Field or window instance name (or list of fields or windows)

Syntax: Redraw [(Refresh now)] field1|window1[,field2|window2,...]

This command redraws the specified field or window instance (or list of fields or window
instances). The Refresh now option ensures the redraw is completed when the command is
executed. Without this option the redraw occurs when the method has finished executing.

Prepare for edit

Enter data

If flag true

Update files

Else

Clear main & connected

Redraw  WinDataEntry

End If

Alternatively you can use the $redraw(setcontents,refresh) method to redraw the contents
and/or refresh a field or window; ‘setcontents’ defaults to true, ‘refresh’ defaults to false.

Do $cfield.$redraw()    ;; redraws the current field

Do $cwind.$redraw()     ;; redraws the current window

Do $root.$redraw()      ;; redraws all window instances

Redraw lists
Reversible: NO Flag affected: NO

Parameters: � All windows
� All lists
� Selection only

Syntax: Redraw lists [([All windows][,All lists][,Selection only])]

This command redraws the current list window field or all list fields. It lets you update the
display of the current list field after you delete, change, or insert a line, so that the screen
list reflects the changes. When OMNIS executes Redraw lists, the selected line is scrolled
into view and the visible lines recalculated.

OMNIS can execute a Redraw lists command for all window instances and for all lists using
the All windows, and All lists options. If neither option is selected, only the fields on the
top window instance which display the current list are redrawn.



Commands 325

The Selection only option causes the redraw to affect the highlighting of the selected lines,
the contents are not redrawn.

OMNIS also redraws any fields which are local to the list field so that they will display the
new values. It also redraws the grid fields associated with the current list.

Open window instance LAYOUT

Set current list LIST1

Define list {LVAR1,CVAR1}

Calculate LVAR1 as 42

Add line to list {(LVAR10,CHR(LVAR10))}

Redraw lists

Redraw menus
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Redraw menus

This command redraws all instances of your own custom menus. When executing  Redraw
menus, OMNIS re-evaluates any square-bracket notation contained in the menu titles and
lines before redrawing the menu bar.

This example assumes that the menu instance uses [CVAR5] as its title.

Parameter LNUM (Number 0 dp)

Calculate CVAR5 as pick(LNUM,'Purchases','Invoices')

Redraw menus

; If LNUM = 0, menu called Purchases, otherwise called Invoices

Redraw toolbar
Reversible: NO Flag affected: NO

Parameters: � Droplists only
Instance name

Syntax: Redraw Toolbar [(Droplists only)] {instance-name}

This command redraws the toolbar instance. You can redraw droplists only using the
Droplists only option.

Show docking Area {kDockingAreaTop}

Install Toolbar {T_Formats}

; do something

Redraw Toolbar  (Droplists only) {T_Formats}



326 Chapter 5—Commands

Redraw working message
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Redraw working message

This command redraws the text in the working message after evaluating any square bracket
notation. OMNIS does not increment the working message count and does nothing if there
is no open working message.

When a library is being debugged, you can monitor the values of critical variables and fields
with the following line:

Working message (Cancel box) {[CVAR1],[TOTAL], [sys(84)]}

Once the message has been displayed, you can use the command Redraw working message
to refresh the values monitored in the message box.

; declare local variable COUNT of type Number 0 dp

Working message {COUNT = [COUNT]}

For COUNT from 1 to 100 step 1

Redraw working message

End For



Commands 327

Reinitialize search class
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Reinitialize search class

This command reloads the current search definition into memory. Reinitialize search class
is useful if square bracket notation has been used in the search class. The square bracket
expressions are re-evaluated using current field values before reloading the search
definition. Each find table keeps its own copy of the search conditions so you must reissue
the Find command if a search needs reinitializing.

For example, a search class uses the comparison line TOWN Begins with [S5]. Window
wStarts is used to allow the user to specify a value for S5.

Set search name STOWN

Repeat

Open window instance wStarts

Enter data

Close window wStarts

If flag true

Reinitialize search class

Do method PrintReports

End If

; assumes no rev. blocks in window construct to change flag

Until flag false

Remove all menus
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Remove all menus

This command removes all menu instances from the menu bar, excluding the standard
OMNIS menus such as File, Edit, and Help (under Windows only). If you use Remove all
menus in a reversible block, the menu instances are reinstalled when the method containing
the block finishes.

Begin reversible block

Remove all menus

End reversible block

OK message {Menus are now removed}

; now all menu instances are reinstalled



328 Chapter 5—Commands

Remove final menu
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Remove final menu

This command removes the final or right-most menu instance from the menu bar, excluding
the standard OMNIS menus such as File, Edit, and Help (under Windows only). If you use
Remove final menu in a reversible block, the final menu instance is reinstalled when the
method containing the block terminates.

Begin reversible block

Remove final menu

End reversible block

OK message {Menu is now removed}

; now the final menu is reinstalled

Remove menu
Reversible: YES Flag affected: YES

Parameters: Menu instance name

Syntax: Remove menu menu-instance-name

This command removes the specified menu instance from the menu bar and sets the flag.
You can choose the menu name from a list containing any custom and standard built-in
menus, such as *File, *Edit , and so on.

If you use this command to remove a menu instance which has previously been installed in
place of the standard File or Edit  menu (using the Replace standard File/Edit menu
command) the previously replaced standard File or Edit  menu is restored.

If you use Remove menu in a reversible block, the specified menu instance is reinstalled
when the method containing the reversible block terminates.

Begin reversible block

Remove menu  STARTUP

End reversible block

OK message {STARTUP is now removed}

; now the menu instance is reinstalled

or do it like this

Do $imenus.INSTANCE.$close()



Commands 329

Remove toolbar
Reversible: NO Flag affected: NO

Parameters: Instance name

Syntax: Remove Toolbar {instance-name}

This command removes the specified toolbar instance.

Show docking area {kDockingAreaRight}

Install Toolbar {T_Tennis}

; do something

Remove Toolbar  {T_Tennis}

Hide docking area {kDockingAreaRight}

or do it like this

Do $itoolbars.INSTANCE.$close()

Rename class
Reversible: NO Flag affected: YES

Parameters: � Perform find and replace
Class name/New class name

Syntax: Rename class [(Perform find and replace)]
{class-name/new-class-name}

This command renames the specified library class and can perform a find and replace.
Errors, such as attempting to use a name that is already in use, simply clear the flag and
display an error message. You can rename a class which is in use.

When renaming a class, you can use the Perform find and replace option to search
through all the classes in the library and replace the references to the old class name with
the new name.

New class {Search/S_My}

Modify class {S_My}

Delete class {S_User}

Rename class  {S_My/S_User}

Set search name S_User

Print report (Use search)



330 Chapter 5—Commands

Rename data
Reversible: NO Flag affected: YES

Parameters: File class name
New file slot name

Syntax: Rename data {file-name/new-slot-name}

This command renames the data for a specified file class in a data file so that the data will
then belong to a file with a different name; that is, it renames a slot. The existing file class
name and the new slot name are specified as parameters.

The specified file class is disconnected from the data, and an empty slot and indexes for that
file will be created as soon as that file is accessed again.

If the specified file name does not include a data file name as part of the notation, the
default data file for that file is assumed.

If the file is closed or memory-only, the command does not execute and returns flag false.

If you are not running in single user mode, OMNIS automatically tests that only one user is
logged onto the data file (the command fails with flag false if this is not true), and further
users are prevented from logging onto the data until the command completes.

This command sets the flag if it completes successfully and clears the flag otherwise. The
command is not reversible.

Rename data  {C_CONTACTS/C_ARCHIVE}

If flag true

OK message {File archived}

Else

OK message {Can't archive when more than one user is logged on}

End If



Commands 331

Reorganize data
Reversible: NO Flag affected: YES

Parameters: � Test only
� Optimize
� Convert pictures
File or list of files (the default is all files)

Syntax: Reorganize data [([Test only][,Optimize] [,Convert pictures])]
[{file1[,file2]...}]

This command reorganizes the data for the specified file or list of files. Reorganization is
the process by which the data structures held in the OMNIS data file are brought into line
with the file class definitions.

Reorganize data reorganizes the data for the specified list of files, and is equivalent to the
option on the Slot menu in the Data File Browser.

If you omit a file name or list of files, all the files with slots in the current data file are
reorganized.

If a specified file name does not include a data file name as part of the notation, the default
data file for that file is assumed. If the file is closed or memory-only, the command does not
execute and returns with the flag false.

If you are not running in single user mode, OMNIS automatically tests that only one user is
logged onto the data file (the command fails with the flag false if this is not true), and
further users are prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will
be incremented at regular intervals. The command may take a long time to execute, and it is
not possible to cancel execution even if a working message with cancel box is open.

The command sets the flag if it completes successfully and clears the flag otherwise. The
command is not reversible.



332 Chapter 5—Commands

If the Test only checkbox option is specified, no reorganization is actually carried out. The
flag is set if at least one file needs reorganization.

The Optimize checkbox option specifies whether reorganize with optimize is to be carried
out. This distributes the free space to make the data storage more efficient.

The Convert pictures checkbox option causes all pictures in the data to be converted to a
shared picture format.

Reorganize data  (Test only)

If flag true

Yes/No message {Reorganize now?}

If flag true

Reorganize data

End If

Else

OK message {No reorganization required}

End If

Repeat
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Repeat

This command repeats a command or series of commands that are contained in a loop
closed by an Until command. Each time the command is repeated, OMNIS tests the
condition attached to the Until command to ensure that the condition is true. If the condition
is true, the commands in the loop are not executed and the command after the Until is
executed. However, if the condition is false, OMNIS jumps back to the first command
following the Repeat command. An error will result if there is a Repeat command without a
matching Until command. Repeat loops always execute at least once. The Repeat–Until
logic test is carried out at the end of the loop, after the commands in the loop are executed,
whereas the While–End While logic test is carried out at the beginning of the loop.



Commands 333

You can use the Repeat command to step through a Find table in order to print each row, as
follows.

; Perform SQL to select your data

Fetch next row

If flag true

Prepare for print

Repeat

Print record

Fetch next row

Until flag false

End print

Else

OK message (Sound bell) {No rows to print}

End If

You can use Repeat to write general purpose methods to insert data, and can include a
working message in the Repeat loop that displays while the loop is executing.

; Perform SQL to select your data

Set main file {[FILENAME]}

Fetch next row

Repeat

Working message (Repeat count) {Inserting...}

Prepare for insert with current values

Update files

Fetch next row

Until flag false

You can use an Until flag true/false command at the end of a Repeat loop to force the loop
to repeat until the true or false state is met. In the following case, the window WCHOOSE
remains open until the user enters a valid value for LETCODE.

Repeat

Open window instance WCHOOSE

Enter data ;; user enters a value for CVAR1

Close all windows

Find on LETCODE (Exact match) {CVAR1}

Until flag true ;; if false, loops again



334 Chapter 5—Commands

Replace line in list
Reversible: NO Flag affected: YES

Parameters: Line number (can be a calculation, default is current line)
Field values

Syntax: Replace line in list [{[line-number] [(value1[,value2]...)]}]

This command transfers field values from the current record buffer to the corresponding
fields in the current list. Alternatively, it is possible to specify a comma-separated list of
values enclosed in brackets after the line number. In this case, the values stored in the
specified line of the list are set up from the values in the brackets and not from the variables
specified when the list was defined. For example

Replace line in list  {LIST.$linecount('abc',,LVAR12+3)}

will store 'abc' into the first column of the final line of the current list, leave the value of the
second column unchanged, and load the result of LVAR12+3 into the third column. If too
few values are specified, the other columns will be left unchanged; if too many values are
specified, the extra values are ignored. Any conversions required between data types are
carried out.

If the line number specified in the command line is empty, or if it evaluates to zero, the
current line is used. If the list is empty or if the line is beyond the current end of the list, the
flag is cleared.

Set current list LIST2

Define list {CODE,NAME,CREDIT}

Build list from file on CLIENTS

Calculate CVAR3 as 'New string'

Calculate LVAR1 as 23

Replace line in list  {4(,CVAR3,LVAR1)}

If flag false

OK message {line 4 is beyond the end of the list}

Else

OK message {New value in list is [LIST2.4.CVAR3]}

End If



Commands 335

Replace standard Edit menu
Reversible: YES Flag affected: NO

Parameters: Menu class name (must be user-defined or Edit)
Instance name

Syntax: Replace standard Edit menu [{menu-name/instance-name}]

This command removes the standard built-in Edit  menu from the menu bar and replaces it
with a custom menu. You can assign an instance name for the replacement menu. The
default instance name of the replacement menu is the menu class name. If no replacement
menu name is specified, the Edit  menu is reinstated.

The replacement menu will remain enabled even when commands such as Disable all
menus are issued, or modal user-defined windows are opened. The only time the
replacement menu will not remain enabled is when a report is printed to screen with Send to
screen, and the check box option Do not wait for user is not checked (that is, OMNIS is
awaiting user input).

You can disable the Edit  menu or its replacement menu by using Disable menu line.

Replace standard Edit menu  {MY_EDIT1}

Set main file {FMAIN}

Prepare for insert

Enter data

Update files if flag set

; Now put system Edit menu back

Replace standard Edit menu

Replace standard File menu
Reversible: YES Flag affected: NO

Parameters: Menu class name (must be user-defined or File)
Instance name

Syntax: Replace standard File menu [{menu-name/instance-name}]

This command removes the standard built-in File menu from the menu bar and replaces it
with a custom menu. You can assign an instance name for the replacement menu. The
default instance name of the replacement menu is the menu class name. If no replacement
menu name is specified, the File menu is reinstated.

The replacement menu will remain enabled even when commands such as Disable all
menus are issued, or modal user-defined windows are opened. The only time the
replacement menu will not remain enabled is when a report is printed to screen with the
Send to screen command, and the check box option Do not wait for user is not checked
(that is, OMNIS is awaiting user input).



336 Chapter 5—Commands

You can disable the File menu or its replacement menu by using Disable menu line.

Replace standard File menu  {MY_FILE1}

Set main file {FMAIN}

Prepare for insert

Enter data

Update files if flag set

;  Now put system File menu back

Replace standard File menu

Request advises
Reversible: YES Flag affected: YES

Parameters: Field name
Server data item name

Syntax: Request advises field-name {server-data-item-name}

DDE command, OMNIS as client. This command sends a request to the server asking to be
advised of any changes made to a specified data item. An error occurs if the channel is not
open. The command takes the OMNIS field name and the server data item name as
parameters. The data item name can contain square bracket notation.

Whenever OMNIS is advised of a change in field value, that value is changed providing
your library is in enter data mode.

The flag is set if the command is successful.

You can use a control method to detect the arrival of data from the server using evSent.

Request advises  C_COMPANY {C_COMPANY}

Request advises  C_ADDRESS {C_ADDRESS}

Prepare for insert

Enter data

Update files if flag set



Commands 337

Request field
Reversible: NO Flag affected: YES

Parameters: Field name
Server data item name

Syntax: Request field field-name [{server-data-item-name}]

DDE command, OMNIS as client. This command requests a data item from the DDE
channel. An error occurs if the channel is not open. The command takes the OMNIS field
name and the server data item name as parameters. The data item name can contain square
bracket notation. If the data item name is not specified, the OMNIS field name is used. The
flag is set if the command is successful.

Set DDE channel number {1}

Calculate Tries as 1

; Keeps trying until conversation opened or number of tries > 10

Repeat

Open DDE channel {OMNIS|DDE2}

Calculate Tries as Tries + 1

Until #F | Tries > 10

Calculate CVAR1 as '[TakeControl]'

Send command {[CVAR1]}

If flag false

OK message {Error: [CVAR1], Open tries = [Tries]}

End If

Request field  C_COMPANY {C_COMPANY}

Request field  C_ADDRESS {C_ADDRESS}

Prepare for insert with current values

Enter data

Update files if flag set

Reset cursor(s)
Reversible: NO Flag affected: YES

Parameters: Current, Session, or All option (Current is the default)

Syntax: Reset cursor(s) (Current|Session|All)

This command resets the specified cursor(s) for a server. It has three possible values:
Current, Session or All.

The Current  option clears or empties the SQL buffer, the error status and select table for
the current cursor.

The Session option resets all cursors in the session containing the current cursor.



338 Chapter 5—Commands

The All  option resets all the open cursors.

Reset cursor(s)  (Current)

Perform SQL {Select * from elements}

Build list from select table

If [LIST.$linecount] > 0

OK message {[LIST.$linecount] records found}

Else

OK message {No records found}

End If

Restore selection for line(s)
Reversible: NO Flag affected: YES

Parameters: Line number (can be calculation, default is current line)
� All lines

Syntax: Restore selection for line(s) [(All lines)] [{line-number}]

This command copies the Saved selection state to the Current selection state and sets the
flag. To allow sophisticated manipulation of data via lists, a list can store two selection
states for each line; the "Current" and the "Saved" selection. The Current and Saved
selections have nothing to do with saving data on the disk; they are no more than labels for
two sets of selections. The lists may be held in memory and never saved to disk: they will
still have a Current and Saved selection state for each line but they will be lost if not saved.
When a list is stored in the data file, both sets of selections are stored.

The Restore selection for line(s) command allows the Saved selection state of the specified
line (or All lines) to be copied into the Current set. You can specify a particular line in the
list either by entering a number or a calculation. You are required to redraw the list to
refresh the state of the displayed list field. The All lines option restores the selection states
for all lines of the current list. The following example selects the middle line of the list:

Set current list LIST1

Define list {LVAR1}

Calculate LVAR1 as 1

Repeat

Add line to list

Calculate LVAR1 as LVAR1+1

Until LVAR1 = 6

Select list line(s) {3}

Save selection for line(s) (All lines)

Deselect list lines (All lines)

Restore selection for line(s)  (All lines) ;; line 3 selected

Redraw lists



Commands 339

Retrieve rows to file
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Retrieve rows to file

This command copies the select table, row by row, into the current client import file. A
Retrieve rows to file must follow a Select statement, for example, Perform SQL {Select *
from table}. Any data returned by the remote computer is appended to the import file in tab-
delimited format.

It is faster to use Retrieve rows to file than to use Fetch/Export loops.

Set client import file name {test}

Open client import file

Perform SQL {Select * from table}

Retrieve rows to file

Close client import file

Revert class
Reversible: NO Flag affected: YES

Parameters: Class name

Syntax: Revert class {class-name}

This command reads the specified class from the library file on disk into RAM, so that any
changes made to that class using the notation are lost. The flag is set if the class is
successfully re-read. A runtime error occurs if the specified class cannot be found.

Calculate $windows.MYWIND.$objs.Field1.$visible as kfalse

; makes change to window

Open window instance MYWIND

Prepare for edit

Enter data

Update files if flag set

Revert class  {MYWIND} ;; puts window back to saved version



340 Chapter 5—Commands

Rollback current session
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Rollback current session

This command cancels all transactions for the current session. It causes any SQL
transactions sent to the server since the last commit to be rolled back. Rollback current
session is usually used in conjunction with Autocommit (Off), and allows finer control of
transaction management than the default Autocommit system. With Autocommit (On), the
default action for a session is only to rollback all unsuccessful statements after an
unsuccessful Execute SQL script. A standard management strategy is:

Autocommit (Off)

Begin SQL script

; SQL transaction

End SQL script

Execute SQL script

If flag false

Rollback current session

Else

Commit current session

End If

; Commit current session and

; Rollback current session   override Autocommit (On)



Commands 341

Save class
Reversible: NO Flag affected: YES

Parameters: Class name

Syntax: Save class {class-name}

This command writes the specified class, which normally contains changes made by
notation, into the library file on disk. You use Save class to make the changes permanent.
The flag is set if the class is successfully saved. A runtime error occurs if the specified class
cannot be found.

; Example to hide a field on a window and save the new version

Open window instance WCLIENT

Do $iwindows.WCLIENT.$objs.C_FIELD.$visible.$assign(false)

Save class  {WCLIENT}

Redraw WCLIENT

Bring window instance to front WCLIENT

Save selection for line(s)
Reversible: NO Flag affected: YES

Parameters: Line number (can be calculation, default is current line)
� All lines

Syntax: Save selection for line(s) [(All lines)] [{line-number}]

This command saves the selection state of the specified line(s) in memory and sets the flag.
To allow sophisticated manipulation of data via lists, a list can store two selection states for
each line; the "Current" and the "Saved" selection. The Current and Saved selections have
nothing to do with saving data on the disk; they are no more than labels for two sets of
selections. The lists may be held in memory and never saved to disk: they will still have a
Current and Saved selection state for each line but they will be lost if not saved. When a list
is stored in the data file, both sets of selections are stored.



342 Chapter 5—Commands

Save selection for line(s) allows the selection state of the specified line (or All lines) to be
copied into the Saved set. You can specify a particular line in the list by entering either a
number or a calculation. If the line number is not specified, the current line selection is
saved. The All lines option saves the selection for all lines of the current list. This example
selects the middle line of the list:

Set current list LIST1

Define list {LVAR1}

Calculate LVAR1 as 1

Repeat

Add line to list

Calculate LVAR1 as LVAR1+1

Until LVAR1=6

Select list line(s) (All lines)

Save selection for line(s)  (All lines)

Invert selection for line(s) {LIST.$linecount/2}

XOR selected and saved (All lines)  ;; 1 AND 1 = 0, 1 AND 0 = 1

Redraw lists

SEA continue execution
Reversible: NO Flag affected: NO

Parameters: None

Syntax: SEA continue execution

This command continues method execution at the command following the command which
called an error handler; SEA stands for Set Error Action. Using it is, in effect, like saying
"Error is acknowledged. Now, skip over the error line and proceed with the succeeding
good lines."

Using this command is similar to setting the go point in the debugger at L+1 where L is the
error line. The command is always used within an error handler.

; Error handler to trap break key when waiting for semaphore

If #ERRCODE = KerrCantlock

OK message {user canceled request for record lock}

SEA continue execution

End If

; Edit method must test flag to prevent error on update



Commands 343

SEA repeat command
Reversible: NO Flag affected: NO

Parameters: None

Syntax: SEA repeat command

This command attempts to repeat the command that caused an error; SEA stands for Set
Error Action. This is most useful after an out of memory condition. The command is always
used within an error handler. It is your responsibility to ensure that an endless looping
situation between the error handler and the command is not created. Also, you must ensure
that any side effects of the original execution of the command which caused the error are
taken into account.

; error handler traps attempt to edit locked

; record and the user presses break key

If #ERRCODE = kerrCantlock

Yes/No message {Cancel edit}

If flag true

Quit all methods

Else

SEA repeat command

End If

End If

SEA report fatal error
Reversible: NO Flag affected: NO

Parameters: None

Syntax: SEA report fatal error

This command causes the default action for a fatal error to occur; SEA stands for Set Error
Action. If the debugger is available, it is invoked, otherwise, execution halts with an error
message. This command, like the other SEA commands, should only be used from within an
error handler. The SEA commands determine the behavior following fatal or warning
errors.

; This causes warning error to generate same action as fatal error

If #ERRCODE = KerrUnqindex   ;; KerrUnqindex is a warning error code

SEA report fatal error

; your method ..

End If



344 Chapter 5—Commands

Search list
Reversible: NO Flag affected: YES

Parameters: � From start
� Only test selected lines
� Select matches (OR)
� Deselect non-matches (AND)
� Do Not Load Line

Syntax: Search list [([From start][,Only test selected lines] [,Select
matches (OR)][,Deselect non-matches (AND)] [,Do
Not Load Line])]

This command searches the current list for field values that match the current search class or
search calculation and loads them into the Current Record Buffer. The search starts at the
beginning of the list if From start  is checked, otherwise at the line after the current line.

If OMNIS finds a line that matches the search class, that line number becomes the current
line $line and the flag is set. If OMNIS cannot find a matching line,the $line is cleared and
the flag is cleared. If there is no current search class, all lines are said to match and OMNIS
sets the flag.

When checked, the Do Not Load Line option ensures the line found by the search is not
loaded into the current record buffer.

The Only test selected lines option restricts the list scan to selected lines only. If the Select
matches (OR) option is checked, the command scans all the lines from the line after the
current line to the end and selects all those that match the search; if you also use the From
start option, the whole of the list is scanned, that is, the search starts at line 1. Lines that are
already selected before the command is executed remain selected. This is equivalent to
ORing the existing selected lines with the lines that match the search.  The current line is
not affected.

If the Deselect non-matches (AND) option is used, the command scans all the lines from
the line after the current line to the end and deselects all those which do not match the
search; if you also use the From start  option, the whole of the list is scanned, that is, the
search starts at line 1. Lines which are already selected before the command is executed are
deselected if they do not match the search, that is, the only lines left selected are those
which were already selected and which match the search. This is equivalent to ANDing the
existing selected lines with the lines which match the search. The current line is not
affected.



Commands 345

Using the Select and the Deselect options together alters the selection state so that matching
lines are selected, non-matching lines are deselected.  The current line is not affected.

This example selects line 3 of the list:

Set current list LIST1

Define list {LVAR1}

Calculate LVAR1 as 1

Repeat

Add line to list

Calculate LVAR1 as LVAR1+1

Until LVAR1=6

Set search as calculation {LVAR1=3 | LVAR1=1}

Search list  (From start) ;; the current line is now 1

Search list  (Select matches (OR))  ;; Selects line 3

Redraw lists

or do it like this

Do LIST.$search(SearchCalc,FromStart,OnlySelected, ..)



346 Chapter 5—Commands

Select list line(s)
Reversible: NO Flag affected: YES

Parameters: Line number (can be calculation, default is current line)
� All lines

Syntax: Select list line(s) [(All lines)] [{line-number}]

This command selects the specified list line. The specified line of the current list is selected
and is shown highlighted (or checked on popup lists) on any window list fields provided
that the field has $multipleselect on. If the line number is not specified, the current list line
is selected. The All lines option selects all lines of the current list. The current line is not
affected. When a list is saved in the data file, the line selection is stored. The following
example selects the middle line of the list:

Set current list LIST1

Define list {LVAR1}

Calculate LVAR1 as 1

Repeat

Add line to list

Calculate LVAR1 as LVAR1+1

Until LVAR1=6

Select list line(s)  {LIST.$linecount/2}

; or we could use Select list line(s)  3

Redraw lists (Selection only)

You can select the current line by assigning to its $selected property.

Do LIST.$line.$selected.$assign(kTrue)



Commands 347

Select printer
Reversible: NO Flag affected: YES

Parameters: � Discard previous settings
Printer name (this parameter Windows only)

Syntax: Select printer {printer-name}

This command prompts the user to select a printer. Under Windows, you can choose the
required printer from a list of all installed printer drivers. Under MacOS you cannot specify
a printer name, the Chooser is opened, but since method execution does not pause while the
user makes a choice from the available printers, the following example does not work.
When this command is executed, the flag is set if the printer is selected successfully.

The Discard previous settings option causes OMNIS to reload the OMNIS page setup with
the default system settings for the specified printer.

You can use the function sys(101) to return the name of the current printer.

Switch sys(6) = ‘M’

Case kTrue

Select printer

Default ;; Windows, NT, or 95

Select printer  {POSTSCRIPT Printer}

If flag true

Prompt for report

Prompt for destination

If flag true

Print report

Quit method

End If

End If

End Switch



348 Chapter 5—Commands

Send advises now
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Send advises now

DDE command, OMNIS as server. This command advises the client applications of all the
field values for all the fields for which Advise requests have been received. The values are
taken from the CRB.

Set main file {FCUST}

Find on CUSTOMER (Exact match) {CVAR1}

Send advises now

Send command
Reversible: NO Flag affected: YES

Parameters: Command text

Syntax: Send command {command-text}

DDE command, OMNIS as client. This command sends a command or a series of
commands as text to the current channel.

The command-text syntax must conform to whatever syntax rules apply to the server
program.

The DDE syntax dictates that the commands be enclosed in square brackets and OMNIS
attaches special meaning to them in strings. Therefore, it may be necessary to put the
command text into one of the OMNIS string variables. For example

Calculate #S1 as '[command-text]'

puts the command text into #S1 and

Send command{[#S1]}

sends the command to the server.

Alternatively you can enter the command directly into the command parameter by doubling
the first set of brackets, for example

Send command {[[releasecontrol]}

The flag is set if the server accepts the command(s).

Syntax and errors
When you send commands to OMNIS, the syntax is defined by the text shown in the
method editor. You can enter scripts in OMNIS, copy them to the clipboard and paste them



Commands 349

into the client application. If the sent command returns an error to OMNIS, the hash
variables #ERRCODE and #ERRTEXT store the error code and message.

Set DDE channel number {2}

Open DDE channel {OMNIS|COUNTRY}

If flag false

OK message {Country library not running}

Else

Calculate #S4 as 'OK message {Hi, this is DDE magic}'

Send command  {[#S4]}

Send command  {'Next'}

Close DDE channel

OK message {Update finished}

End If

Send Core event
Reversible: NO Flag affected: YES

Parameters: Core event message (see below)
Parameters list

Syntax: Send Core event {event-message [(parameter1[,parameter2]...)]}

The following core events are available:
Quit Application
Open Documents
Print Documents
Do Script
Create Publisher
Set Data

This command sends one of the "Core" events. The event is sent to the current event
recipient unless an application name is provided as a parameter. Note that Open
application, Quit application, Open Document and Print Document are compulsory events
and will be accepted by an Apple-event-aware recipient at all times. To return a value use
Send Core event with return value.

You can disable the compulsory events using the Disable receiving of Apple events
command with the Disable compulsory events option checked.

Quit Application
Send Core event  {Quit application ('APPNAME')}

Quit application is a compulsory event, and always responded to by an Apple event aware
application. Send Core event {Quit Application ('APPNAME')} quits the named application
in the Application Menu. If no parameter is given, the current recipient quits by default.



350 Chapter 5—Commands

CAUTION  If the event recipient is the Finder, the Finder is quit, and you will need to
restart your machine.

Send Finder event {Open Files ('MyHD:TeachText')}

; Use TeachText

Ok message {Now quit TeachText}

Send Core event  {Quit Application (MyHD:TeachText')}

; Quits TeachText. Now re-set OMNIS by default

Open Documents
Send Core event  {Open Documents ('P ATH:D OC1','P ATH:D OC2')}  

Open Document loads the named documents into the target application. If received by
OMNIS, the event uses the Open Library  item in the File menu to open each library in
turn. If the documents are ad hoc reports, they are opened.

Print Documents
Send Core event  {Print Documents ('P ATH:D OC1','P ATH:D OC2')}  

Print Documents loads the named documents into the target application and prints each one.
If received by OMNIS, and the documents are ad hoc reports, they are opened and printed.

Create Publisher
Send Core event  {Create publisher ('OBJECT','EDITION NAME')}

Create Publisher sends a request to the current recipient to publish the OBJECT (a
document, spreadsheet, or other database, for example) so that your OMNIS library can use
the data in the EDITION NAME. For example

Send Core event  {Create Publisher ('MySheet','MonthResults')}

Set Data
Send Core event  {Set data ('TARGETFIELD',SOURCEFIELD)}

Set data sends an event to the current recipient that takes the data in SOURCEFIELD and
puts it in TARGETFIELD. (Notice the use of quotes; if SOURCEFIELD is quoted, the
actual string is passed to TARGETFIELD.)

This pushbutton method takes the data in the field CHARFIELD and puts it into a
spreadsheet cell.

On evClick

Set current list LIST2

Send Core event  {Set Data ('R1:C1',CHARFIELD)}

If flag false

Ok message {Error sending core event}

End if

Quit event handler



Commands 351

Do Script
Send Core event  {Do Script (SCRIPT)}  

Do script sends a script to the current recipient which will be executed. When sending
methods to OMNIS the Do script message is only accepted when OMNIS is not already
executing a method or performing an operation. If an event is not accepted, the event
errAEEventNotHandled is returned to the sender.

The syntax of the script to be sent to OMNIS is defined simply by the form of the
commands as displayed by OMNIS in the method design window (top right-hand list area).

When sent to another Apple application, such as Hypercard, a script must, of course, use the
script language and syntax of that application.

The following pushbutton method assumes that a script has been entered in the field
SCRIPT. If the script can be run by the current recipient (local OMNIS by default), the
results can be seen; otherwise the OK error message appears.

On evClick

Send Core event  {Do Script (SCRIPT)}

If flag false

OK message {Do Script Failed}

End If

Quit event handler

When receiving scripts, OMNIS opens the debugger window if  it is available and an error
occurs when interpreting the script.

Send Core event with return value
Reversible: NO Flag affected: YES

Parameters: Return field name or variable
Core event message (see below)
Parameters list

Syntax: Send Core event {event-message [(parameter1[,parameter2]...)]}
with return value field-name

This command sends either a Get Data or Do Script event to the current event recipient and
returns a value. The flag is set if the event is accepted.

Send Core event  {Get data ('TARGETFIELD'}  Returns  FIELD

Get Data
Get Data sends an event to the current recipient and returns data to the specified field or
variable.



352 Chapter 5—Commands

Send Core event {Get Data ('Container1')} Returns  LBOOL1

; Container1 is data container in target Lib

If LBOOL1

OK message {It does!}

Else

OK message {Sorry, not today}

End If

Send Core event {Do Script (SCRIPT)} Returns  FIELD

Do Script
Do Script lets you execute a script in a remote application (for example a macro in a
spreadsheet) and return a value to OMNIS.

; declare local variable LBOOL1 of Boolean type

Use event recipient {HYPERCARD}

; Previously prompted for, and tagged

Send Core event {Do Script (LSCRIPT)} Returns  LBOOL1

The result of the Hypercard Answer script (LSCRIPT) is a value Yes/No which is returned
to the OMNIS source library in the local field LBOOL1.

When a script is sent to OMNIS, the syntax of the commands is defined by what is shown in
the method design window. In freetype entry mode, you can create scripts in OMNIS and
transfer them via the clipboard to your chosen application.

When sent to another Apple application, such as Hypercard, a script must, of course, use the
syntax of that application.



Commands 353

Send Database event

Reversible: NO Flag affected: YES

Parameters: Database event message (see below)
Parameters list

Syntax: Send Database event {event-message [(param1[,param2]...)]}

The following database events are available:
Does field exist ('fieldname')
Get field type ('fieldname', 'datatype')
Get field size ('fieldname', 'fieldsize')
Set Field ('myfieldname', yourfield)
Get field ('yourfield', 'myfield')
Does table exist ('format')
Use table ('thatformat')
Define Returns ('source1'[,'source2']...)
Next
Previous
Insert
Delete
Update

This command sends one of the database events to the current event recipient. The flag is
set if the event is accepted by the recipient. These events let you send and receive data from
other applications that contain fields and row/column database structures (tables; file class
names, for OMNIS), provided they implement the Database events. They use the standard
terminology of "Table" where OMNIS uses file classes.

You can run OMNIS as a networked data server for any other application on the network
and in this configuration would be Client/server.

Database events
The following tables show the OMNIS event messages used with Send Database event. The
name in the first column is the Apple term for the event. CRB is Current Record Buffer.
RSN is Record Sequence Number.



354 Chapter 5—Commands

General Database events
The following table shows the OMNIS event messages used with Send Database event, and
the parameters for each message. These general commands are used to interrogate or set
values in a database. The last two columns show the results when OMNIS is the target and
when it is the source of the events.

Apple
Event name

OMNIS
Database
command
message

Command
parameters to
send event

Action when
event received
by OMNIS

Action when event
sent by OMNIS

Get
Structure

Get field type FieldName,
ResultField

Returns field type
of FieldName to
client

Sets text in
ResultField to be
field type of
FieldName

Does Object
Exist

Does field
exist

FieldName Returns Boolean
(0 /1) if
FieldName does
not /does exist

Sets OMNIS flag
to true / false if
FieldName does /
does not exist at
the server

Get Data Get field FieldName,
ResultField

Returns value
from CRB
corresponding to
FieldName

Gets data from
FieldName  and
return data into
ResultField (CRB)

Set Data Set field Value,
FieldName

Sets data in
OMNIS CRB
field 'FieldName'
to be Value

Sets the data of
FieldName in the
remote server to be
Value

Get Data
Size

Get field size FieldName,
ResultField

Returns data size
in bytes for
FieldName

Returns the data
size of FieldName
in bytes into
ResultField



Commands 355

Record events
The following database events are used with complete OMNIS records (records or rows in
other applications). The Send Database event {Define Returns
('FIELD1','FIELD2','FIELD3' . . .)} allows OMNIS to define fields as the source and
destination of "Next", "Previous", "Insert" and "Update".

Apple
Event name

OMNIS
Database
command
message

Database
command
parameters to
send event

Action when
event received by
OMNIS

Action when
event sent by
OMNIS

Does Object
Exist

(none) N/A Returns true/false
if RSN.

N/A

Get Data Next and
Previous

... Returns record
with requested
RSN (or nearest
following/previous
RSN)

Returns next/
previous
sequenced record
into previously
defined OMNIS
fields

Set Data Update ... Sets requested
RSN to data
specified.

Sets server record
with OMNIS
defined fields

Delete
Element

Delete record ... Deletes OMNIS
record with RSN
specified by client.

Delete record as
defined by
defined fields
from server table.

Table events
A table is simply described as a collection of rows and columns in a database or
spreadsheet. For OMNIS, this equates to the combination of an OMNIS file class and
corresponding data file, and takes the name of the file class as a parameter. OMNIS keeps a
"table index" (record pointer) for the table currently in use for database events so record
(row) operations can be performed.

The Send Database event{Use table ('TABLENAME')} command must be issued with a
valid table name (file class name for OMNIS) that will be used for all subsequent record
(row) operations. This OMNIS command sends the Does Object Exist event before setting
the current active table to ensure that there is such a valid table, and also resets the "table
index" to point to the first record in that table. Use Table may also be used to reset the table
index to the first record in a table.



356 Chapter 5—Commands

Apple
Event name

OMNIS
Database
command
message

Database
command
parameters to
send event

Action when
event received
by OMNIS

Action when event
sent by OMNIS

Does Object
Exist

Does table
exist

TableName.
(File class name
when sent to
OMNIS)

Returns Boolean
(1/ 0) if
TableName
does/does not
exist

Sets OMNIS flag
to true / false if
TableName does /
does not exist at
the server

New
Element

Insert ... Inserts OMNIS
record with
values specified
by event issued
by client

Adds record to
server table with
values defined by
defined fields

Data entry example
This set of methods shows how you can handle data entry remotely. Several pushbuttons are
put on the local window to mimic the standard OMNIS buttons, with methods behind them
to handle data in the server library with file class "f2".

The following commands are demonstrated:

Send Database event {Define Returns ('source1'[,'source2']...)}

Send Database event {Use table ('thatformat')}

Send Database event {Insert}

Send Database event {Previous}

Send Database event {Next}

Send Database event {Update}



Commands 357

; Declare class variable EditType of type S HORT INTEGER (0 TO 255)

Set main file {f2}

Send Database event  {Define Returns ('CVAR1','LVAR1','CVAR2')}

; defines local fields for values from table f2

Send Database event  {Use table ('f2')} ;; the name of a file class

$control ;; window control method

On evOK

If EditType = 1

Send Database event {Insert}

Else If EditType = 2

Send Database event {Update}

End If

Calculate EditType as 0

If len(CVAR1) = 0

Enable fields {entry1014,entry1016}

Else

Disable fields {entry1014,entry1016}

End If

Redraw {entry1014,entry1016}

The following methods run behind pushbuttons.

; Example of 'Next' pushbutton

On evClick

Send Database event  {Next}

Redraw DataEntryWin

If flag false

OK message {No more records}

End If

Quit event handler

; Example of 'Insert' pushbutton

On evClick

Calculate EditType as 1

Clear range of fields CVAR1 to CVAR5

Clear range of fields #1 to #60

Redraw DataEntryWin

Enter data

Quit event handler



358 Chapter 5—Commands

Changing a field value
The following example method prompts for a recipient library, and then changes the value
of a field in the current record buffer.

The following commands are demonstrated:

Send Database event {Does field exist ('fieldname')}

Send Database event {Set Field ('myfieldname', yourfield)}

; Declare local variable TEMP of Character type

On evClick

Calculate TEMP as 'Not known'

Prompt for event recipient {Betas}

; prompts for the library, and tags it

Send Database event  {Does field exist ('CONTACT')}

; just to confirm its name

If flag true

OK message {Contact name [CONTACT] found;
  OK to change to 'Not known'}

Else

OK message {Sorry, can't find CONTACT; quitting method}

Quit method

End If

Send Database event  {Set Field ('CONTACT', TEMP)}

If flag true

OK message {CONTACT now changed to[TEMP]}

Else

OK message {Failed to set remote field}

End If

Quit event handler

The following additional commands are shown:

Send Database event {Does table exist ('format')}

Send Database event {Get field ('yourfield', 'myfield')}

Send Database event  {Does table exist ('Beta sites')}

If flag false

OK message {Sorry, 'Beta sites' not found}

Else

Send Database event  {Get field ('CO_NAME','%%S4')}

; Note use of quotes round local variable %%S4

OK message {Returned value is [%%S4]}

End If



Commands 359

The following method fragments demonstrate two further commands:

Send Database event {Get field size ('fieldname', 'fieldsize')}

Send Database event {Get field type ('fieldname', 'datatype')}

; Declare local variable DATASIZE of Character type

; Declare local variable DATATYPE of Character type

Send Database event  {Get field size ('CHARFIELD','DATASIZE')}

OK message {Field 'CHARFIELD' has room for [DATASIZE] characters}

Send Database event  {Get field type ('CHARFIELD','DATATYPE')}

OK message {Field CHARFIELD is of type [DATATYPE]}

Finally, the current record buffer is deleted by:

Send Database event {Delete}

; Example of 'Delete' pushbutton

On evClick

OK message {Are you sure you want to delete the current record?}

If flag true

Send Database event  {Delete}

If flag true

OK message {Current record now deleted}

Else

Ok message {Delete event not accepted}

End if

End If

Quit event handler

Send field
Reversible: NO Flag affected: YES

Parameters: Field name
Server data item name

Syntax: Send field field-name [{server-data-item-name}]

DDE command, OMNIS as client. This command sends the value of an OMNIS field to the
current DDE channel. An error occurs if the channel is not open. The command takes the
OMNIS field name and the server data item name as parameters. The data item name can
contain square bracket notation. If the data item name is not specified, the OMNIS field
name is used.

The flag is set if the server program accepts the value.



360 Chapter 5—Commands

Set DDE channel number {1}

Open DDE channel {OMNIS|DDE2}

Calculate CVAR1 as '[TakeControl]'

Send command {[CVAR1]}

If flag false

OK message {Error sending: [CVAR1]}

End If

Send field  C_CLIENT {S_NAME}

Send field  C_TOTAL {S_TOTALS}

Send Finder event
Reversible: NO Flag affected: NO

Parameters: Finder event message (see below)
Parameters list

Syntax: Send Finder event {event-message [(parameter1[,parameter2]...)]}

The following Finder events are avalailable:

Show About Reveal Files
Get File Info Share Files
Duplicate Files Empty Trash
Make Alias For Files Restart Macintosh
Open Files Show Clipboard
Print Files Shutdown Macintosh

Sleep Macintosh

This command sends one of the Finder events to the standard MacOS Finder. With the
exception of the Open Files and Print Files messages, events in this group can only be sent
to the local Finder.

The Finder event suite lets you manipulate files on your hard disk. If the events are
accepted, the flag is set to true.

You might be familiar with the following events that act directly on the local Finder, since
you can find them on the Finder's pull-down menus.

Send Finder event  {Get File Info}

Send Finder event  {Make Alias For Files}

Send Finder event  {Reveal Files}

Send Finder event  {Share Files}

Send Finder event  {Duplicate Files}

If run without parameters, they bring up a standard dialog window, allowing one or more
files or folders to be selected for action. Pathname parameters can also be entered from the
keyboard, using Apple syntax; see the appropriate Apple reference manuals.



Commands 361

Send Finder event  {Get File Info
('MyHD:Desktop folder:Microsoft Word')}

The other four events above behave in a similar way.

The following messages are self-explanatory and take no parameters.

Send Finder event  {Empty Trash}

; permanently removes deleted files.

Send Finder event  {Show About}

; shows the 'About' information for the computer.

Send Finder event  {Restart}

Send Finder event  {Show Clipboard}

Send Finder event  {Shutdown}

Send Finder event  {Sleep} ;; for PowerBooks and other portables

Send Finder event  {Open Files}

Send Finder event  {Print Files}

You can use these last two events to launch and print files under MacOS, for example:

Send Finder event  {Open Files('YourMac:MyHD:Apps:AnApp:Doc2')}

Send Finder event  {Print Files('MacNum:MyHD:Apps:AnApp:MyDoc')}

Send Finder event  {Open Files ('MyHD:AppleDoc')}

; this is the same as double-clicking on the AppleDoc icon.

Send to a window field
Reversible: YES Flag affected: NO

Parameters: � Show printer pages
Screen report field name

Syntax: Send to a window field [(Show printer pages)] {field-name}

This command directs the output of a report to a window Screen Report field; you cannot
print to any other type of window field. When you print the report the field is changed into a
standard screen report window that has all the features of the standard screen report. The
Show printer pages option show the outline of the current paper size in the report field.

An error is generated if the field name is invalid for the current window. If you use Send to
a window field in a reversible block, the report destination reverts to its former setting when
the method terminates.

; $event() method for a button

On evClick

Send to a window field {ScreenReportField}

Set report name RLABELS

Print report (Show printer pages)  ;; prints to screen report
field showing current paper margins



362 Chapter 5—Commands

Send to clipboard
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Send to clipboard

This command sends the output of any subsequent reports to the clipboard. The report is
printed as a text-only file and all text formatting is ignored. If two reports are sent to the
clipboard, the second report overwrites the first. Once a report has been sent to the
clipboard, you can launch another program, such as a word processor, and paste the report
into it.

If you use Send to clipboard in a reversible block, the report destination reverts to its former
setting when the method terminates. The contents of the clipboard are not altered by the
command or its reversal.

If you want to copy pictures from a report to the clipboard, you can print the report to
screen and use the mouse to select the area required. The standard Edit menu Copy option
will copy the graphic to the clipboard.

Send to clipboard

Set report name Orders

Print report

; Now launch word processor and paste

Send to DDE channel
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Send to DDE channel

This command directs any subsequent reports to a DDE channel. The current channel is
defined by Set DDE channel number. An error occurs if the channel is not open or if the
report is not printed with an export format.

Each record within the report is prepared and sent by OMNIS as the data in a Poke
message. The term "Poke" is defined by the DDE protocol and refers to messages carrying
data which set field values in the target program. The server's item names, into which the
exported data is read, are defined by Set DDE channel item name.

The subsequent print commands will send to the channel number which is current at the
time of the print command, not at the time of the Send to DDE channel command.

If you use Send to DDE channel in a reversible block, the report destination reverts to its
former setting when the method terminates.



Commands 363

It may be the case that an export format for a particular OMNIS report does not correspond
to any of the formats supported by DDE. If a mismatch occurs, there will be an error
message at the Print report or Prepare for print command.

Send to DDE channel

Set export format {Delimited (Tabs)}

Set report name DDEReport

Clear DDE channel item names

Set DDE channel item name {Name}

Set DDE channel item name {Tel}

Print report

Close DDE channel

Send to file
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Send to file

This command directs the report output to the currently selected print file. The report is sent
as a text file (no text style or formatting) with the appropriate line terminators. The print file
is not closed when a report finishes so you can print multiple reports without changing the
destination or the name of the print file.

When you select the destination using the dialog window (see Prompt for destination), the
Page size pushbutton lets you set up the form feeds and lines per page. These settings are
stored in the preferences file.

Set lines per page lets you specify page length from methods. If the Send form feed option
is selected, the end of each page is marked by a form feed character; otherwise, the pages
are forced by sending multiple line feeds.  You use Set print file name to designate the file
name.

If you use Send to file in a reversible block, the report destination reverts to its former
setting when the method terminates.

Send to file

Set lines per page {46}

Set print file name {Output.txt}

Print report



364 Chapter 5—Commands

Send to page preview
Reversible: YES Flag affected: NO

Parameters: � Do not wait for user
� Hide until complete
Report title
/left/top/right/bottom page preview position and size (coords in pixels)
/STK to stack the preview
/CEN to center the preview

Syntax: Send to page preview [([Do not wait for user][,Hide until complete])]
[report-title] [/ left[/top[/right[/bottom]]]] [/ STK][/CEN]

This command sends the report instance to a page preview screen. This lets the user check
the final page layout before printing. On small screens, the text is Greeked, that is, each
character is represented by a dot.

The Do not wait for user option allows subsequent method lines to execute or lets the user
do other things without closing the report; the default is to gray out all menus while a screen
report is displayed. You may want to have several reports on the screen for reference while
doing some other work with the library. Without the option, the user must close the window
before doing anything else. The number of screen report instances is limited by the
operating environment. Under Windows, you should refer to the OMNIS.INI settings if you
are prevented from opening enough report windows.

The Hide until Complete option suppresses the output until all the report data is ready.
Normally, you can view the first part of the report before all the records have been
prepared.

Title and Position
You can give each page preview a title and control its position and size. The
Left/Top/Right/Bottom values fix the positions of the four corners to screen pixel
resolution. The /STK parameter offsets the top left-hand corner from the last page preview
and /CEN positions the page preview in the middle of the screen. The following example
stacks two page preview showing US and UK customers.

Set report name RS_FCUSTOMERS

Send to page preview  (Do not wait for user) UK customers/STK

Set search as calculation {CU_COUNTRY = 'UK'}

Print report (Use search, Do not finish other reports) {rinst1}

Send to page preview  (Do not wait for user) USA customers/STK

Set search as calculation {CU_COUNTRY = 'USA'}

Print report (Use search, Do not finish other reports) {rinst2}

If you change the shape and size of the page preview window it will no longer reflect the
paper size.



Commands 365

If you use Send to page preview in a reversible block, the report destination reverts to its
former setting when the method terminates.

Send to port
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Send to port

This command directs the report output to the currently selected port. The report is sent as a
stream of text with the appropriate line terminators. The port is selected with the Set port
name command.

If you use Send to port in a reversible block, the report destination reverts to its former
setting when the method terminates.

; Set port name {Com2:} ;; for Windows

; Set port name {2 (Printer port)} ;; for MacOS

Send to port

Set port parameters {9600,n,7,0}

Print report

Send to printer
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Send to printer

This command sends the report to the current printer. You can choose the printer using the
Select printer command.

If you use Send to printer in a reversible block, the report destination reverts to its former
setting when the method terminates.

Set report name MyOrder

Send to printer

Print report



366 Chapter 5—Commands

Send to screen
Reversible: YES Flag affected: NO

Parameters: � Page for screen
� Do not wait for user
� Hide until complete
Report title
/left/top/right/bottom report position and size (coords in pixels)
/STK to stack the report instance
/CEN to center the report instance

Syntax: Send to screen
[([Page for screen][,Do not wait for user] [,Hide until complete])]
[report-title] [/ left[/top[/right[/bottom]]]] [/ STK][/CEN]

This command sends the output of the current report to the screen. The screen report uses
the appropriate fonts and page size, but ignores the margins.

The Page for screen option paginates the report for screen-length pages.

The Do not wait for user option allows subsequent method lines to execute or allow the
user to do other things without closing the report; the default is to gray out all menus while a
screen report is displayed. You may want to have several reports on the screen for reference
while doing some other work with the library. Without the option, the user must close the
window before doing anything else. The number of open screen reports is limited by the
operating environment. Under Windows, you should refer to the OMNIS.INI settings if you
are prevented from opening enough report windows.

The Hide until Complete option suppresses the output until all the report is ready.
Normally, you can view the first part of the report before all the records have been
prepared.

Title and Position
You can give each screen report a title and control its position and size. The
Left/top/right/bottom parameters set the positions of the four corners to screen pixel
resolution. The /STK parameter offsets the top left-hand corner from the last report instance
and /CEN positions the report in the middle of the screen. The following example stacks
two report instances showing US and UK customers.

Set report name RS_FCUSTOMERS

Send to screen  (Do not wait for user) UK Customers/STK

Set search as calculation {CU_COUNTRY = 'UK'}

Print report (Use search, Do not finish other reports) {rinst1}

Send to screen  (Do not wait for user) USA Customers/STK

Set search as calculation {CU_COUNTRY = 'USA'}

Print report (Use search, Do not finish other reports) {rinst2}



Commands 367

If you use Send to screen in a reversible block, the report destination reverts to its former
setting when the method terminates.

The prompt for destination dialog sets the Do not wait option and clears all the others.

As with all scrolling fields in OMNIS, screen reports can have panes. This lets you split the
window into panes and scroll each pane separately.

Send to trace log
Reversible: NO Flag affected: NO

Parameters: Text

Syntax: Send to trace log {Text}

This command sends a specified line of text to the trace log. The text can contain square
bracket notation.

Send to trace log  {Value of CLIENT field is [CLIENT]}

Send to trace log  {Current task is [$ctask().$name]}

Send to trace log  {Win1 $control: events are [sys(86)]}

Send Word Services event
Reversible: NO Flag affected: NO

Parameters: Word Services event message (at present, Check field text only)
Field name

Syntax: Send Word Services event {Check field text [('field-name')]}

This command performs the specified Word Services event on the parameter, typically an
OMNIS field. Together with Prompt for word server this event allows spell checking and
other text services to be carried out on data entry text and text variables in OMNIS fields. It
uses the current word services application, spell checker or grammar checker, for example.
Once you have set up the word server, OMNIS stores the path in the preferences file and
there is no need to prompt for the server each time you use OMNIS.

On evClick

Prompt for word server ;; opens a dialog box

Send Word Services event  {Check field text ('CVAR1')}

; checks the text in CVAR1

Quit event handler



368 Chapter 5—Commands

Server specific keyword
Reversible: NO Flag affected: YES

Parameters: Server keyword

Syntax: Server specific keyword {server-keyword}

This command sends a server-specific keyword to the current DAM. This mechanism
supports server-specific functionality which you cannot access via SQL scripts. At present,
the Sybase error and message handling keywords are supported. For example

Server specific keyword  {<SQLMESSAGE>MSQL/sqlMessage}

causes the DAM to call OMNIS method MSQL/sqlMessage each time a message is returned
by SQLServer.

Similarly

Server specific keyword  {<SQLERROR>MSQL/Error}

calls method MSQL/Error each time an error is returned.

Set 'About...' method
Reversible: YES Flag affected: NO

Parameters: Number or class name/number (of method)

Syntax: Set 'About...' method [class-name/]number
[{method-name}]

This command changes the "About..." option by calling the specified method which you
should set to open a different About window. OMNIS executes the specified method when
this option is selected in exactly the same way as if it had been selected from a menu, for
example, standard windows are closed. If you use Set 'About...' method in a reversible
block, the command is reversed when the method terminates.

There are no restrictions on what you can do in the Set 'About...' method, that is, the method
that is called. Extra care is needed to ensure that the method does not alter any variables,
lists or the status of the flag.

Set 'About...' method  Code1/About {About Library}

; End of method

; About Library ;; the ‘About’ method

Open window instance WABOUT  ;; your own About window

Enter data

Close window WABOUT



Commands 369

Set advise options
Reversible: YES Flag affected: NO

Parameters: � Find/next/previous
� OK
� Redraw

Syntax: Set advise options [([Find/next/previous][ ,OK][ ,Redraw])]

DDE command, OMNIS as server. This command determines when OMNIS is permitted to
send requested Advise messages to the client application. When the Accept advise requests
option is active, OMNIS will accept Advise requests from the client program. By default,
the client program will only be advised of the values requested from OMNIS when Send
advises now is executed.

However, Set advise options specifies other events which will cause the values to be sent.
There are three checkbox options available for this command: Find/next/previous, OK, and
Redraw.

The Find/next/previous option sends the requested Advise value whenever a
Find/next/previous command or a Clear command is executed. The OK  option sends the
requested Advise value whenever an Enter Data or Prompted Find ends with an OK. The
Redraw option sends the requested Advise value whenever a Redraw is executed.

Each of these options in Set advise options has its command equivalent within the
Exchanging Data... group, whose function is identical. These commands are listed as
Advise on Find/next/previous, Advise on OK, and Advise on redraw.

Set server mode (Field requests,Advise requests)

Set advise options  (Find/next/previous,OK)

OK message {Server mode for DDE enabled}



370 Chapter 5—Commands

Set batch size
Reversible: NO Flag affected: YES

Parameters: Number of rows

Syntax: Set batch size {number}

This command sets the number of rows read into the local buffer by each Fetch next row
command. Following a SQL Select statement, rows of data are held on the server ready for
the client. With some servers, you can maximize network efficiency by adjusting the
number of rows transferred to the client. Fetch next row transfers the first row of data to the
client and reads it into the CRB. The next Fetch next row reads the next row from the local
buffer and no network traffic is generated.

You can set the batch size high for small record sizes and low for large record sizes.
Optimal values depend on the size of data packets used by the network. Sybase servers
generally perform their own batching of rows and do not need tuning.

At the time of writing, the Oracle and ODBC DAMs support Set batch size.

Set batch size  {50}

Perform SQL {Select * from AUTHORS}

Fetch next row

While flag true  ;; process rows

Fetch next row

End While

OK message {[sys(135)] rows processed}



Commands 371

Set bottom margin
Reversible: NO Flag affected: NO

Parameters: Measurement
� Measurement in cms (leave unchecked for inches)

Syntax: Set bottom margin [(Measurement in cms)] {number}

This command specifies the bottom margin for the current report class. It overrides the
$bottommargin property until such time as the current report is reset.

Set report name ROrders

Yes/No message {Print on metric A4 paper?}

If flag true

Set bottom margin  (Measurement in cms) {2.34}

Set top margin (Measurement in cms) {1.2}

Else

Set bottom margin  {1.0}

Set top margin {1.0}

; Default measurement is inches

End If

Print report

Set report name RTOTALS

; The settings for ROrders are now deleted

Set break calculation
Reversible: NO Flag affected: NO

Parameters: Field name
Calculation

Syntax: Set break calculation on field-name {calculation}

This command stops method execution when the specified calculation evaluates to true; all
values except zero are considered true. You use Set break calculation after a Variable menu
command: Set break on calculation {field-name} command. The field used in the command
does not have to feature in the calculation but is used to "label" the break within OMNIS.

At breakpoints, a method design window is opened with the current method loaded and the
breakpoint command highlighted. You can examine field values by right button/ Ctrl-
clicking on the field or step through the remaining method.



372 Chapter 5—Commands

Setting up calculated breakpoints slows down method execution considerably so you should
use them sparingly. In runtime the command does nothing.

Variable menu command: Set break on calculation {CVAR1}

Set break calculation  on CVAR1 {sys(131)<<>>0}

Variable menu command: Set break on calculation {#F}

Set break calculation  on #F {#F=0} ;; this monitors for flag false

Set character mapping
Reversible: NO Flag affected: YES

Parameters: Name of map file

Syntax: Set character mapping {map-name}

This command loads a character mapping file for the current session. You may need
character translation if the data stored on the server did not originate in OMNIS, and the
data uses a different character set. The differences usually affect extended character sets
which support non-ASCII values (that is, greater than 127).

You must create two translation tables, one for characters coming IN to OMNIS, the other
for characters OUT of OMNIS to the server. They are given the same name but with
extensions .IN and .OUT, respectively. You must place them in a subdirectory/folder called
CHARMAPS under EXTERNAL (under Windows) or in the EXTERNAL folder (under
MacOS). For example, you would define the mapping for EBCDIC in files EBCDIC.IN and
EBCDIC.OUT, and you would load them with:

Set character mapping  {EBCDIC}

You can load different tables for each session in use. The mapping affects the current
session only.

Set current session {Session_1}

Set character mapping  {ANSIDOS}

Set current session {Session_2}

Set character mapping  {EBCDIC}



Commands 373

Set class description
Reversible: NO Flag affected: YES

Parameters: Class name/description

Syntax: Set class description {class-name[/description]}

This command sets the description text for the specified library class. When a class is
created, you must specify a class name and also an optional description of up to 255
characters. This command lets you set the description string for the specified library class.
The original description for the specified class is cleared if the description parameter is left
blank (or evaluates to an empty string). The flag is set if the description is changed.

New class {Search/S_My}

Modify class {S_My}

Delete class {S_User}

Rename class {S_My/S_User}

Set class description  {S_User / [CVAR1]}

; Sets the description to the string value CVAR1

Set search name S_User

Print report (Use search)

Set client import file name
Reversible: NO Flag affected: YES

Parameters: File class name

Syntax: Set client import file name {file-name}

This command defines the name of the import file into which you wish to store the data
returned from a SQL transaction. It moves data from the server to a tab-delimited import
file on the local disk. The only parameter is the name of the OMNIS import file. It is
important to remember that the import file name you supply here should match the one you
have used in the OMNIS methods that import the data.

Set client import file name  {xprImportFile}

Open client import file

Perform SQL {select cust_name, cust_city, credit_line from customer}

Retrieve rows to file

Close client import file



374 Chapter 5—Commands

Set closed files
Reversible: YES Flag affected: YES

Parameters: List of files

Syntax: Set closed files {file1[,file2]...}

This command sets the file mode of the specified file(s), other than a main file, to closed.
Closing a file prevents any data from being read or changed in that file.

If you attempt to close the main file an error occurs. If you use Set closed files in a
reversible block, the file mode is reset when the method terminates. Set closed files does not
cancel the Prepare for update mode. In multi-user libraries, closing a file prevents OMNIS
from locking it.

Closing a parent file when editing a child has the effect of protecting the connections from
child to parent from change and saves time when locating child records because the parent
record is not loaded.

In the method editor, a list of files is displayed. You can Ctrl/Cmnd-click on the file names
to select multiple names.

Set main file {FPORDERS}

Set closed files  {FINVOICES,FINVITEMS}

Set memory-only files {FCONSTANTS,FNAMES}

Set read-only files {FREADFILES}

Set current cursor
Reversible: NO Flag affected: YES

Parameters: SQL cursor name

Syntax: Set current cursor [{cursor-name}]

Creates a cursor in the current session with the specified cursor name. If that cursor already
exists, it becomes the current cursor. The cursors in the same session are always logged onto
the same database. Logging on or logging off any of the cursors in a session always logs on
or logs off the other cursors in the same session.

Each cursor maintains its own select table, error status, and so on, but the transactions for
all the cursors in the same session are all committed or rolled back at the same time. This
means that the Start session, Set hostname, Set username, Set password, Logon to host,
Logoff from host, Commit current session, Rollback current session and Autocommit
commands act on all the cursors in the same session as the current cursor. The other SQL
commands only act on the current cursor.

If there is no current cursor, Set current cursor and Set current session are equivalent.



Commands 375

If the cursor name is left blank or a SQL command is sent before a Set current session or
Set current cursor command is encountered, a default session called CHANNEL_1 is
automatically created and made the current session.

Once you have created a cursor, you can use either Set current session or Set current cursor
to make it the current cursor but you cannot use Set current cursor to move the cursor into
another session.

Set current session {SESSION_1}

Set current cursor  {Cursor_1B}

Logon to host

; Deal with errors here

Perform SQL {Select * from CLIENTS}

Set current session {SESSION_1}

Perform SQL {Select * from ORDERS}

; You now have two select tables available, to access CLIENTS

Set current session {Cursor_1B}

; process CLIENTS

Set current session {SESSION_1}

; Process ORDERS

Set current data file
Reversible: YES Flag affected: NO

Parameters: Internal name (of data file)

Syntax: Set current data file {internal-name}

This command sets the specified data file the "current" data file. If your methods refer to
file class names without specifying the data file, it is essential to make the appropriate data
file current before setting a main file.

Open data file {Archive/DataA}

Open data file (Do not close other data) {MYDATA/DataC}

Set current data file  {DataA}

Set main file {File1}

; File1.Field1 now refers to DataA.File1.Field1



376 Chapter 5—Commands

Set current list
Reversible: YES Flag affected: NO

Parameters: List or row name

Syntax: Set current list list-name

This command sets the current list, that is, the list to be processed in the subsequent list
commands. You can make any type of list the current list, including local, class, and library
variables of list data type. If you use this command as part of a reversible block, the current
list reverts to its former value when the method containing the reversible block finishes.

; declare variable CLIST of List type

Set current list  CLIST

Define list {ASSIGNDATE,FIRST_NAME,LAST_NAME}

Set main file {FCUSTOMERS}

Build list from file on CCODE

See Define list.

Set current session
Reversible: NO Flag affected: YES

Parameters: SQL session name

Syntax: Set current session [{session-name}]

This command creates a session with the specified session name. If the named session
already exists, it becomes the current session. It allows multiple simultaneous conversations
with different remote databases and multiple simultaneous select tables. Session names can
be up to 15 characters long and are case-insensitive.  If the session name is left blank or a
SQL command is sent before a Set current session command is encountered, a default
session called CHANNEL_1 is automatically created and made the current session.

The first use of Set current session with a particular name creates the session which
becomes the current session. All successive commands are sent to that session until another
Set current session is issued. Each session has its own select table, import file, error status,
and so on. There is no limit to the number of sessions that you can have open at one time,
apart from the limits imposed by available memory and other resources.

Set current session  {Session_O}

Start session {ORACLE}

Set database version {ORACLE5}

Set current session  {Session_S}

Start session {SYBASEDB}

Set current session  {Session_O}

; Now log on to ORACLE and so on



Commands 377

Set database version
Reversible: YES Flag affected: NO

Parameters: Server type

Syntax: Set database version {server-type}

This command sets the server type or version used by the current DAM. You should issue
this command after the Start session and before the Logon to host.  For example

Start session {ORACLE}

Set database version  {ORACLE7}

Some of the database versions you can use are:

DAM Database Version

INFORMIX INFORMIX

ODBC

ORACLE ORACLE7

SybaseDB & CT SQLSERVER

EDA EDASERVER

Set DDE channel item name
Reversible: NO Flag affected: YES

Parameters: Server data item name

Syntax: Set DDE channel item name {server-data-item-name}

DDE command, OMNIS as client. This command specifies the server data item name to
which you can send the exported report. When transmitting a Send to DDE channel report,
OMNIS takes the channel item name and uses it as the server item name which is to be sent.

The flag is cleared if the item name is too long, thus causing a memory allocation error to
take place.

The item names set in the command accumulate over each use of the command until a Clear
DDE channel item names is issued.

Within a client library, for example, a report class is created which sends the fields ClF1,
ClF2...ClF5 to the current channel. At the server end of the conversation, the fields are to be
read into five fields SVR1, SVR2...SVR5. Before you can print the report, the method must
contain the following commands:



378 Chapter 5—Commands

Set report name Export_to_channel

Send to DDE channel

Set DDE channel number {1}

Open DDE channel {PROG|LIBRARY}

Send command {[[TakeControl]}

If flag true

Set DDE channel item name  SVR1

Set DDE channel item name  SVR2

Set DDE channel item name  SVR3

Set DDE channel item name  SVR4

Set DDE channel item name  SVR5

Print report

End If

Set DDE channel number
Reversible: YES Flag affected: YES

Parameters: Channel number (can be a calculation)

Syntax: Set DDE channel number {number}

DDE command, OMNIS as client. This command sets the channel number to be used in
subsequent DDE commands.. Each channel number identifies a particular conversation.

The channels are numbered from 1 to 8, and the flag is cleared if an invalid channel number
is used. The channel number in a newly selected library defaults to 1. The channel number
selected can be the result of a calculation. All subsequent channel commands function on
the current channel number. To select another channel, you must use a new Set DDE
channel number command.

Set DDE channel number  {2}

Open DDE channel {OMNIS|COUNTRY}

If flag false

OK message {Country library not running}

Else

Send command {Do method Invoice}

Do method TransferData

End If



Commands 379

Set default data file
Reversible: YES Flag affected: NO

Parameters: File or list of files

Syntax: Set default data file {file1[,file2]...}

This command sets the default data file to be the current data file. Normally, file classes are
associated with whatever the current data file is, at the time of execution. You use Set
current data file to change the identity of the current data file. As the current data file
changes, the file classes are associated with the changed current data file.

Set default data file sets the data file, for the specified file class or list of file classes, to be
fixed at whatever is the current data file at the time when the command executes. In other
words, it creates an association between a list of file classes and the particular data file that
was current. For these file classes, the data file becomes fixed (that is, the "default" data
file) and does not change whenever the current data file changes. You can break the
association with either a new Set default data file or a Floating default data file command.

When you close the default data file for a file, that file reverts to a floating state. This means
that the default data file for that file reverts to the current data file and changes when the
current data file changes.

Set default data file does not change the flag but is reversible, that is, when the command is
reversed, the previous default data files are restored. A runtime error occurs if there are no
data files open when the command is executed.

Open library {MYLIB}

Open data file {D1}

Open data file (Do not close other data) {D2}

Set default data file  {FCLIENTS, FINVOICES}

Set current data file {D1}

Set main file {FCLIENTS}

; this refers to the D2 data file,

; not D1 (which is the current data file)

Open window instance WCLIENT



380 Chapter 5—Commands

Set event recipient
Reversible: YES Flag affected: YES

Parameters: Application name

Syntax: Set event recipient
[ {( ‘ application_name[:mac_name[@zone_name]]’ )} ]

This command specifies the name of the application to which subsequent Apple events are
to be sent. The name of the application must exactly match the name in the System 7
Application menu, for example “Microsoft Excel”. This name becomes the "recipient tag"
by which you can select it from all the current event recipients.

You can access another machine by specifying its name and zone together with the
application name. The zone_name is where the Mac or PowerMac and MacOS applications
reside (when you specify the zone you must also specify the Mac or PowerMac name). If
you omit zone_name, the current zone is the default. The mac_name is the Mac or
PowerMac on which the event recipient resides. If you omit mac_name (and zone_name)
your machine (the host) receives the events by default. When you launch OMNIS, the
recipient defaults to OMNIS, that is, events are sent to itself. In the same way, if you use
this command without a parameter, the recipient reverts to OMNIS.

The application_name must exactly match the name of the application. If a match is found,
the flag is set. The application name is stored in this form as an event recipient, as seen in a
list created with Build list of event recipients.

The following example shows the difference between Use event recipient, which is used
with a tag previously assigned by the user with Prompt for event recipient, and Set event
recipient, which takes a local application name as a parameter, and turns it into a recipient
tag.

Prompt for event recipient {MyApp1}

; Prompt user and select application

; do something with 'MyApp1'

Set event recipient  {Microsoft Excel}

; This is the name of a current application, as shown on

; the Apple Application menu

; do something in 'Microsoft Excel' for example

Use event recipient {MyApp1}

; go back to the tagged recipient, previously prompted for

; do something else. Finally go back to OMNIS by resetting

; recipient with no prompt

Use event recipient



Commands 381

Set export format
Reversible: NO Flag affected: NO

Parameters: Export format

Syntax: Set export format [{export-format}]

export-format is one of the following: Delimited (commas),
Delimited (tabs), One field per line, OMNIS data transfer

This command specifies the export format to be used with the current report. The Set export
format command lets you to override the parameters stored in the report class. You should
use it after selecting a report class.

If you leave the name empty, the report is printed without an export format. An error occurs
if the name is not a valid export format name. The name specified for the command can
contain square bracket notation.

Translation
Export format names are not tokenized and therefore are not understood by foreign
language versions of OMNIS. To avoid this portability problem, you can always build a list
of export formats and use the list to select a format (see Example 2 below).

; Example 1

Send to file

Set report name Export1

Set print file name {Output.TXT}

Set export format  {Delimited (tabs)}

Print report

; Example 2

Set current list LEXP

Build export format list (Clear list)

Set export format  {[LEXP(1,2)]}

; selects format on second line of column one: Delimited (tabs)



382 Chapter 5—Commands

Set final line number
Reversible: NO Flag affected: YES

Parameters: Line number (can be a calculation)

Syntax: Set final line number [{line-number}]

This command explicitly sets the value of LIST.$linecount by specifying a line number or a
calculation. OMNIS expands or contracts any list as necessary and maintains the value of
the LIST.$linecount property as the last line number. If the number of lines in the list is less
than the number set for LIST.$linecount, OMNIS adds empty lines to the end. If the number
of lines is greater than LIST.$linecount, OMNIS shortens the list and reduces the memory
needed by the list.

You can use Set final line number to speed up list handling by setting the final line number
to shorten lists, for example. The list is effectively cleared of data when the line number
parameter is left blank (or evaluates to zero).

Calculate LVAR1 as 0

Set current list LIST1

Define list {LVAR1}

Repeat

Calculate LVAR1 as LVAR1+1

Add line to list

Until LVAR1>100

Set final line number  {50}

OK message {List has [LIST.$linecount] lines}

Set hostname
Reversible: YES Flag affected: YES

Parameters: Server host name

Syntax: Set hostname {host-name}

This command sets the name of the remote computer you wish to access, that is, the
hostname. The content of the logon parameters set up by Set hostname is server-specific.

Set username {SA}

Set password {Lion}

Set hostname  {Serve300}

Logon to host



Commands 383

Set import file name
Reversible: YES Flag affected: YES

Parameters: Import file name

Syntax: Set import file name {import-file-name}

This command specifies the name of the import file. The flag is set if the import file is
successfully selected. You use the current import file in any subsequent Import field from
file commands.

If you use Set import file name in a reversible block, the import file is closed when the
method containing the reversible block terminates.

Set import file name  {DATA.DB1}

Repeat

Import field from file into CVAR1

Until CVAR1 = 'start_data'

Do method ImportData

Close import file

Set label width
Reversible: NO Flag affected: NO

Parameters: Measurement
� Measurement in cms (leave unchecked for inches)

Syntax: Set label width [(Measurement in cms)] {number}

This command specifies the width of the labels when printing labels. It overrides the value
set in the report parameters dialog until the current report is next reset. The width is
measured from the edge of one label to the corresponding edge of the next.

You can set up the vertical spacing between labels using Set record spacing.

Set report name RLABELS

Set labels across page {4}

Set record spacing {3}

Set repeat factor {2} ;; two of each label

Set label width  (Measurement in cms) {4.5}

; Default measurement is inches

Print report

or do it like this

Do $clib.$reports.MyReport.$labelwidth.$assign(4.5)



384 Chapter 5—Commands

Set labels across page
Reversible: NO Flag affected: NO

Parameters: Number (of labels)

Syntax: Set labels across page {number}

This command specifies the number of labels across the page for label printing. It overrides
the setting in the report parameters dialog for the current report class. The setting remains in
force until the next Set report name command.

When labels are printed, the vertical spacing from the top of one label to the next is set up
using the $recordspacing property or from a method using Set record spacing.

Set report name RLABELS

Set labels across page  {4}

Set record spacing {3}

Set label width (Measurement in cms){4.5}

Print report



Commands 385

Set left margin
Reversible: NO Flag affected: NO

Parameters: Measurement
� Measurement in cms (leave unchecked for
inches)

Syntax: Set left margin [(Measurement in cms)] {number}

This command specifies the left margin for the current report class. It overrides the left
margin setting in the report properties until such time as the current report is reset.

Set report name Rorders

Yes/No message {Print on A4 paper?}

If flag true

Set bottom margin (Measurement in cms) {2.34}

Set top margin (Measurement in cms) {1.2}

Set left margin  (Measurement in cms) {1.2}

Set right margin (Measurement in cms) {1.2}

Else

Set bottom margin {0.5}

Set top margin {0.5}

Set left margin  {0.5}

Set right margin {0.5}

; Default measurement is inches

End If

Print report

or do it like this

Do $clib.$reports.MyReport.$leftmargin.$assign(0.5)

Set lines per page
Reversible: NO Flag affected: NO

Parameters: Number (of lines per page)
� Send form feed

Syntax: Set lines per page [(Send form feed)] {number}

This command changes the number of lines per page for reports printed to file or port. You
can send any report to a port or file using the Report destination dialog. When the
destination is selected in this window, the number of lines is automatically set to the default
number for the destination, so you must use Set lines per page after you have selected the
report destination. The default lines per page setting is stored in the configuration file.



386 Chapter 5—Commands

The Send form feed option lets you send a form feed character at the end of each page of
the report; otherwise, multiple line feeds are sent.

Set report name RTEXTOUT

Send to port

Set lines per page  (Send form feed) {66}

Print report

Set main file
Reversible: YES Flag affected: NO

Parameters: File class name

Syntax: Set main file {file-name}

This command selects the "main file" class. Set main file is an essential command which
you must execute before manipulating any data. You can insert or delete data only in the file
designated as the main file. The designated file cannot be memory-only or closed.

The main file setting also determines which connected files are located when finding
records with Find/Next/Previous, and which connections are updated. As each main file
record is read, the connected records are automatically read in and made available for
editing. When the main file is edited or inserted, all connections to its parent files are
updated, unless the parent file is closed.

If OMNIS attempts to execute a command which requires a main file before the main file is
set, an error occurs. If the data file is not opened when the main file is set, OMNIS will try
to open the default data file and, if this is unsuccessful, will display the Change data file
dialog box so that the user can select or create a data file.

Changing the main file after a Prepare for... command does not cancel Prepare for mode.
When an update is encountered, the main file set at the time of the last Prepare for is used.
(See Prepare for edit, Prepare for insert.)

If you use Set main file in a reversible block, the main file is reset to its previous value when
the method containing the reversible block finishes.

Multiple open data files
If more than one data file is open, there is only one main file setting shared by all open data
files. If you do not qualify a file class name with a data file, the current data file is assumed
unless you have created an association between the file class and another data file using the
Set default data file command.



Commands 387

; Stock_control

If COST > PRICE

Set main file  {FSTOCK1}

; ... process FSTOCK1

Else If COST < PRICE

Set main file  {FSTOCK2}

; ... process FSTOCK2

End If

Set main file  {FMAIN}

This example uses a reversible block to return the main file to its former setting after the
method terminates

Begin reversible block

Set main file  {FMINV}

End reversible block

Do method InsertInvoices

;  Now quit method and put main file back

This changes main file after the Prepare for... command:

Set main file  {FSTOCK1}

; FSTOCK1 is cleared

Prepare for insert

Set main file  {FSTOCK2}

Enter data

Update files

; Record is inserted into FSTOCK1

; All read/write files in CRB are updated and

; parent connections to FSTOCK1 are updated.

Set memory-only files
Reversible: YES Flag affected: YES

Parameters: File or list of files

Syntax: Set memory-only files {file1[,file2]...}

This command sets the file mode of the specified file(s), other than the main file, to
memory-only. You can use the fields from a memory-only file as global variables. To do
this:

1. Create a file class with some fields of the required type (Character, Numeric, and so on).

2. Designate the file class as a memory-only file using this command.

3. Use the fields in your methods as temporary storage for data.



388 Chapter 5—Commands

When a memory-only file is changed to read/write, its fields are not cleared from the current
record buffer. Similarly, when a file is changed from read/write to memory-only, its records
are not cleared. Memory-only fields are initialized as empty when the library is launched.

If used in a reversible block, Set memory-only files is reversed when the method containing
the block finishes. This command does not clear the Prepare for update mode.

In the method editor, a list of files is displayed. You can Ctrl/Cmnd-click on the file names
to select multiple names.

Set memory-only files {fGlobals}

Set OMNIS window title
Reversible: YES Flag affected: NO

Parameters: Text (window title)

Syntax: Set OMNIS window title {text}

This command changes the title on the OMNIS application window (available under
Windows only). The text parameter provides the new title which may contain square bracket
notation. Unless reversed as part of a reversible block, the new title will remain until
OMNIS is restarted.

Begin reversible block

Set OMNIS window title  {Call Tracker}  ;; for Windows only

End reversible block

Install menu MCalls



Commands 389

Set page width
Reversible: NO Flag affected: NO

Parameters: Number (of characters across page)

Syntax: Set page width {number}

This command changes the width of reports printed to file or port. The default setting is
stored in the preferences file and is selected automatically when the destination is chosen.
Set page width overrides this setting and must be used after selecting the report destination.

Set report name ROUTEXT

Send to file

Set print file name {OUT.TXT}

Set lines per page {66}

Set page width  {45}

Print report

Set palette when drawing
Reversible: NO Flag affected: NO

Parameters: � Color shared pictures
� Never

Syntax: Set palette when drawing [([Color shared pictures][ ,Never])]

This command controls the color drawing system used to display certain types of color
bitmap. When drawing pictures which contain more colors than can be accurately rendered
by the display adapter, you can adjust the system's palette of available colors to match the
palette stored inside the picture data. This will affect all colors used on the screen, not just
OMNIS. This command lets you selectively turn on this option for shared pictures.

Set palette when drawing  (Color shared pictures)

Open window instance WPICTS

Set palette when drawing  (Never)

Open window instance WNOPICTS



390 Chapter 5—Commands

Set password
Reversible: NO Flag affected: YES

Parameters: Server password

Syntax: Set password {password}

This command sets the password of the remote database server. This password should not
be confused with any passwords required by the file server or operating system software. A
simple logon sequence for a local ORACLE database is:

Start session {ORACLE}

If flag true

Set username {Scott}

Set password  {Tiger}

Logon to host

If flag false

OK message {Error logging on: [sys(132)]}

End If

Else

OK message {Can't start ORACLE}

End If



Commands 391

Set port name
Reversible: NO Flag affected: YES

Parameters: Port name (COMn: or LPTn:)

Syntax: Set port name {port-name}

This command specifies the name of the port to be used with subsequent input or output via
the port. The flag is set if the port is successfully selected. The command should follow
Send to port. You can set the baud rate and other parameters for the port using Set port
parameters.

Set port name is not reversible, but if you use it in a reversible block the specified port is
closed when the method terminates.

Set report name RPORT

Send to port

Switch sys(6)=‘M’

Case kTrue

Set port name  {1 (Modem port)}

Default      ;; if Windows

Set port name  {COM1:}

End Switch

Set port parameters {1200,n,7,2}

Print report

Set port parameters
Reversible: NO Flag affected: YES

Parameters: � Convert for ImageWriter (this parameter MacOS only)
Baud rate, Parity, Data bits, Stop bits,
X or H (XON/XOFF protocol or Hardware handshake), CPI,
LPI; include a comma for X|H and/or CPI parameters when not
specifying a value; see examples

Syntax: Set port parameters [(Convert for ImageWriter)] {baud-rate,
parity, data-bits, stop-bits[,X|H][ ,cpi][ ,lpi]}

This command sets the serial port parameters. When you use Select port in a method, the
baud rate and other parameters are set to the Control panel settings. If you need to change
the settings you can do so with this command, which should follow a Send to port. The flag
is set if the command is successful.

For a baud rate of 9600, no parity, eight data bits and 1 stop bit, the command is:

Set port parameters  {9600,n,8,1}



392 Chapter 5—Commands

The fifth character in the parameter string can be 'X' (for XON/XOFF protocol) or 'H' for
hardware handshake. The 'H'/'X' can be in upper or lower case.

The CPI and LPI parameters are numbers which specify characters and lines per inch. These
are used by OMNIS to justify fields in the report - not sent as control characters to the
printer.

Under MacOS, you use the Convert for imagewriter  option to insert control codes suitable
for an Apple ImageWriter. On the PC, you use Output translation  in conjunction with the
.INI file settings to convert characters with ASCII codes greater than 128 into combinations
of backspace and other characters suitable for simple output devices with limited or
differing character sets.

; example 1

Set port parameters  {9600,n,8,1,,10,6}

; extra comma indicates no change to the Handshake parameters (X/H)

Set port parameters  {9600,n,7,1,X}

; Sets up XON/XOFF handshake protocol

; example 2

Set report name RPORT

Send to port

Switch sys(6)=‘M’

Case kTrue

Set port name {1 (Modem port)}

Default      ;; if Windows

Set port name {COM1:}

End Switch

Set port parameters  {1200,n,7,2}

Print report

Set print or export file name
Reversible: YES Flag affected: YES

Parameters: File name (full path can be specified)

Syntax: Set print or export file name {print-file-
name}

This command specifies the print file name to which printed output is to be directed. The
flag is set if the print file is successfully selected. If you use Set print or export file name in
a reversible block, the print file is closed when the method containing the reversible block
terminates.

Once the file name has been specified, Send to file directs the report output to the file. As
each report is printed, its output is added to the end of the last report in the file.



Commands 393

If sys(6)=‘M’

Set print or export file name  {HD80:Work:Output file2}

Else

Set print or export file name  {C:\work\output2.prn}

End If

Send to file

Set report name r_addresses

Print report

Set publisher options
Reversible: YES Flag affected: YES

Parameters: � Publish on save
File or field list

Syntax: Set publisher options [(Publish on save)] {file|field1[,file|field2]...}

This command sets up the conditions under which the editions for the published fields in the
list are updated. The Publish on save option causes the field values to be published when
the current record buffer values for the fields are changed. For list fields, the value is
published when the evAfter message is sent to the field.

Set publisher options alters the publisher options for all the published fields in the list. The
field list can take a file name (for all fields in a file) or a range of fields, which includes a
range of fields in the order listed in the Field names window. If no field list is given, the
command operates on all published fields (in the library).

The flag is set if the command alters the options for one or more fields successfully. The
flag is cleared if not running under System 7. If placed within a reversible block, the options
are returned to their former status when the method terminates.

Publish field CNAME {HD80:Public:Sales-Name}

Publish field CTOTAL {HD80:Public:Sales-Total}

Set publish options (Publish on save) {CNAME,CTOTAL}

Prepare for edit

Enter data

Update files if flag set



394 Chapter 5—Commands

Set read-only files
Reversible: YES Flag affected: YES

Parameters: File or list of files

Syntax: Set read-only files {file1[,file2]...}

This command sets the file mode of the specified file(s) to read-only. You can read but not
write to a read-only file. Set read-only files does not cancel the Prepare for update mode.

If you use this command in a reversible block, the file reverts to its original mode when the
method containing the command block terminates.

In multi-user systems, you use Set read-only files to prevent OMNIS from locking certain
files. When you make files read/write, they are locked and re-read. In multi-user systems,
records such as invoice numbers and totals, accessed by a number of users, should be made
read-only to prevent delays caused by record locking. You must return the file to read/write
status momentarily while it is updated.

In the method editor, a list of files is displayed. You can Ctrl/Cmnd-click on the file names
to select multiple names.

Set read-only files  {FCONSTANTS,FSUPPLIERS}

Set main file {FORDERS}

Prepare for insert

Enter data

Update files if flag set

Set read/write files
Reversible: YES Flag affected: YES

Parameters: File or list of files

Syntax: Set read/write files {file1[,file2]...}

This command sets the file mode of the specified file(s) to read/write. The read/write file
mode is the default type of OMNIS file; you can read and write data to a read/write file. The
other three file modes are read-only, closed and memory-only. If a file is changed to
read/write mode when in Prepare for update, the data for the file class is reread from disk.
In multi-user systems, read/write files are locked when a Prepare for... command is
executed.

The file mode will revert to its former state if you use the command in a reversible block.

In the method editor, a list of files is displayed. You can Ctrl/Cmnd-click on the file names
to select multiple names.



Commands 395

; NewInvoice

Set read-only files {fInvNumber}

Prepare for insert

Enter data

If flag true

Set read/write files  {fInvNumber}

; waits for and locks fInvNumber file

Calculate InvNo as cInvNum+1

Calculate cInvNum as InvNo

Update files ;; update both Invoice and Constants file

End If

Redraw wInvoice

Set record spacing
Reversible: NO Flag affected: NO

Parameters: Measurement (number)
� Measurement in cms (leave unchecked for inches)

Syntax: Set record spacing [(Measurement in cms)] {number}

This command specifies the line spacing for the record section of the current report class. It
overrides the setting in the record section properties for the current report. The setting
remains in force until the next Set report name.

Set report name RLABELS

Set labels across page {3}

Set record spacing  (Measurement in cms) {5.2} ;; Default is inches

Print report

or do it like this

Do $clib.$reports.MyReport.$recordspacing.$assign(5.2)



396 Chapter 5—Commands

Set reference
Reversible: NO Flag affected: NO

Parameters: Variable name (of type Item reference)
Notation for an item (can be a calculation)

Syntax: Set reference variable-name to notation

This command sets up and stores a reference to an item in a reference variable. It assigns an
alias for an item of notation that you do not want to type each time the item is referenced in
the code. The variable can be a local, class, or task variable of type Item reference.

; Declare class variable FREF of type Item reference

Set reference  FREF to LIBRARY1.$windows.SALESWINDOW.$objs.TOTAL

; now set the color of the TOTAL field

Do FREF.$forecolor.$assign(6) ;; set the color of the TOTAL field

Set repeat factor
Reversible: NO Flag affected: NO

Parameters: Number (that is, the repeat factor)

Syntax: Set repeat factor [{number}]

This command specifies the number of copies of the record section to be printed. It
overrides the repeat factor specified in the report properties for the current report. Set repeat
factor is particularly useful when printing multiple labels. The setting remains in force until
the next Set report name. If the repeat factor is left blank (or evaluates to zero), the printing
of the record sections of a report is suppressed completely; all heading sections, totals and
subtotals are still calculated correctly.

Set report main file {FLABELS}

Set report name RLABELS

Set labels across page {3}

Set repeat factor  {2}

Set label width {3.4}

Print report

or do it like this

Do $clib.$reports.MyReport.$repeatfactor.$assign(2)



Commands 397

Set report main file
Reversible: NO Flag affected: NO

Parameters: File name

Syntax: Set report main file {file-name}

This command specifies the main file for the current report. When a report is printed,
OMNIS uses the main file set by the last Set main file.  Set report main file overrides the
main file setting by specifying a new main file specifically for the report. The setting
remains in force until the next Set report name.

Printing connected files
When printing connected files, it is essential that the child file is made the main file. Only
the main file and its connected parent files are automatically read into the current record
buffer.

If no sort fields are specified in the report class, the report generator steps through the
records in the order defined by the record sequencing number for the main file. Sort fields
let you reorder the report records.

Set report name RORDERS

Set report main file  {FORDERS}

Clear sort fields

Set sort field ORD_CODE

Prompt for destination

Print report

or do it like this

Do $clib.$reports.MyReport.$mainfile.$assign(FORDERS)

Set report main list
Reversible: NO Flag affected: NO

Parameters: List or row name

Syntax: Set report main list list-name

This command specifies a list as the source for the data for the current report. When a report
is printed, OMNIS uses the main file specified either in $mainfile or the file set by the last
Set main file command. Set report main list lets you override the main file setting by
specifying a list, from which data is read for the next printed report.

A list-based report prints one record for each line in the list. The data file is not used unless
the report contains auto find fields. Sorting, searching, subtotals, and so on, continue to
work the same way as for file-based reports. All field values are taken from the list and
records are read in list order.



398 Chapter 5—Commands

When a Prepare for print command is encountered, the current list or file setting overrides
the Main file setting used in the report parameters dialog.

Set report name RLNAMES

Set report main list  LIST1

Prompt for destination

Print report

or do it like this

Do $clib.$reports.MyReport.$mainlist.$assign(LIST1)

Set report name
Reversible: YES Flag affected: NO

Parameters: Report name

Syntax: Set report name report-name

This command selects a report class for use with subsequent Print... commands. It
terminates any report in progress.

If you use Set report name in a reversible block, the previous report name will be restored
when the method terminates.

Set report name  RLABEL

Set sort field CXTITLE (Upper case)

Print report



Commands 399

Set right margin
Reversible: NO Flag affected: NO

Parameters: Measurement
� Measurement in cms (leave unchecked for
inches)

Syntax: Set right margin [(Measurement in cms)] {number}

This command specifies the right margin for the current report class. It overrides the right
margin setting in the report properties until such time as the current report is reset.

Set report name Rorders

Yes/No message {Print on A4 paper?}

If flag true

Set bottom margin (Measurement in cms) {2.34}

Set top margin (Measurement in cms) {1.2}

Set left margin (Measurement in cms) {1.2}

Set right margin  (Measurement in cms) {1.2}

Else

Set bottom margin {0.5}

Set top margin {0.5}

Set left margin {0.5}

Set right margin  {0.5}

; Default measurement is inches

End If

Print report

or do it like this

Do $clib.$reports.MyReport.$rightmargin.$assign(0.5)

Set search as calculation
Reversible: NO Flag affected: NO

Parameters: Calculation

Syntax: Set search as calculation [{calculation}]

This command sets the current search as the single line calculation specified. The
calculation replaces the current search class if one has been set. A subsequent report, Search
list or a Find command with Use search will use the search calculation.

Search calculations allow the index optimization routine in OMNIS to select a suitable
index, provided that such an index is available. Leaving the calculation blank has the effect
of clearing the previous search calculation.



400 Chapter 5—Commands

Set main file {f_client}

Open window instance w_Address

Set search as calculation  {SURNAME = 'Smith'}

Find on TOWN {'London'}(Exact match,Use search)

; Uses TOWN index, locates Londoners, and uses search to locate

; Smiths.  Exact match applies to the 'London' match

Redraw w_Address

This example moves selected lines only between lists.

Set current list LIST2

Set search as calculation  {#LSEL}

Merge list LIST1 (Use search)

Redraw lists

Set search name
Reversible: YES Flag affected: NO

Parameters: Search class name

Syntax: Set search name [{search-name}]

This command sets the search class to be used with reports, Search list and Find (using
search) commands. If no search class name is included, the current search is cleared. Search
classes allow subsets of the records to be printed or worked on.

A Find first (Use search) command reads in the first record which matches the current
search criterion and creates a find table. Subsequent Next commands print out the records in
the table.

If used within a reversible block, the search name reverts to its former setting when the
method terminates.



Commands 401

; example 1

Set search name  S_Area1

Set report name R_list

Print report (Use search)

; example 2

Set search name  S_Area2

Set main file {FORDERS}

Clear main & connected

Prepare for print

Find first (Use search)   ;;  Creates table of records which match

While flag true

Print record

Next

End While

End print

Set server mode
Reversible: YES Flag affected: NO

Parameters: � Field requests
� Field values
� Advise requests
� Commands

Syntax: Set server mode [([Field requests][,Field values]
[,Advise requests][,Commands])]

This command sets OMNIS to act as a DDE server and specifies which DDE commands it
will accept. With one or more of the check box options selected OMNIS will respond to the
corresponding commands and demands from a client. If none is selected, server mode is
deselected.

All four server mode check box options have equivalent DDE commands which are
described separately: Accept field requests, Accept field values, Accept advise requests and
Accept commands.

Irrespective of the mode selected, OMNIS will only accept field values and commands
when in enter data mode, and accept commands when no methods are running.

OMNIS will only respond to a request to act as a server if the Initiate message from the
client contains at least the name of the program, that is, OMNIS. If the client specifies a
topic, it has to be equal to the OMNIS library name without the .LBR extension. OMNIS
responds with the current library name if the client does not specify the topic.



402 Chapter 5—Commands

If no options are set, OMNIS is disabled as a server except for the System Topic. If OMNIS
is already a server when the options under Set server mode are disabled, one of two things
will happen:

1. If the options have been disabled during a reversible block, the client sending the Initiate
message will get busy acknowledgments until the reversible command method finishes.
You cannot initiate any new conversations during this time.

2. OMNIS will end the communication by sending the client a Terminate message.

All four server mode options have equivalent commands which are described separately:
Accept field requests, Accept field values, Accept advise requests and Accept commands.

Set sort field
Reversible: YES Flag affected: NO

Parameters: Field name
� Descending
� Upper case
� Subtotals
� New page

Syntax: Set sort field field-name [([Descending]
[,Upper case][,Subtotals][,New page])]

This command specifies a field on which a list or report is to be sorted. The report generator
systematically works through the records in the main and connected files and prints them
using the report class definition. You can use sort fields to sort the records into a specific
index order.

A report can be sorted on up to nine fields: you can specify sort fields in the report class or
by using Set sort field.  Since sort fields are cumulative, use Clear sort fields first to clear
any that already exist.

When a report name is selected, the report class sort fields are used but you can override
these sort fields by clearing them and specifying new sort ones with Set sort field. For nine
sort fields, you use the Set sort field command nine times in succession. Using this method,
however, can be slower than sorting on fields that are already indexed.

You can set the sort fields for lists using Set sort field. The Sort list command sorts the
current list in the order specified by the current sort fields. Note that lists have to be
explicitly redrawn before you can view the results of a sort.

If used within a reversible block, the sort field setting reverts when the method terminates.



Commands 403

; to sort a report on fields AREA, DEPT and NAME

Set report name RCOMMISSION

Clear sort fields

Set sort field {AREA}

Set sort field {DEPT}

Set sort field {NAME}

Print report

The Descending option sorts the records in descending order. The Upper Case option
converts lower case characters to upper case for the purpose of sorting. The Subtotals
option causes the Subtotal section in the report to be printed when the value of the sort field
changes. Thus, in the above example, when AREA changes, subtotals 1 is printed, when
DEPT changes, subtotals 2 is printed, and so on. The New Page option starts a new page
when the field value changes.

Set SQL blob preferences
Reversible: YES Flag affected: NO

Parameters: Default, Load all, Segment, or Threshold
Chunk size/Threshold

Syntax: Set SQL blob preferences (Default|Load all|Segment|Threshold)
{chunk-size/threshold}

This command controls the way pictures, large strings, and BLOBs (Binary Large Objects)
are read across the DAM interface. The capabilities of each DAM dictate how the blob is
handled. Set SQL blob preferences sets the preferences for the current cursor.

Blob buffering is the ability of the API to bring a blob to or from the server in “chunks”.
Although OMNIS and many servers support blob sizes of up to 2 gigabytes, the size that
may be totally buffered in memory is limited. This command lets you pass a blob as a series
of smaller chunks. You can split strings, pictures, and binaries over 256 bytes into chunks.

Set SQL blob preferences has four options: Default, Load all, Segment, or Threshold.

With the Default option the DAM deals with splitting the blob.

With the Load all option the blob is passed as one chunk. The DAM currently attached may
not be able to pass chunks of that size.

With the Segment option you specify the chunk size.

With the Threshold option you specify the threshold/chunk size.



404 Chapter 5—Commands

Set SQL script
Reversible: NO Flag affected: YES

Parameters: Field name or variable

Syntax: Set SQL script {field-name|variable}

This command takes a string held in a specified field and loads it directly into the SQL
statement buffer. The field can be any OMNIS character field or variable. The field value
can include square bracket notation and indirect square bracket notation. Carriage returns
are converted to spaces before being sent to the remote database. Set SQL script will clear
the flag and leave the SQL buffer unaltered if the text contains square bracket notation with
invalid field names or calculations.

You should use the command with care since, apart from evaluating square bracket
notation, this process bypasses the normal syntax checking carried out when using SQL: or
Perform SQL.

Calculate CVAR1 as 'Insert publishers (pub_name,pub_id)
values (@[NAME],@[ID])'

Set SQL script {CVAR1}

If flag false

OK message {Error loading SQL buffer with [CVAR1]}

Quit method

End If

Execute SQL script

; Handle errors from server

Set SQL separators
Reversible: YES Flag affected: NO

Parameters: Thousand and/or Decimal separator type

Syntax: Set SQL separators {[thousand-separator][/decimal-separator]}

This command sets the thousand and decimal separators for numbers that are sent to a
remote server. You can set the separators in this way for each session. You must use
different characters for each separator type. The separators revert back to their default when
the session is closed.

To enter a decimal separator only you should use the syntax /decimal-separator, that is,
include the forward slash.

Most SQL servers use English/American numeric separators, that is, commas representing
the thousand separator and a period representing the decimal separator. When using
European numeric separators, that is, periods representing the thousand separator and a
comma representing the decimal separator, there would be a mismatch between numbers



Commands 405

you send to the server and what the server expects. This command lets you set the SQL
separators and remedy the mismatch.

Set SQL separators  {,/.}

; set to comma/period which English/American server expects

Set subscriber options
Reversible: YES Flag affected: YES

Parameters: � Subscribe automatically
File or field list

Syntax: Set subscriber options [(Subscribe automatically)]
[{file|field1[,file|field2]...}]

This command controls whether the subscribed fields in the list are to be automatically
updated. When Subscribe automatically has been selected, the values are set up when the
library starts up and updated whenever OMNIS is notified that the values have been
changed. The new values are not made available to the library while there is a design
window open as the top window. When a subscriber is updated, the evSent message is sent
to any window or library $control() methods.

The command alters the subscriber options for all the subscribed fields in the list. The field
list can take a file name (for all fields in a file) or a range of fields, which includes a range
of fields in the order listed in the Field  names window. If no field list is given, the
command operates on all subscribed fields within the library.

The flag is set if the command alters the options for one or more fields successfully. If
placed within a reversible block, the options are returned to their former status when the
command is reversed.

Subscribe field CNAME {HD80:Public:Sales-Name}

Subscribe field CTOTAL {HD80:Public:Sales-Total}

Set subscriber options (Subscribe automatically) {CNAME,CTOTAL}

Enter data

Set subscriber options {CNAME,CTOTAL}



406 Chapter 5—Commands

Set timer method
Reversible: YES Flag affected: NO

Parameters: Interval in seconds (must be an integer, e.g. 300 sec)
Code class name
Method name

Syntax: Set timer method interval sec [code-class-name/] [{method-name}]

This command calls the specified method at regular intervals while waiting for a keyboard
input; the called method should preferably be one contained in a code class. You could use
this command for automatic telephone dialing, regular checks for electronic mail, and so on.

The command specifies the timer method and the interval in seconds between calls to the
timer method. This interval can be between 1 and 30,000 in the form "n sec" where n is the
number of seconds. OMNIS will start the next timer method when the method which is
currently executing, finishes. Timer methods cannot operate in real time as OMNIS will not
execute a timer method while another method is running or when an OK or Yes/No message
is displayed on the screen.

The timer method in your code class should not contain a Quit all methods as this will
terminate any Enter data commands which are running. You can also use an Enter data
inside a timer method: if so and you do not clear the timer method, the timer method
continues to be active while OMNIS carries out the Enter data part of the timer method.

You can use Set timer method in a reversible block, in which case the timer method is
cleared when the executing method terminates.

; a menu method

Set timer method  60 sec CODECLASS/Timer

OK message {Now play the minute waltz!}

; Timer method in CODECLASS

OK message {Timer method triggered once only}

Clear timer method



Commands 407

Set top margin
Reversible: NO Flag affected: NO

Parameters: Measurement
� Measurement in cms (leave unchecked for inches)

Syntax: Set top margin [(Measurement in cms)] {number}

This command specifies the top margin for the current report class. It overrides $topmargin
until such time as the current report is reset.

Set report name Rorders

Yes/No message {Print on metric A4 paper?}

If flag true

Set bottom margin (Measurement in cms) {2.34}

Set top margin  (Measurement in cms) {1.2}

Else

Set bottom margin {1.0}

Set top margin  {1.0}

; Default measurement is inches

End If

Print report

or do it like this

Do $clib.$reports.MyReport.$topmargin.$assign(1.0)

Set top window title
Reversible: YES Flag affected: NO

Parameters: Window title

Syntax: Set top window title [{window-title}]

This command specifies the title for the top window instance. You can use square bracket
notation within the window title. The title of the top window instance is cleared if you omit
the window title parameter (or it evaluates to an empty string). The title reverts to the
normal title if the window instance is closed and reopened. An error occurs if there is no
window instance.

If you use Set top window title in a reversible block, the title reverts to its normal value
when the method containing the reversible block terminates.



408 Chapter 5—Commands

Open window instance WACCOUNTS/wacc1

Yes/No message {Do journals?}

If flag true

Set top window title  {'Journals for [#D]'}

Else

Set top window title  {'Invoices'}

End If

Set transaction mode
Reversible: YES Flag affected: NO

Parameters: Automatic, Generic, or Server

Syntax: Set transaction mode (Automatic|Generic|Server)

This command manages SQL transactions and controls when a transaction is committed to
the DBMS. Set transaction mode has three options: Automatic, Generic, and Server.

The Automatic option commits or rolls back each SQL statement automatically as soon as
the next SQL command starts (Begin SQL script, Perform SQL, Reset cursor) or if the
statement either did not generate a result set immediately after execution, or failed.

The Generic option implements basic transaction processing using Commit current session
and Rollback current session.

With the Server option the DAM in use takes complete control and uses the server SQL
dialect.

For more information on this command and its relationship to Autocommit, refer to OMNIS
Studio Data Access Manager.

If fDestType = 'SYBASE'

Set transaction mode  (Server)     ;; (autocommit off)

Perform SQL {BEGIN TRAN}

Else     ;; Oracle and OMNISSQL

Reset cursor(s) (Session)

Set transaction mode  (Generic)     ;; (autocommit off)

End If



Commands 409

Set username
Reversible: NO Flag affected: YES

Parameters: Server user name

Syntax: Set username {user-name}

This command sets the username for logging onto a remote database server. A simple logon
sequence for a local ORACLE database is:

Start session {ORACLE}

If flag true

Set username  {Scott}

Set password {Tiger}

Logon to host

If flag false

OK message {Error logging on: [sys(132)]}

End If

Else

OK message {Can't start ORACLE}

End If

The format for the username string when using a remote ORACLE server is:

username/password@driver_prefix:database_string

Show 'About...' window
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Show 'About...' window

This command displays the standard "About..." window which is available as an option in
the Help  menu under Windows, or the Apple menu under MacOS.  You can change the
standard "About..." screen with the Set 'About...' method command. For example

Show 'About...' window

; Now redefine the 'About...' method

Set 'About...' method HELP/About this demo

; Now the only way to see the original 'About'

; is to execute another Show 'About...' window



410 Chapter 5—Commands

Show fields
Reversible: YES Flag affected: NO

Parameters: Field name or list of field names

Syntax: Show fields {field1[,field2,...]}

This command shows the specified window field or list of fields. You can hide fields with
Hide fields or using the notation. Inactive pushbuttons with the Do not gray attribute cannot
be made visible with this or any other command.

If you use Show fields in a reversible block, the specified fields are hidden when the method
containing the reversible block terminates.

Hide fields { EntryId,EntryCompany,EntryTel }

Redraw CustWindow     ;; Fields are hidden

If ACCESS < 3

Show fields  { EntryId,EntryCompany,EntryTel }

Redraw CustWindow

End If

To show a single field on the current window

Do $cwind.$objs.FieldName.$visible.$assign(kTrue)

or to show all fields on the current window

Do $cwind.$objs.$sendall($ref.$visible.$assign(kTrue))

Show OMNIS maximized
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Show OMNIS maximized

This command shows OMNIS at its maximum size within the application window. This
command performs the same action as the Maximize option in the System menu and the
Maximize button on the application window.

OK message {Printing now}

Show OMNIS minimized

Print report

Show OMNIS maximized



Commands 411

Show OMNIS minimized
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Show OMNIS minimized

This command minimizes OMNIS which subsequently appears as an icon at the bottom of
the screen.

OK message {Printing now}

Show OMNIS minimized

Print report

Show OMNIS maximized

Show OMNIS normal
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Show OMNIS normal

This command shows OMNIS at its normal size within the application window. Icons for
other applications are visible along the bottom of the screen.

OK message {Printing now}

Show OMNIS minimized

Print report

Show OMNIS normal



412 Chapter 5—Commands

Show docking area
Reversible: NO Flag affected: NO

Parameters: � Show text
Toolbar name (a constant)

Syntax: Show docking area [(Show text)] toolbar-name

This command opens the top, bottom, left, or right docking area into which toolbars may be
installed. The docking area is specified using one of the constants: kDockingAreaTop,
kDockingAreaBottom, kDockingAreaLeft, kDockingAreaRight or kDockingAreaFloating.

When a toolbar is created each control may have a text label, for example, a Print button
may have the word “Print” associated with it. The Show text option allows these text labels
to be shown beneath the buttons.

Show docking area  {kDockingAreaTop}

Install Toolbar {T_New}   ;; toolbar installed on Top docking area

Alternatively you can use

Do $root.$prefs.$dockingarea.$assign(kDockingAreaTop)

Signal error
Reversible: NO Flag affected: NO

Parameters: Error number
Error text

Syntax: Signal error {error-number[,error-text]}

This command reports a fatal error which can be either a user-defined error or a built-in
OMNIS error. A fatal error is any error that normally halts method execution and reports an
error (for example, syntax error, or an out of memory error).

The fatal error is reported with the specified error code and text. Any error handler for that
code will be invoked. If there is no error handler or the error handler does not make a set
error action (SEA), the debugger is invoked, if available. Otherwise, execution halts with
the error message.

This command is useful for trapping user-defined errors, and is a convenient tool for
triggering an error situation inside OMNIS for whatever condition you may want to specify.

Test for only one user

If flag false

Signal error  (99,'Test for one user failed')

End If



Commands 413

Single file find
Reversible: YES Flag affected: YES

Parameters: Field name
Calculation
� Exact match

Syntax: Single file find on field-name [(Exact match)] [{calculation}]

This command locates a record in a single file only. It is similar to the standard Find
command but is not dependent on the main file; that is, the field used in Single file find does
not have to belong to the main file and it does not read in the connected records. You can
specify a calculation for Single file find which determines the value used in the Find. The
Exact match option with a blank calculation indicates that the command is to be executed
using the current value of the field, that is, the file is searched for a record whose index
value matches the current value of the specified field.

In multi-user systems, a Single file find while in Prepare for... mode causes additional
semaphores to be set. If the record is already locked, the user must wait for access to the
record.

Wait for semaphores

Single file find  on PRICE {PRICE <= COST*3}

If flag false

OK message {Can't find record}

End If



414 Chapter 5—Commands

Sort list
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Sort list

This command sorts the current list in the order specified by the current sort fields. You can
use Set sort field to set the sort fields. Note that lists have to be explicitly redrawn before
you can view the results of a sort.

Set current list CUSTLIST

Define list {NAME,TOWN,CITY}

Set main file {FCUST}

Build list from file (Use search)

Clear sort fields

Set sort field NAME

Set sort field TOWN

Sort list

Redraw lists

; Note, Build list can also use sort fields

Or do it like this

Do LIST.$sort(SortField1,SortOrder,SortField2,SortOrder, ..)

Sound bell
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Sound bell

This command sounds the system beep. You can sound the bell at any point in a method to
draw attention to a particular method, field, message, error, and so on.

Sound bell

Open window instance FWARNING

Enter data

Close window FWARNING



Commands 415

SQL:
Reversible: NO Flag affected: YES

Parameters: SQL script

Syntax: SQL: sql-script

This command adds a line of script to the SQL buffer. It loads the SQL script buffer with
lines of text ready to be sent to the remote database by a subsequent Execute SQL script.

The Begin SQL script and Reset cursor(s) commands clear the buffer ready for a new script.
The sql-script parameter is a text field which can contain square bracket and indirect square
bracket notation (which you use to send data to the server as a "bind" variable).

Each SQL: sql-script line is added to the current buffer with a carriage return delimiter.
When the script is sent to the server, each carriage return is replaced by a space character.
You can split a SQL statement over more than one line but literal values must not be split
between lines. A line can contain more than one SQL statement provided you use the
appropriate delimiter.

Text loaded into the buffer must be valid SQL script and must be understood by the server.
You use square brackets to load the buffer with text obtained from OMNIS functions,
variables and calculations. Indirect notation of the form @[Field] is not evaluated in
OMNIS but is handled by the DAMs, and lets you pass field values to the server without the
need for them to be included in the text of a SQL statement.

Set current session {SY_ONE}

Begin SQL script

SQL:  Insert into [TABLE]

SQL:  (col1,col2)

SQL:  VALUES (@[FIELD1],@[FIELD2])

End SQL script

Execute SQL script

; Deal with errors now



416 Chapter 5—Commands

Start program maximized
Reversible: NO Flag affected: YES

Parameters: Program name
Document or file name (full pathname for document or file)

Syntax: Start program maximized {program-name[ document-name]}

This command starts up a Windows application at its maximum screen size.  The program
name must be the program's module name which is usually, but not necessarily, the same as
its executable file name.  You can also specify the document or file name which must
include the full path name and a space after program-name.

The flag is set if the program is found.

You can pass other parameters such as command line switches by including them after the
document name.

Having run the program, OMNIS has no way of determining whether it is running except by
initiating a DDE conversation with it.

Test if file exists {C:\winword\winword}

If flag true

Start program maximized   {winword C:\winword\work\readme.txt}

End If

Start program minimized
Reversible: NO Flag affected: YES

Parameters: Program name
Document or file name (full pathname for document or file)

Syntax: Start program minimized {program-name[ document-name]}

This command starts up a Windows application as a minimized icon.  The program name
must be the program's module name which is usually, but not necessarily, the same as its
executable file name.  You can also specify the document or file name which must include
the full path name and a space after program-name.

The flag is set if the program is found.

You can pass other parameters such as command line switches, by including them after the
document name.



Commands 417

Having run the program, OMNIS has no way of determining whether it is running except by
initiating a DDE conversation with it.

Test if file exists {C:\winword\winword}

If flag true

Start program minimized   {winword C:\winword\work\readme.txt}

End If

Start program normal
Reversible: NO Flag affected: YES

Parameters: Program name
Document or file name (full pathname for document or file)

Syntax: Start program normal {program-name[ document-name]}

This command starts up a Windows application at its normal screen size.  The program
name must be the program's module name which is usually, but not necessarily, the same as
its executable file name.  You can also specify the document or file name which must
include the full path name and a space after program-name.

The flag is set if the program is found.

You can pass other parameters such as command line switches by including them after the
document name.

Having run the program, OMNIS has no way of determining whether it is running except by
initiating a DDE conversation with it.

Test if file exists {C:\winword\winword}

If flag true

Start program normal   {winword C:\winword\work\readme.txt}

End If

Start session
Reversible: NO Flag affected: YES

Parameters: DAM name

Syntax: Start session {DAM-name}

This command loads the specified DAM and initializes communication between the current
session and the remote database. It takes the DAM-name as the parameter. It is only
necessary to supply this command once per server, or after Quit session.

All DAMs are placed in the EXTERNAL folder under the main OMNIS folder. All DAM
names begin with the letter d. Under Windows DAMs have the .dll file extension, but you
don’t need to include it in the Start session command. For example under Windows, Start
session {dORACLE} will cause OMNIS to look for dORACLE.DLL.



418 Chapter 5—Commands

After a successful Start session, you can use Set hostname, Set username, Set password, and
Logon to host to log on to your database.

; You need plenty of memory for these two...

Set current session {Server1}

Start session  {dORACLE}

Set current session {Server2}

Start session  {dSYBASE}

; now log on to each server

Subscribe field
Reversible: YES Flag affected: YES

Parameters: Field name
Edition name

Syntax: Subscribe field field-name [{edition-name}]

This command subscribes a field to the specified edition. When a field is subscribed in this
way, its value is read from a file called an "edition". A full path can be given for the edition,
that is, a specification for the volume and folder in which the edition is located. The volume
can be another user's public folder or a network server. For example

If sys(113)   ;; that is, if Pubs and Subs available

Subscribe field SALESTOTAL { Fred's Mac:Public Folder:OMNIS-FredsApp-
Sales Total }

End If

If no edition name is given, the existing edition name is used, or if one does not already
exist, the default "library name-field name" is used.

The flag is set if the field is already subscribed to that edition or if the field is successfully
subscribed. If the field was formerly subscribed to a different edition, that subscription is
canceled, the new subscription set up and the flag set. If the command is used within a
reversible block, the edition is canceled when the command is reversed (but any former
subscription is not recreated if the command canceled one).

When a field is newly subscribed, none of the Subscriber options are set, so a Subscribe
now command must be used to update the field. If you want the edition to be updated
automatically, the Set subscriber options command must be used.

Subscribe field CNAME {HD80:Public:Sales-Name}

Subscribe field CTOTAL {HD80:Public:Sales-Total}

Set subscriber options (Subscribe automatically) {CNAME,CTOTAL}

Enter data

Redraw windows

Cancel subscriber  {CNAME,CTOTAL}



Commands 419

Subscribe now

Reversible: NO Flag affected: YES

Parameters: File or field list

Syntax: Subscribe now [{file|field1[,file|field2]...}]

This command updates the fields in the parameter list if they have been subscribed. The
field list can take a file name (for all fields in a file) or a range of fields, which includes a
range of fields in the order listed in the Field names window. If no list is given, all
subscriptions for the library are updated.

The flag is set if the command updates one or more fields successfully.

Subscribe field CNAME {HD80:Public:Sales-Name}

Subscribe field CTOTAL {HD80:Public:Sales-Total}

Enter data

Subscribe now {CNAME,CTOTAL}

Swap lists
Reversible: NO Flag affected: YES

Parameters: List or row name

Syntax: Swap lists list-name

This command swaps the definition and contents of the specified list with that of the current
list and sets the flag. After this command, the current list contains the fields and data which
were held in the specified list, and the specified list contains the fields and data which were
in the current list.

This command cannot be used to copy lists. To do this use Calculate LIST2 as LIST1.

; declare local vars LIST1 & LIST2 of List type

Set current list LIST1

Set main file {FNUMBERS}

Define list {NUM1,NUM2,BOOL1}

Build list from file

Swap lists  LIST2

; LIST2 now contains definition and data from LIST1 (current list)

; LIST1 is now empty



420 Chapter 5—Commands

Swap selected and saved
Reversible: NO Flag affected: YES

Parameters: Line number (can be calculation, default is current line)
� All lines

Syntax: Swap selected and saved [(All lines)] [{line-number}]

This command swaps the Saved selection state and the Current selection state and sets the
flag. To allow sophisticated manipulation of data via lists, a list can store two selection
states for each line; the "Current" and the "Saved" selection. The Current and Saved
selections have nothing to do with saving data on the disk; they are no more than labels for
two sets of selections. The lists may be held in memory and never saved to disk: they will
still have a Current and Saved selection state for each line but they will be lost if not saved.
When a list is stored in the data file, both sets of selections are stored.

Swap selected and saved allows the Saved selection state of the specified line (or All lines)
to be swapped with the Current set. You can specify a particular line in the list by entering
either a number or a calculation. The All lines option swaps the selection status for all lines
of the current list. The following example selects the middle line of the list:

Set current list LIST1

Define list {LVAR1}

Calculate LVAR1 as 1

Repeat

Add line to list

Calculate LVAR1 as LVAR1+1

Until LVAR1=6

Select list line(s) {3}

Save selection for line(s) (All lines)

Deselect list lines (All lines)

Swap selected and saved  (All lines)

Redraw lists



Commands 421

Switch
Reversible: NO Flag affected: NO

Parameters: Expression or calculation

Syntax: Switch expression

This command initiates a Switch method construct. You use a Switch statement to select a
course of action from a set of options based on the value of a variable, expression or
calculation. It is similar to an If–Else If construct although the performance of a Switch
construct tends to be faster.

The first line of the construction contains the Switch command. This defines the variable,
expression or calculation on which the choice of action will depend. Following the Switch
command, the Case commands provide values which, if matched with the expression
supplied in the Switch line, cause the methods between case lines to be executed.

You can nest multiple Switch statements, and embed other conditional statements such as If-
Else constructs.



422 Chapter 5—Commands

The following example builds a dataformat list for a graphs application. It uses the graph
major and minor types to build the correct list of data formats; the data formats are added to
the list using Add line to list, but for brevity, some have been commented out.

; Build Datalist

; Declare parameter vars MajType, MinType and Dataformat

Set current list GraphDataformatList

Switch  MajType

Case kGraphPie    ;; MajType is Pie chart

Add line to list {('Value',0)}

Case kGraphSpecial    ;; MajType is Special

Switch  MinType

Case kHistogram

Add line to list {('Value',0)}

Case kSpectralMap

Add line to list {('Value',0)}

Add line to list {('Value+Label',1)}

Case kPolar

Add line to list {('X+Y',1)}

Case kHighLowOpenClose,kDualYHighLowOpenClose

; Add data format(s) to list...

Case kContour

; Add data format(s) to list...

Default     ;; MinType must be kScatter or kScatterDualY

; Add data format(s) to list...

End Switch

Case kGraph3D    ;; MajType is 3D

Switch  MinType

Case k3DScatter

; Add data format(s) to list...

Default     ;; any other 3D minor type

; Add data format(s) to list...

End Switch

Default     ;; MajType is kGraphArea, kGraphBars, or kGraphLines

; Add data format(s) to list...

End Switch



Commands 423

You can write Switch statements that contain other constructs such as If-Else If statements.
Also note that if the Switch accepts one of a fixed number of possibilities and your method
has a Case command for each possibility, your method does not need a Default statement.
For example

Switch  LV_Data

Case kFalse     ;; LV_Data is a label

If ...

; do this

Else

; do this

End If

Case kTrue     ;; LV_Data is data

If ...

If ...

Else ..

End If

Else

If ...

Else ..

End If

End If

End Switch

Test check data log
Reversible: NO Flag affected: YES

Parameters: � Perform repairs

Syntax: Test check data log [(Perform repairs)]

This command tests if there are any reports of nonrepaired damage in the check data log. If
the Perform repairs option is not specified, the flag is set if there are any reports of
nonrepaired damage.

If the Perform repairs option is specified, an attempt is made to repair the damage. There
is no need for the check data log to be open. Furthermore, OMNIS automatically tests that
only one user is logged onto the data file (if not, the command fails with flag false), and
further users are prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will
be incremented at regular intervals. The command may take a long time to execute, and it is
not possible to cancel execution even if a working message with cancel box is open.

The command sets the flag if it completes the data repair successfully and clears the flag
otherwise. The command is not reversible.



424 Chapter 5—Commands

; First do a check data to obtain list of problems

Quick check

Test check data log

If flag true

OK message {Problems found in data file}

Open check data log

End If

Test clipboard
Reversible: NO Flag affected: YES

Parameters: Field name

Syntax: Test clipboard [field-name]

This command tests whether the data on the clipboard is suitable for pasting into the
specified field or current selection. The command sets the flag to true if and only if there is
data on the clipboard "suitable" for pasting into the specified or current field. "Suitability"
here is defined by the standard type conversion built into OMNIS, that is, a text field has to
be presented with some text, and a picture field with something that can be handled as a
picture, for example, a bitmap, metafile, PICT, OLE object, and so on.

Test clipboard  CVAR1

If flag true

Paste from clipboard CVAR1 (Redraw field)

End If



Commands 425

Test data with search class
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Test data with search class

This command tests the record in the CRB against the current search class. It sets the flag if
the record passes the test or if there is no current search class. If the data does not fit the
current search class, the flag is cleared.

Test data with search class uses the current search as the condition of the test which has
been set using Set search name or Set search as calculation.

; Declare local variable SCODE of Character type

Calculate SCODE as 'RT'

Set search as calculation {len(SCODE)>2}

Test data with search class

If flag false

OK message {Test failed, [SCODE] invalid}

End If

Test for a current record
Reversible: NO Flag affected: YES

Parameters: File class name

Syntax: Test for a current record [{file-name}]

This command tests for the presence of a current record from a specified file class. The flag
is set if a current record for the file is found and cleared if not. The flag is also cleared if the
selected file is a memory-only or a closed file. The test is carried out on the main file if no
other file class is specified.

Test for a current record  {FCLIENTS}

If flag false

OK message {No client record, locating first}

Find first

End If

Prepare for edit

Enter data

Update files if flag set



426 Chapter 5—Commands

Test for a unique index value
Reversible: NO Flag affected: YES

Parameters: Field name (must be indexed)

Syntax: Test for a unique index value on field-name

This command tests the specified indexed field for a unique value. The flag is set if the
current field value is a unique index value, and cleared if the value duplicates an existing
index value. In a multi-user situation, no account is made of field values in records held by
other work stations which are not yet updated to disk.

You use Test for a unique index value before storing a new value in a file. In the following
example, the proposed new part number is tested against the existing file.

Calculate PART_NUM as 'RT100'

Test for a unique index value  on PART_NUM

If flag true

Update files

Else

OK message {Part number already exists}

Cancel prepare for update

Quit method

End If

Test for field enabled
Reversible: NO Flag affected: YES

Parameters: Field name (of window field)

Syntax: Test for field enabled field-name

This command tests if the specified field on the top window instance is enabled, that is, if it
is not currently disabled with Disable fields or by setting $enabled to kFalse.  The flag is
always cleared if there are no window instances open or if the field does not exist.

Test for field enabled  {EntryId}

If flag true

Disable fields EntryId

Else

OK message {Field 4 is disabled}

Enable fields EntryId

End If

or do it like this

If $cwind.$objs.FieldName.$enabled = kTrue



Commands 427

Test for field visible
Reversible: NO Flag affected: YES

Parameters: Field name (of window field)

Syntax: Test for field visible field-name

This command tests whether a particular field is visible. If the specified field in the top
window instance is visible, that is, $visible is kTrue and the field has not been hidden with
Hide fields, the flag is set.  A field under another field or beyond the edge of the screen,
may be reported as visible and the flag set. The flag is always cleared if there are no
window instances open or if the field does not exist.

Test for field visible  EntryId

If flag true

Hide fields FieldName

End If

or do it like this

If $cwind.$objs.FieldName.$visible = kTrue

Test for menu installed
Reversible: NO Flag affected: YES

Parameters: Menu instance name

Syntax: Test for menu installed {menu-instance-name}

This command tests whether the specified menu instance is installed on the menu bar. The
flag is set if the menu instance is on the menu bar and cleared if it is not, regardless of
whether the menu instance is enabled or grayed out. The command does not apply to
hierarchical and popup menus.

Test for menu installed  {REP1}

If flag false

Install menu MREPORTS/REP1

End If



428 Chapter 5—Commands

Test for menu line checked
Reversible: NO Flag affected: YES

Parameters: Menu instance name
Line number

Syntax: Test for menu line checked menu-instance-name/line-number

This command tests whether the specified line of a menu instance is checked. You specify
the menu-instance-name and the line-number of the menu line you want to test. The flag is
set if the specified line of the menu instance is checked, and cleared if the line is not
checked. The flag is always cleared if the menu instance is not installed on the menu bar.

You can check menu lines using Check menu line. Uncheck menu line removes the check.

Install menu MREPORTS/rep1

Test for menu line checked  rep1/5

If flag true

Uncheck menu line rep1/5

Else

Check menu line rep1/5

End If

or do it like this

If $clib.$imenus.MENU.$objs.LineName.$checked = kTrue

Test for menu line enabled
Reversible: NO Flag affected: YES

Parameters: Menu instance name
Line number

Syntax: Test for menu line enabled menu-instance-name/line -number

This command tests whether the specified line of a menu instance is enabled. You specify
the menu-instance-name and the method-number of the menu line you want to test. It sets
the flag if the specified line of the menu instance is enabled. The flag is cleared if the menu
instance is not installed on the menu bar.

This command may still return false if the current user has no access to the menu line or if
the line is disabled because there is no current record, even after Enable menu line has been
executed.



Commands 429

You can disable or enable menus using Disable menu line and Enable menu line.

Install menu MREPORTS/rep1

Test for menu line enabled  rep1/3

If flag true

Disable menu line rep1/3

Else

Enable menu line rep1/3

End If

or do it like this

If $clib.$imenus.MENU.$objs.LineName.$enabled = kTrue

Test for only one user
Reversible: NO Flag affected: YES

Parameters: � All data files

Syntax: Test for only one user [(All data files)]

This command tests whether the current data file is being used by a single user, and if so
sets the flag.

If the All data files check box option is selected, all open data files are tested for a single
user. The flag is cleared if any one data file has more than one user.

If the flag is set, further workstations are prevented from logging on to the tested data file(s)
until the method containing the test command is terminated. The workstations will see a
padlock cursor until the method terminates.

OMNIS always sets the flag if the program is running in single user mode. Under Windows,
this means that the data is on a DOS volume without the SHARE command having been
run.

Test for only one user

If flag false

OK message {Sorry, option not allowed}

Quit method kFalse

End If

Do method INVOICES/Insert New



430 Chapter 5—Commands

Test for program open
Reversible: NO Flag affected: YES

Parameters: Program name

Syntax: Test for program open {program-name}

This command tests whether the specified program is running under Windows. The flag is
set if the specified program is running.

The program name must be the module name which is usually, but not necessarily, the same
as its executable file name. Under Windows 95, you need to specify the full pathname for
the program. Under Windows NT, the file PSAPI.DLL must be present in the OMNIS
directory or on the Windows path for this command to work. PSAPI.DLL is supplied in the
OMNIS directory of the Windows NT version of OMNIS Studio.

Test for program open  {c:\excel\excel}

If flag false

Start program minimized {c:\excel\excel}

End If

Test for valid calculation
Reversible: NO Flag affected: YES

Parameters: Calculation

Syntax: Test for valid calculation {calculation}

This command lets you test a calculation before it is evaluated. It is essential to test strings
to be evaluated by the eval(), evalf() and fld() functions before doing the evaluation.

The flag is set True if the calculation is valid.

Calculate CVAR1 as 'SALARY >= CVAR5'

Test for valid calculation  {evalf(CVAR1)}

If flag true

Set search as calculation {evalf(CVAR1)}

End If

Find first on SALARY (Use search)

See the eval() function.



Commands 431

Test for window open
Reversible: NO Flag affected: YES

Parameters: Window instance name

Syntax: Test for window open {window-instance-name}

This command tests if the specified window instance is open. If the window instance is
open, OMNIS sets the flag, otherwise the flag is cleared. Window instances are opened with
Open window instance or the $open() method.

Test for window open  {winst1}

If flag false

Open window instance Mywin/winst1

End If

Test if file exists
Reversible: NO Flag affected: YES

Parameters: File name (full file name and path)
Syntax: Test if file exists {file-name}

This command tests if the specified file exists. The flag is set if the file exists.  Otherwise, it
is cleared. You can use this command to prevent the user from overwriting existing files
with print files, and so on.

You cannot use this command to check for the existence of a data file if the data file is in
use by another workstation. Use Open data file for this type of checking.



432 Chapter 5—Commands

Switch sys(6)='M'

Case kTrue ;; for MacOS

Test if file exists  {HD80:Work:Output file1}

If flag false

Set print file name {HD80:Work:Output file1}

Else

OK message {Overwriting file Output file1}

Set print file name {HD80:Work:Output file1}

End If

Default ;; Under Windows, NT, or 95

Test if file exists  {C:\WORK\OUTPUT1.TXT}

If flag false

Set print file name {C:\WORK\OUTPUT1.TXT}

Else

OK message {Overwriting file OUTPUT1.TXT}

Set print file name {C:\WORK\OUTPUT1.TXT}

End If

End Switch

Test if list line selected
Reversible: NO Flag affected: YES

Parameters: Line number (can be calculation, default is current line)

Syntax: Test if list line selected [{line-number}]

This command tests the specified line of the current list and sets the flag if it is selected.
You can specify a particular line in the list by entering either a number or a calculation. If
the number is not specified, the test is performed on the current line of the list, that is, the
line number held in LIST.$line.

The following example loads the current line of the list if it has been selected:

Set current list LIST1

Test if list line selected

If flag true

Load from list

Else

Quit method

End If

or do it like this

If LIST1.$line.$selected = kTrue



Commands 433

Test if running in background
Reversible: NO Flag affected: YES

Parameters: None

Syntax: Test if running in background

This command tests if OMNIS is running in the background, that is, it sets the flag if
OMNIS is not the top application window.

The Windows environment and MacOS Finder both provide you with multi-tasking
facilities. When another program is running, with OMNIS in the background, you can
continue with tasks such as importing data although the processor's time becomes shared
between the current tasks. You can use this test to alter the behavior of the library when it
becomes the background task.

Test if running in background

If flag false

Open window instance WMONITOR

End If



434 Chapter 5—Commands

Text:
Reversible: NO Flag affected: NO

Parameters: Text and/or variable
� Carriage return
� Line feed
� Platform newline

Syntax: Text: text

This command adds text to the global text buffer. The Text: command supports leading and
trailing spaces and can contain square bracket notation, that is, you can include or add the
contents of a variable to the text buffer. You build up the text block using the Begin text
block and one or more Text: commands. The Carriage return, Line feed, and Platform
newline options add the appropriate character to the current Text: line. When you have
placed one Text: line and you press Ctrl/Cmnd-N to create a new method line, the Text:
command is selected and the current carriage return and line feed options are copied to the
new method line automatically. You should end a block of text with the End text block
command, and you can return the contents of the text buffer using the Get text block
command.

Note that in some cases the Text: command will not uncomment; for example, Text:
[Carriage return] will uncomment to Text: <empty text>.

; Declare var lv_TEXT of Character type

; Declare var lv_SUBTEXT of Character type

Calculate lv_SUBTEXT as ‘"EXCELLENT command or filename!"‘

Begin text block

Text: Why doesn't DOS ever       ;; includes trailing space

Text: say [lv_SUBTEXT]           ;; includes contents of lv_SUBTEXT

End text block

Get text block lv_TEXT

; lv_TEXT contains
Why doesn't DOS ever say "EXCELLENT command or filename!"



Commands 435

Trace off
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Trace off

This command turns off trace mode at a point in a method. See Trace on for more
information about trace mode and using the debugger.

Trace on

; this line is sent to the trace log ..

Trace off

; .. this line is not

Trace on
Reversible: NO Flag affected: NO

Parameters: � Clear trace log

Syntax: Trace on [(Clear trace log)]

This command sends all subsequent commands to the trace log and displays the current
command in the method editor. It lets you turn on trace mode at a point in a method where
you suspect that there may be a problem, or some code which is difficult to follow. In trace
mode, the topmost method design window is continually changed to show the command
being executed. Also when in trace mode, a trace log is maintained; this contains the class
name and method name in the Item column and the command line text in the Data column,
for all methods which are executed in trace mode or single-stepped. Error messages,
breakpoints, and so on, which occur in trace mode are also entered in the trace log. The
Clear trace log option deletes all existing entries before new lines are added to the log.

The trace log window is opened and brought to top either by Open trace log on the method
editor Options menu or by the Open trace log command.  This window allows the trace log
to be viewed, cleared or printed, and lets you alter the maximum number of lines in the log.
Double-clicking on a line in the trace log causes a method design window to be opened or
brought to the top with the appropriate command displayed. If Shift is pressed when double-
clicking, a new method design window is opened in preference to changing the identity of
the class displayed in the existing method design window.

If the double-clicked line in the log is a field value line, the value window for that field is
opened. The trace log is not adjusted when methods are modified. This means that trace log
lines may point to the wrong command or no command if the class containing that method
has been modified.



436 Chapter 5—Commands

Trace on

; this line is sent to the trace log ..

Trace off

; .. this line is not

Translate input/output
Reversible: YES Flag affected: NO

Parameters: � Enabled

Syntax: Translate input/output [(Enabled)]

This command converts text between ANSI and ASCII when you import or export/print
text, when you check the Enabled option. Windows applications such as OMNIS use the
ANSI character set which differs from the extended ASCII used by non-Windows DOS
programs and DOS hardware. This can cause text containing accented and other special
characters with ASCII values greater than 127 to be exported or printed incorrectly when
the normal Windows drivers are bypassed.

When the Enabled option is turned on, text exported or printed to port, clipboard, file or
TTY printer is converted from ANSI to extended ASCII. Conversely, imported text is
converted from ASCII to ANSI. The command has no effect when printing using the
standard Windows printer drivers except for the Generic TTY driver.

If you execute the command with Enabled unchecked, text conversion is turned off.

Send to file

Set print file name {OUT.TXT}

Translate input/output  (Enabled)

Print report

Translate input/output

; Turns off the translation since Enabled is not checked

Transmit text to port
Reversible: NO Flag affected: YES

Parameters: Text
� Add newline

Syntax: Transmit text to port [(Add newline)] {text}

This command sends text to a port; for example, you can send printer control characters. To
transmit control characters, you can use the chr() function inside square brackets. For
example, [chr(27,14)] sends escape 14.

The Add newline option enables you to send end of line characters after each line of text.



Commands 437

An error occurs and the flag is cleared if the port has not been selected or if the user presses
Ctrl-Break/Cmnd-period while waiting for the output buffer to be emptied.

When you use a printer connected to the port, this command lets you send escape codes to
control print characteristics.

Set port name {1 (Modem port)}

Set port parameters {1200,n,7,2}

Transmit text to port  {[chr(14)]}

Print report

Close port

Transmit text to print file
Reversible: NO Flag affected: YES

Parameters: Text
� Add newline

Syntax: Transmit text to print file [(Add newline)] {text}

This command sends text to a print file, for example, you can send printer control
characters. To transmit control characters, you can use the chr() function inside square
brackets. For example, [chr(27,14)] sends escape 14.

The Add newline option causes OMNIS to add end of line characters after each line of text.

An error occurs if no print file has been selected.

Set print file name {output.prn}

Transmit text to print file  {[chr(27,14)]}

Print report

Close print file



438 Chapter 5—Commands

Uncheck menu line
Reversible: YES Flag affected: NO

Parameters: Menu instance name
Line number

Syntax: Uncheck menu line menu-instance-name/line-number

This command removes the check mark on the specified line of a menu instance. No action
is taken if there is no check mark or the menu instance is not installed. You specify the
menu-instance-name and the line-number of the menu line you want to uncheck.

If you use Uncheck menu line in a reversible block, the specified menu line is checked again
when the method terminates.

; Help menu is installed as mHelp1 menu instance

Test for menu line checked mHelp1/6

If flag true

Uncheck menu line  mHelp1/6

Calculate HELP as 0

Else

Check menu line mHelp1/6

Calculate HELP as 1

End If

or do it like this

Do $clib.$imenus.MENU.$objs.LINE.$checked.$assign(kFalse)

Unload error handler
Reversible: NO Flag affected: YES

Parameters: Number or name/number (of custom menu method)

Syntax: Unload error handler [menu-name/]number [{method-name}]

This command unloads the specified error handler (a method is taken as its parameter). If
there are multiple error handlers at that method, they are all unloaded. The flag is set if an
error handler is unloaded. See Load error handler for more information about error
handlers.

Unload error handler  Code1/Hndlr1

Load error handler Code1/Hndlr2



Commands 439

Unload event handler
Reversible: NO Flag affected: NO

Parameters: Library name
Routine name
Parameters list

Syntax: Unload event handler [library-name/]routine-name
[(parameter1[,parameter2]...)]

This command unloads the specified event handler or, if no handler is specified, all event
handlers. If none exists, no action is taken. An event handler is always unloaded when the
library is closed or when the program quits. See Load event handler for more information
on event handlers.

Unload external routine
Reversible: NO Flag affected: YES

Parameters: Library name
Routine name
Parameters list

Syntax: Unload external routine [library-name/]routine-name
[(parameter1[,parameter2]...)]

This command unloads the specified external code from memory. If it is not already loaded
or is not found, the flag is cleared and no action takes place. If no external is specified, all
externals are unloaded. All loaded external routines are unloaded when the library is closed
or when the program quits. See Load external routine for more information on external
routines.

Unload external routine  {mathslib/sqroot}



440 Chapter 5—Commands

Until break
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Until break

This command terminates a repeat loop if the break command (Ctrl-Break/Cmnd-period) is
detected unless the break key itself is turned off with Disable cancel test at loops. Until
break does not perform a test. You can terminate a repeat loop using Break to end of loop
within the loop.

Set main file {f_prices}

Disable cancel test at loops

Repeat  ;; only way out of this loop is to enter a price of zero!

Open window instance W_enter_price

Enter data

If PRICE = 0

Break to end of loop

End If

Until break



Commands 441

Until calculation
Reversible: NO Flag affected: NO

Parameters: Calculation

Syntax: Until calculation

This command terminates a Repeat–Until conditional loop specifying a calculation as the
condition. The calculation is evaluated at the end of the loop that continues if the derived
value is zero.

; This method prints 10 messages

Calculate LVAR1 as 1

Repeat

OK message {Loop number [LVAR1]}

Calculate LVAR1 as LVAR1+1

Until  LVAR1 >= 11

; Loop ends when LVAR1 >= 11

Until flag false
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Until flag false

This command terminates the Repeat–Until conditional loop if the flag is false; execution
continues with the command following the Until.  If the flag is true, execution continues
with the command following the Repeat.

The following method uploads data to a server, and uses a Repeat-Until flag false construct
to select the records in turn, until there are no more records.

; FILENAME and TABLE are passed to this method

Set main file {[FILENAME]}

Find first

If flag true

Repeat

Working message (High position) {Inserting...}

Perform SQL: Insert into [TABLE] insertnames([FILENAME])

If flag false

Do method ErrorHandler

End If

Next

Until flag false

End If



442 Chapter 5—Commands

Until flag true
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Until flag true

This command terminates the Repeat–Until conditional loop if the flag is true; execution
continues with the command following the Until command. If the flag is false, execution
continues with the command following the Repeat command.

Repeat

Working message (Repeat count)

Yes/No message {End the loop?}

Until flag true

Update data dictionary
Reversible: NO Flag affected: YES

Parameters: � Test only
File or list of files (the default is all files)

Syntax: Update data dictionary [(Test only)] [{file1[,file2]...}]

This command updates the data dictionary for the specified file or list of files. The data
dictionary is a copy of the file class field definitions and is stored in the data file. The
command lets you write minor file class changes to the data dictionary. These minor
changes do not require data reorganization, and include changes such as adding new fields,
altering field names and altering field lengths.

Update data dictionary updates the data dictionary for the specified list of file classes. If
you omit a file name or list of files, all the files with slots in the current data file are
updated.

If a specified file name does not include a data file name as part of the notation, the default
data file for that file is assumed. If the file is closed or memory-only, the command does not
execute and returns with flag false.

If the Test only option is specified, no updating is actually carried out, and the flag is set if
at least one file in the data dictionary needs updating.



Commands 443

Certain changes made to a file class (that is, changes in indexes, field type changes and
changes in file connections) require data reorganization. In this case, using Update data
dictionary to keep the file class and the data file "in step" will be inappropriate. Reorganize
data lets you test whether a data file needs reorganization as well as to reorganize it if
necessary.

Reorganize data (Test only)

If flag false

Update data dictionary

; used when only minor changes to file class(es) have been made

Else

Yes/No message {Data needs reorganizing; do it?}

If flag true

Reorganize data

End If

End If

Update files
Reversible: NO Flag affected: YES

Parameters: � Do not cancel pfu (prepare for update)

Syntax: Update files [(Do not cancel pfu)]

This command writes the records in the current record buffer to disk and cancels the
Prepare for... mode. You must execute the command when OMNIS is in a Prepare for
update mode otherwise an error occurs.

If a warning error code kerrUnqindex or kerrNonull is returned during the execution of this
command, the Prepare for update mode is not canceled. This means that you can check for
these errors and recover without losing the data the user has already typed in. In fact, if you
issue a new Prepare for... command, OMNIS will reread records, and any data that is
already in the CRB will be lost.

Open window instance W_addresses

Prepare for edit

Enter data

If flag true

Update files

Else

OK message {Files not updated, data invalid}

End If

The Do not cancel pfu option prevents the command from canceling Prepare for update
mode. Thus, you can make more changes to the data, the multi-user locks remain in place,
and another Update files can be executed, for example



444 Chapter 5—Commands

Open window instance W_addresses

Prepare for edit

Enter data

If flag true

Update files  (Do not cancel pfu)

Calculate FCODE as 'New code'

OK message {Code changed}

Update files

End If

The following example inserts an invoice (in the parent file) and a list of related invoice
items (in the child file). The Do not cancel pfu option ensures that the parent record
remains locked until complete.

Set main file {FINVOICE}

Prepare for insert

Enter data

Update files  (Do not cancel pfu)

Set main file {FITEMS}

For each line in list from 1 to $linecount step 1

Prepare for insert

Load from list

Update files  (Do not cancel pfu)

End For

Update files

The Update command causes the indexes in the files to be re-sorted. Thus, in multi-user
mode, the files are locked while Update files is executing. You can control this file locking
by running Do not wait for semaphores, for example

Wait for semaphores

Prepare for edit

Enter data

Do not wait for semaphores

If flag true

Repeat

Working message {Waiting for file locks}

Update files

Until flag true

End If

When Do not wait for semaphores is active, Update files returns flag false and does nothing
if the file is locked.



Commands 445

Update files if flag set
Reversible: NO Flag affected: YES

Parameters: � Do not cancel pfu (prepare for update)

Syntax: Update files if flag set [(Do not cancel pfu)]

This command writes the current values in the current record buffer to disk if the flag is set,
that is, true. This is a variation on the Update files command and is equivalent to:

If flag true

Update files

End If

When the command follows Enter data, the Prepare for update mode is canceled, and the
record is stored on disk if the user clicks OK or presses the Return/Enter key.

Use event recipient
Reversible: NO Flag affected: YES

Parameters: Recipient tag

Syntax: Use event recipient {recipient-tag}

This command sets the event recipient by specifying the recipient tag. The named event
recipient must be currently available on the network; that is, its name must be on the Apple
Application  menu.

When OMNIS is launched, the recipient defaults to OMNIS, that is, events are sent to itself.
Similarly if you use this command without a parameter, the recipient reverts to OMNIS.

The following example shows the difference between Use event recipient, which is used
with a tag previously assigned by the user with Prompt for event recipient, and Set event
recipient, which takes a local application name as a parameter, and turns it into a recipient
tag.

Prompt for event recipient {MyApp1}

; Prompt user and select application do something with 'MyApp1'

Set event recipient {Microsoft Excel}

; This is the name of a current application, as shown on the

; Apple Application menu

; do something in 'Microsoft Excel' for example

Use event recipient  {MyApp1}

; go back to the tagged recipient,

; previously prompted to do something else.

; Finally go back to OMNIS by resetting recipient with no prompt

Use event recipient



446 Chapter 5—Commands

Variable menu command
Reversible: NO Flag affected: NO

Parameters: Command option (see below)
List of file and/or field names

Syntax: Variable menu command: option {file|field1[,file|field2]...}

This command performs one of the Variable context menu options on the specified field or
list of fields. You can specify one of the following Variable menu options.

Set break on variable change Remove from watch variables list

Clear break on variable change Send value to trace log

Set break on calculation Send minimum to trace log

Clear break on calculation Send maximum to trace log

Store min & max Send all to trace log

Do not store min & max Open value window

Add to watch variables list Open values list

You use the Variable menu to examine the value of fields and variables. Normally, you
open the Variable menu by right-button/Ctrl-clicking on a variable name in the method
editor, the Catalog, or anywhere else in OMNIS. The list of field names is entered in any of
the following ways (including a mixture of file class and field names):

Fieldname1,Fieldname2,Fieldname3

; or

FileName

; includes all the fields in the file class

File1.Fieldname1,File5

; includes Fieldname1 (from a file other than filename5)

; and all the fields in filename5.

You can select one of the following options:

Set break on variable change sets a variable change breakpoint for each variable in the
list.

Clear break on variable change clears any variable change breakpoint for each variable in
the list. If no variable names list is specified, all current variable change breakpoints are
cleared.

Set break on calculation sets a calculation breakpoint for each variable in the list. You can
set the calculation for each variable using Set break calculation.  Setting calculation breaks
for more than a very few variables will cause methods to run very slowly.



Commands 447

Clear break on calculation clears any variable change breakpoints for each variable in the
list. If no variable names list is specified, all current calculation breakpoints are cleared.

Store min & max causes minimum and maximum values to be stored for each variable in
the list.

Do not store min & max clears ‘Store min and max’ mode for each variable on the list. If
no variables are specified, all current ‘Store min and max’ are cleared.

Add to watch variables list marks each variable on the list as a watch variable.

Remove from watch variables list marks each variable on the list as not watched. If no
variables are specified, all variables are marked as not watched.  Note that variables with
breakpoints or with ‘Store min and max’ mode set always appear in the watch variables list.

Send value to trace log adds a line to the trace log for each variable on the list. If no
variables are specified, all values for all variables on the watch variables list are sent to the
trace log.

Send minimum to trace log adds a line to the trace log for each variable on the list for
which ‘Store min and max’ is set. If no variables are specified, the minimum values for all
variables for which ‘Store min and max’ is set are sent to the trace log.

Send maximum to trace log adds a line to the trace log for each variable on the list for
which ‘Store min and max’ is set. If no variables are specified, the maximum values for all
variables for which ‘Store min and max’ is set are sent to the trace log.

Send all to trace log adds a value line to the trace log for each variable on the list, and adds
minimum and maximum line(s) to the trace log for each variable on the list for which ‘Store
min and max’ is set. If no variables are specified, this is carried out for all appropriate
variables on the watch variables list.

Open value window opens a value window for each variable on the list, or for every
variable on the watch variables list if no variables are specified. There is a limit on the
number of windows that you can open at once.

Open values list opens the values list for each of the variable types given in the command
parameters. For example, Variable menu command: open values list {LVAR1, Local1}
opens two values lists, one for Hash variables, the other for Local variables. There is one
values list for each file class, so if more than one variable name in a particular file class is
specified the values list for that file will only be opened once. There is also a limit on the
number of windows that you can open at once.



448 Chapter 5—Commands

Wait for semaphores
Reversible: YES Flag affected: NO

Parameters: None

Syntax: Wait for semaphores

This command causes all the commands which set semaphores to wait with a lock cursor
until the semaphores for the required records are available.

When a library is first selected, Wait for semaphores is automatically selected to ensure
compatibility with existing libraries. It causes all the commands which set semaphores to
wait with a lock cursor until the semaphore is available then return with the flag set, or to
wait until the user cancels with a Ctrl-Break/Cmnd-period then return with a flag clear.

Semaphores
Semaphores are internal flags or indicators set in the data file to show other users that the
record has been required elsewhere for editing. Semaphores are set only when running in
multi-user mode, that is, the data file is located on a networked server, a Mac volume or on
a DOS machine on which SHARE has been run.

The commands which set semaphores are Prepare for edit, Prepare for insert, Update files
and Delete, and also, if pfu mode is on, Single file find, Load connected records, Next,
Previous and Set read/write files. Auto finds on windows always wait for semaphores.

The Edit/Insert  commands from the Commands menu always wait for a semaphore as do
automatic find entry fields.

Wait for semaphores

Prepare for edit ;;  Waits for record if locked by another user

Enter data

Do not wait for semaphores

If flag true

Update files

If flag false

OK message {File was locked, update failed}

End If

End If



Commands 449

While calculation
Reversible: NO Flag affected: NO

Parameters: Calculation

Syntax: While calculation

This command starts a While–End While loop that continues while a calculated condition
remains true. When the condition is not satisfied the method jumps out of the loop and the
first command after the closing End While is executed. A loop that begins with a While
command must terminate with an End While otherwise an error occurs.

While  PAID = 'YES'

Do method DeleteOldRecords

Next

End While

While flag false
Reversible: NO Flag affected: NO

Parameters: None

Syntax: While flag false

This command starts a While–End While loop that continues while the flag is false. While
the condition is false, a command or a series of commands is executed until the condition
becomes true, at which time the first command after the closing End While is executed. A
loop that begins with a While command must terminate with an End While, otherwise an
error occurs.

Do not wait for semaphores

If flag true

Update files

While flag false

Working message {Waiting for file locks}

Update files

End While

End If



450 Chapter 5—Commands

While flag true
Reversible: NO Flag affected: NO

Parameters: None

Syntax: While flag true

This command starts a While–End While loop which continues while the flag is true. While
the condition is true, a command or a series of commands is executed until the condition
becomes false, at which time the first command after the closing End While command is
executed. A loop that begins with a While command must terminate with an End While,
otherwise an error occurs.

While ...

While ...

[User commands]

End While

End While

In the following example, the loop continues until the Next (Exact match) command fails to
find a match.

Calculate LVAR1 as 0

Find on CODE (Exact match) {BR01}

While flag true

Calculate LVAR1 as LVAR1 +CBAL

Next (Exact match)

End While

Working message
Reversible: NO Flag affected: NO

Parameters: � High position
� Large size
� Cancel box
� Repeat count
Message (text)

Syntax: Working message [([High position][,Large size][,Cancel box]
[,Repeat count])] [{message}]

This command displays a message, usually to indicate that the computer is working or
waiting for input. An alternating icon indicates that the computer is busy. A working
message automatically closes when the method quits and control returns to the user.

For greater emphasis, you can display the working message with High position, and also
increase the size of the message box by checking the Large size option.



Commands 451

If a working message is placed in a loop with a Cancel button, pressing the Escape/Cmnd-
period or clicking on Cancel quits all methods. However, if you first execute Disable cancel
test at loops, you can implement an orderly exit.

Begin reversible block

Disable cancel test at loops

End reversible block

Repeat

Working message  (Cancel box)

If canceled

Break to end of loop

End If

Do LVAR1+1

Until flag true

OK Message {All done}

If Disable cancel test at loops is executed before the loop, the cancel is detected only on
executing the Working message.

A Repeat count option is available with Working message, and displays the value of an
internal counter which indicates the number of times a particular Working message has been
encountered. If the command is in a Repeat loop, the counter increments at each pass of the
loop.

Repeat

Working message  (Repeat count) {FIELD = [FIELD]}

Redraw working message

Do method DeleteOldRecords

Until DONE = 1

XOR selected and saved
Reversible: NO Flag affected: YES

Parameters: Line number (can be calculation, default is current line)
� All lines

Syntax: XOR selected and saved [(All lines)] [{line-number}]

This command performs a logical XOR of the Saved selection with the Current selection.
To allow sophisticated manipulation of data via lists, a list can store two selection states for
each line; the "Current" and the "Saved" selection. The Current and Saved selections have
nothing to do with saving data on the disk; they are no more than labels for two sets of
selections. The lists may be held in memory and never saved to disk: they will still have a
Current and Saved selection state for each line but they will be lost if not saved. When a list
is stored in the data file, both sets of selections are stored.

You can specify a particular line in the list by entering either a number or a calculation.



452 Chapter 5—Commands

The XOR selected and saved command performs a logical XOR (exclusive OR) on the
Saved and Current state and puts the result into the Current selection. Hence, if either of the
Current and Saved states is selected, the Current state becomes selected, but if both states
are equal, the resulting Current state will become deselected.

Logic Table (S=selected, D=deselected)

Saved Current Resulting Current State

  S   S   D

  D   S   S

  S   D   S

  D   D   D

The All lines option performs the XOR for all lines of the current list. The flag is set by this
command. The following example selects the middle line of the list:

Set current list LIST1

Define list {LVAR1}

Calculate LVAR1 as 1

Repeat

Add line to list

Calculate LVAR1 as LVAR1+1

Until LVAR1=6

Select list line(s) (All lines)

Save selection for line(s) (All lines)

Invert selection for line(s) {3}

XOR selected and saved (s) (All lines)

Redraw lists



Commands 453

Yes/No message
Reversible: NO Flag affected: YES

Parameters: Title (for message box)
� Icon
� Sound bell
� Cancel button
Message (text)

Syntax: Yes/No message [title] [([Icon] [,Sound bell]
[,Cancel button])] {message}

This command displays a message box containing the specified message and provides a Yes
and a No pushbutton. Also, you can include a Cancel button, and add a short title for the
message box. For greater emphasis, you can select an Icon for the message box (the default
“info” icon for the current operating system), and you can force the system bell to sound by
checking the Sound bell check box.

When the message box is displayed method execution is halted temporarily; it remains open
until the user clicks on one of the buttons before continuing. The Yes button is the default
button and can therefore be selected by pressing the Return key.

The number of lines displayed in the message box depends on your operating system, fonts
and screen size. In the message text you can force a break between lines (a line return) by
using the notation ‘//’.

You can insert a Yes/No message at any appropriate point in a method. If the user clicks the
Yes button, the flag is set; otherwise, it is cleared. You can use the msgcancelled() function
to detect if the user pressed the Cancel button.

Yes/No message  (Cancel button) {Do you want to proceed?}

If flag false

If msgcancelled()

; user chose Cancel

else

; user chose No

End If

Else

; user chose Yes

End If



454 Chapter 6—External Commands

Chapter 6—External
Commands

This chapter describes the external commands supplied with OMNIS. They are available for
all platforms except where indicated. All the external commands appear in the External
Commands... group at the bottom of the command list in the method editor. Many of them
start with an appropriate prefix which makes them easier to find; for example, the Lotus
Notes commands begin with NSF, all the FTP ones begin with FTP, and so on.

You can extend the functionality of OMNIS by adding your own externals, or external code
modules. You can implement these as external commands or functions which get called
from within OMNIS. Under Windows, they are written as DLLs or code resources under
MacOS. To use an external, you must place it in the EXTERNAL folder under the main
OMNIS folder; the commands supplied with OMNIS are placed there by default ready for
you to use.



External Commands 455

External Commands
Call DLL
Reversible: NO Flag affected: NO

Parameters: Library name (the DLL)
Procedure name
Parameters list
Return field

Syntax: Call DLL (library-name, procedure-name[,parameter1]...)
[returns return-field]

This command calls the registered DLL. The library-name is the name of the DLL
containing the procedure specified by procedure-name. You can add field parameters that
are pushed onto the stack before the DLL is called.

The following example opens the Windows File Manager.

Do method OpenExe ('winfile.exe',3)

; OpenExe ;; called method

; Declare Parameter APPNAME (Character   255)

; Declare Parameter INSTRUCTS (Short integer   (0 to 255))

Register DLL ('KRNL386.EXE','WinExec','ICI') returns RESULT

Call DLL ('KRNL386.EXE','WinExec',APPNAME,INSTRUCTS) returns RESULT

If RESULT < 18

Do method Errors

End If

CGIDecode
Reversible: NO Flag affected: NO

Parameters: Stream
Returns: DecodedField

Syntax: CGIDecode(Stream)

CGIDecode can be used to turn CGI-encoded information back into plain text. It is the
converse of CGIEncode. CGI-encoded information is sent over the HTTP protocol in a
format that preserves special characters in URLs that delimit CGIs and arguments (that is,
fields on Web forms). Errors are reported via the WebDevError callback mechanism.

stream is an OMNIS Character or Binary field containing the information to decode.



456 Chapter 6—External Commands

DecodedField is an OMNIS Character or Binary field that holds the resulting CGI-decoded
representation of the stream argument.

Note: The HTTPParse external command automatically performs CGI decoding. Results
from HTTPParse are already CGI-decoded.

CGIEncode
Reversible: NO Flag affected: NO

Parameters: stream
Returns: EncodedField

Syntax: CGIEncode(stream)

CGIEncode changes text into a form acceptable as an argument to a Web server CGI. The
HTTP protocol specifies that the text of an argument must be alphanumeric plus some other
special characters, and does not allow spaces. Certain characters that separate arguments
from each other and their values must be specially quoted.

The same rules apply to some HTTP header fields that are normally hidden.

Use this call when you are creating or decoding the text of a URL involving a CGI call or a
header attribute.

Note: The HTTPHeader and HTTPPost external commands automatically encode or
decode information presented to a Web server. You need not pre-encode arguments if you
are using those external commands.

Stream is an OMNIS Character or Binary field containing the information to encode.

EncodedField is an OMNIS Character or Binary field that holds the resulting CGI-encoded
representation of the stream argument.

Errors are reported via the WebDevError callback mechanism.

Change working directory
Reversible: NO Flag affected: NO

Parameters: Path name
Return field

Syntax: Change Working Directory (path-name)
returns return-field

This command changes the current directory in use under Windows. Wild cards are not
allowed with this command. Change working directory only switches directories on the
same drive, not between drives. It returns any error code (shown at the end of this chapter),
or zero if none.

Change working directory  ("C:\OMNIS\External")



External Commands 457

Close file
Reversible: NO Flag affected: NO

Parameters: Reference number or DOS file handle
Return field

Syntax: Close file (refnum) returns return-field

This command closes the file referred to by the file reference number or DOS file handle
specified in refnum. All open files are automatically closed when OMNIS quits, but not
when the current OMNIS library is closed. You should close files correctly.

It returns any error code (shown at the end of this chapter), or zero if none.

CMAttach
Reversible: NO Flag affected: NO

Input Parameters: content, ctntID, ctntType, encodingType, mailText
Output Parameters: MIMEcontent
Returns: Status (0 if no error, or a non-zero if error)

Syntax: CMAttach(content,MIMEContent[,ctntID,ctntType,
encodingType,mailText])

CMAttach creates one MIME object for the specified content. This is the quick and simple
way to compose a single-part MIME. To compose multipart MIME, use CMMCBegin,
CMMInsert, and CMMCEnd.

Input Parameters

content OMNIS Binary variable

content contains readable text or any binary content. For example, it can be the content of a
word-processing document or the content of an image (such as Logo.GIF).

ctntID OMNIS Character variable containing up to 255 characters

ctntID is an optional parameter describing the content that is being attached. Describe the
content in any way you want.

ctntType OMNIS Character variable containing up to 255 characters

ctntType is an optional parameter specifying the type of content in the file. The default
ctntType is application/octet-stream. See the Content Header Types section for other content
types.

encodingType OMNIS Character variable

encodingType is an optional parameter specifying the type of encoding to use to encode the
content. The default encoding type is base64. The supported encoding types are base64 and
quoted-printable. For details about using the supported encoding types, see the section



458 Chapter 6—External Commands

Processing Email Content.

The base64 encoding type is generally used for encoding of all binary data. It is considered
much safer than the uuencode/uudecode format. The quoted-printable encoding type is used
for encoding non-standard ASCII text.

mailText OMNIS Binary variable

mailtext is an optional parameter containing the ASCII text of an email body only. The
default content type is text/plain. The default content transfer encoding is quoted-printable.

Output Parameters

MIMEContent OMNIS Binary variable

MIMEContent is the composed, MIME-formatted object derived from the original content.
Use the SMTPSend command to send this MIME content.

CMMCBegin
Reversible: NO Flag affected: NO

Input Parameters: ctntID
Output Parameters: CSP
Returns: Status (0 if no error, or a non-zero if error)

Syntax: CMMCBegin(CSP[,ctntID])

CMMCBegin begins MIME composition to compose a MIME object. This command is
typically used to compose multipart MIME objects. However, you can also use it to
compose single-part MIME content.

Input Parameters

ctntID OMNIS Character variable containing up to 255 characters

ctntID is an optional character string describing the content that is being composed.

Output Parameters

CSP OMNIS Character variable

CSP (Content State Property) is a handle that related commands use. You must use the same
CSP for each composition process. For example, if you use CMMCBegin, CMMInsert, and
CMMCEnd to compose a given multipart message, the same CSP is used throughout. A
different message can use a different CSP.



External Commands 459

CMMCEnd
Reversible: NO Flag affected: NO

Input Parameters: CSP
Output Parameters: MIMEContent
Returns: Status (0 if no error, or a non-zero if error)

Syntax: CMMCEnd(CSP,MIMEcontent)

CMMCEnd ends the MIME composition process that was started with CMMCBegin.
CMMCEnd generates a completed and final MIME object.

Input Parameters

CSP OMNIS Character variable

CSP (Content State Property) is the handle that CMMCBegin generated. You must use the
same CSP for each composition process. For example, if you use CMMCBegin,
CMMInsert, and CMMCEnd to compose a given multipart message, the same CSP is used
throughout. A different message can use a different CSP.

Output Parameters

MIMEContent OMNIS Binary variable

MIMEContent is the output of the completed MIME object. You can use the Internet email
OMNIS SMTPSend command to send this MIME content.

CMMGBegin
Reversible: NO Flag affected: NO

Input Parameters: content
Output Parameters: CSP
Returns: Status (0 if no error, or a non-zero if error)

Syntax: CMMGBegin(CSP,content)

CMMGBegin begins MIME decomposition by preparing content into a CSP (Content State
Property) structure that defines parts and levels. The generated CSP value is used by
CMMGet to retrieve and decode, if necessary, MIME body parts. You must use CMMGEnd
to free up and release resources when the process is complete.

Input Parameters

content OMNIS Binary variable

content is the MIME content object. The content object can contain either an entire email
consisting of a MIME attachment, just the MIME portion of an email, or a MIME object
that was previously generated by Content Manager.



460 Chapter 6—External Commands

Output Parameters

CSP OMNIS Character variable

CSP (Content State Property) is a handle that other related extensions use. You must use the
same CSP for each decomposition process. For example, if you use CMMGBegin and
CMMGEnd to decompose a given multipart message, the same CSP is used throughout. A
different message can use a different CSP.

CMMGEnd
Reversible: NO Flag affected: NO

Input Parameters: CSP
Output Parameters: [None]
Returns: Status (0 if no error, or a non-zero if error)

Syntax: CMMGEnd(CSP)

CMMGEnd completes the decomposition process that was started by CMMGBegin.
CMMGEnd cleans up all resources (such as memory) during the decomposition process.

Input Parameters

CSP OMNIS Character variable

CSP (Content State Property) is the handle that CMMGBegin generated when the current
process began. You must use the same CSP for each decomposition process. For example, if
you use CMMGBegin and CMMGEnd to decompose a given multipart message, the same
CSP is used throughout. A different message can use a different CSP.

CMMGet
Reversible: NO Flag affected: NO

Input Parameters: CSP, partNum, levelNum
Output Parameters: content, ctntDisposition
Returns: Status (0 if no error, or a non-zero if error)

Syntax: CMMGet(CSP,content[,partNum,levelNum,ctntDisposition])

CMMGet gets and decomposes the next body part in multipart or single-part content. Prior
to this, CMMGBegin starts the decomposition process.

The body parts are retrieved sequentially (from the first part) until the last body part has
been retrieved, or you can retrieve specific body parts by specifying the part or level
numbers.

Note:  When CMMGet is called after retrieving the last body part, it retrieves the last body
part again. Be sure to use CMQuery to determine the number of body part. Then keep count
during the CMMGet operation.



External Commands 461

Input Parameters

CSP OMNIS Character variable

CSP (Content State Property) is the handle that CMMGBegin generated when the current
process began. You must use the same CSP for each decomposition process. For example, if
you use CMMGBegin and CMMGEnd to decompose a given multipart message, the same
CSP is used throughout. A different message can use a different CSP.

partNum OMNIS integer variable

partNum is an optional parameter used to retrieve a specific body part within a multipart
MIME.

levelNum OMNIS integer variable

levelNum is an optional parameter specifying the specific level within a multilevel MIME.
MIME content containing embedded MIME content is also known as multilevel MIME
content.

Output Parameters

content OMNIS Binary variable

content is the output of the body part retrieved with all the MIME headers removed. The
content is automatically decoded if necessary.

ctntDisposition OMNIS Character variable

ctntDisposition is an optional parameter. If content contains the Content-disposition header
and a specified filename, as in:

Header Value

Content-disposition picture.jpg

this parameter returns the filename associated with the Content-disposition header. If
ctntDisposition is specified, and the content does not include the Content-disposition header
or the filename value is blank, ctntDisposition returns the value #NULL#.



462 Chapter 6—External Commands

CMMInsert
Reversible: NO Flag affected: NO

Input Parameters: CSP, content, ctntID, ctntType, encodingType, ctntDisposition
Returns: Status (0 if no error, or a non-zero if error)

Syntax: CMMInsert(CSP,content.[ctntID,ctntType,encodingType,
ctntDisposition])

CMMInsert inserts content to be composed as a MIME body part in a process started by
CMMCBegin. During the CMMInsert operation, the necessary MIME headers are added
and the content is encoded if specified or required.

Input Parameters

CSP OMNIS Character variable

CSP (Content State Property) is the handle that CMMCBegin generated.

content OMNIS Binary variable

content is the content to be composed into MIME format and inserted into the current
MIME object. Content can be any readable text or binary data, such as a Microsoft Word
document or a GIF image.

ctntID OMNIS Character variable containing up to 255 characters

ctntID is an optional character string describing the content.

ctntType OMNIS Character variable containing up to 255 characters

ctntType is an optional parameter specifying the type of content. The ctntType default is
text/plain; charset=us-ascii, for a plain text file.

encodingType OMNIS Character variable

encodingType is an optional parameter specifying the type of encoding. The supported
encoding types are base64 and quoted-printable. The encodingType default is quoted-
printable, which is used for encoding non-standard ASCII text. The base64 encoding type is
generally used for encoding of all binary data and is considered much safer than the
uuencode/uudecode format.

ctntDisposition OMNIS Character variable containing up to 255 characters

ctntDisposition is an optional parameter describing how content should be handled by your
local email system. For example, if you specify a string containing a full pathname your
email system may attempt to save the content into the same location as the pathname
specifies.



External Commands 463

CMQuery
Reversible: NO Flag affected: NO

Input Parameters: content
Output Parameters: MIMEtype, numParts, numLevel
Returns: Status (0 if no error, or a non-zero if error)

Syntax: CMQuery(content,MIMEtype,numParts,numLevel)

CMQuery queries content to determine whether it is MIME, S/MIME, or not  MIME; it also
returns the number of parts and levels, as applicable. If the content is single-part MIME, the
number of parts and number of levels is always 1 (one).

Input Parameters

content OMNIS Binary variable

content is the MIME content object. This is usually an entire email message with its
attachments, or an object containing MIME-formatted content that was previously generated
by Content Manager.

Output Parameters

MIMEtype OMNIS Character variable

MIMEtype specifies one of the following: MIME, S/MIME, or not MIME.

numParts OMNIS Integer variable

numParts is the number of parts within content if content is multipart MIME.

numLevel OMNIS Integer variable

numLevel is the number of levels within the content if the content is multilevel MIME
content, that is, MIME content containing embedded MIME content.



464 Chapter 6—External Commands

Copy file
Reversible: NO Flag affected: NO

Parameters: From path (file to be copied)
To path (of new file)
Return field

Syntax: Copy file (from-path[,to-path]) returns return-field

This command makes a copy of the file specified in from-path. You specify the path of the
new file in to-path. If to-path includes a file name the file is copied and the new file is
renamed. The file named in to-path must not already exist. If you omit to-path, a copy of
the file named in from-path is created in the current directory using the same name with the
extension ".BAK" under Windows or followed by " copy" under MacOS.

It returns any error code (shown at the end of this chapter), or zero if none.

Create directory
Reversible: NO Flag affected: NO

Parameters: Path of new directory or folder
Return-field

Syntax: Create directory (path) returns return-field

This command creates the directory or folder (under MacOS) named in path. The directory
must not already exist. Create directory does not create intervening directories. It only
creates the last directory name in path.

It returns any error code (shown at the end of this chapter), or zero if none.



External Commands 465

Create file
Reversible: NO Flag affected: NO

Parameters: Path of new file
File type (MacOS only)
Creator (MacOS only)
R parameter (specifies if a resource fork is created also,
MacOS only)
Return field

Syntax: Create file (path[,file-type][,creator][,’R’]) returns
return-field

This command creates the file specified in path. Every directory or folder in path must
already exist. Create file does not create directories or folders.

The file-type, creator, and ‘R’ parameters apply to MacOS only, and are ignored by all
other versions; ‘R’ is case-insensitive. If file-type and creator are not specified, a TeachText
text file is created with type "TEXT" and creator "ttxt".

It returns any error code (shown at the end of this chapter), or zero if none.



466 Chapter 6—External Commands

DB2 Audio disable
Reversible: NO Flag affected: NO

Parameters: Table name
Column name
Logon switch to remain logged on to database
Return value

Syntax: DB2 Audio disable ( [tablename][,columnname][, '/L'] ) returns
[return-value]

This command disables the Audio extender data type for the current DB2 database, or the
specified table or column in the current database. To disable a database you do not need to
pass any parameters, the currently connected database is used. To disable a table in the
currently logged on database, you need to pass the tablename only. To disable a column in
the current database, you need to pass the tablename and columnname parameters. You can
specify the L switch to remain logged on to the current database, otherwise you are logged
off automatically. This command returns a value of 1 if it is successful, otherwise 0 is
returned.

DB2 Audio disable ( ) returns #2

; disables the current database

DB2 Audio disable (‘table1’) returns #2

; disables table1 in the current database

DB2 Audio disable (‘table1’, ‘column1’) returns #2

; disables column1 in table1 in the current database



External Commands 467

DB2 Audio enable
Reversible: NO Flag affected: NO

Parameters: Table name
Column name
Logon switch to remain logged on to database
Return value

Syntax: DB2 Audio enable ( [tablename][,columnname][, '/L'] ) returns
[return-value]

This command enables the Audio extender data type for the current DB2 database, or the
specified table or column in the current database. To enable a database you do not need to
pass any parameters, the currently connected database is used. To enable a table in the
currently logged on database, you need to pass the tablename only. To enable a column in
the current database, you need to pass the tablename and columnname parameters. You can
specify the L switch to remain logged on to the current database, otherwise you are logged
off automatically. This command returns a value of 1 if it is successful, otherwise 0 is
returned.

DB2 Audio enable ( ) returns #2

; enables the current database

DB2 Audio enable (‘table1’) returns #2

; enables table1 in the current database

DB2 Audio enable (‘table1’, ‘column1’) returns #2

; enables column1 in table1 in the current database



468 Chapter 6—External Commands

DB2 Audio is enabled
Reversible: NO Flag affected: NO

Parameters: Table name
Column name
Status variable
Logon switch to remain logged on to database
Return value

Syntax: DB2 Audio is enabled ( [tablename][,columnname], status [,'/L'] )
returns [return-value]

This command checks whether or not the Audio extender data type is enabled for the
current DB2 database, or the specified table or column in the current database. To check
whether or not a database is enabled for Audio, you need to pass the status field only. To
check whether or not a table in the current database is enabled for Audio, you need to pass
the tablename, as well as the status field. To check whether or not a column is enabled for
Audio, you need to pass the tablename and columnname parameters, as well as the status
field. The status parameter returns kTrue or 1 if the database, table, or column is enabled
for Audio. You can specify the L switch to remain logged on to the current database,
otherwise you are logged off automatically. This command returns a value of 1 if it is
successful, otherwise 0 is returned, regardless of the value returned in the status field.

DB2 Audio Is Enabled ( , , #1 ) returns #2

; checks the current database

DB2 Audio Is Enabled (‘table1’, , #1 ) returns #2

; checks table1 in the current database

DB2 Audio Is Enabled (‘table1’, ‘column1’, #1 ) returns #2

; checks column1 in table1 in the current database



External Commands 469

DB2 Get logon info
Reversible: NO Flag affected: NO

Parameters: Database or tablespace name
Username for the specified database
Password for the specified database
Error code
Error text

Syntax: DB2 Get logon info (tablespace, username, password [,errorcode]
[,errortext])

This command returns the logon info for the current DB2 database, as specified by the DB2
Register logon info command or the DB2 DAM. You must supply variables for the
database name, username, and password of the current DB2 database. You can include
variables for the errorcode and errortext to return the names of the OMNIS variables where
error codes and error text are stored.

DB2 Image disable
Reversible: NO Flag affected: NO

Parameters: Table name
Column name
Logon switch to remain logged on to database
Return value

Syntax: DB2 Image disable ( [tablename][,columnname][, '/L'] ) returns
[return-value]

This command disables the Image extender data type for the current DB2 database, or the
specified table or column in the current database. To disable a database you do not need to
pass any parameters, the currently connected database is used. To disable a table in the
currently logged on database, you need to pass the tablename only. To disable a column in
the current database, you need to pass the tablename and columnname parameters. You can
specify the L switch to remain logged on to the current database, otherwise you are logged
off automatically. This command returns a value of 1 if it is successful, otherwise 0 is
returned.

DB2 Image disable ( ) returns #2

; disables the current database

DB2 Image disable (‘table1’) returns #2

; disables table1 in the current database

DB2 Image disable (‘table1’, ‘column1’) returns #2

; disables column1 in table1 in the current database



470 Chapter 6—External Commands

DB2 Image enable
Reversible: NO Flag affected: NO

Parameters: Table name
Column name
Logon switch to remain logged on to database
Return value

Syntax: DB2 Image enable ( [tablename][,columnname][, '/L'] ) returns
[return-value]

This command enables the Image extender data type for the current DB2 database, or the
specified table or column in the current database. To enable a database you do not need to
pass any parameters, the currently connected database is used. To enable a table in the
currently logged on database, you need to pass the tablename only. To enable a column in
the current database, you need to pass the tablename and columnname parameters. You can
specify the L switch to remain logged on to the current database, otherwise you are logged
off automatically. This command returns a value of 1 if it is successful, otherwise 0 is
returned.

DB2 Image enable ( ) returns #2

; enables the current database

DB2 Image enable (‘table1’) returns #2

; enables table1 in the current database

DB2 Image enable (‘table1’, ‘column1’) returns #2

; enables column1 in table1 in the current database



External Commands 471

DB2 Image is enabled
Reversible: NO Flag affected: NO

Parameters: Table name
Column name
Status variable
Logon switch to remain logged on to database
Return value

Syntax: DB2 Image is enabled ( [tablename][,columnname], status [,'/L'] )
returns [return-value]

This command checks whether or not the Image extender data type is enabled for the
current DB2 database, or the specified table or column in the current database. To check
whether or not a database is enabled for Image, you need to pass the status field only. To
check whether or not a table in the current database is enabled for Image, you need to pass
the tablename, as well as the status field. To check whether or not a column is enabled for
Image, you need to pass the tablename and columnname parameters, as well as the status
field. The status parameter returns kTrue or 1 if the database, table, or column is enabled
for Image. You can specify the L switch to remain logged on to the current database,
otherwise you are logged off automatically. This command returns a value of 1 if it is
successful, otherwise 0 is returned, regardless of the value returned in the status field.

DB2 Image Is Enabled ( , , #1 ) returns #2

; checks the current database

DB2 Image Is Enabled (‘table1’, , #1 ) returns #2

; checks table1 in the current database

DB2 Image Is Enabled (‘table1’, ‘column1’, #1 ) returns #2

; checks column1 in table1 in the current database

DB2 Init upload
Reversible: NO Flag affected: NO

Parameters: Path to OMNIS executable
Logon switch to remain logged on to database

Syntax: Db2 Init upload (path [, '/L'])

This command prepares the current DB2 database to receive the DB2 Upload Data
command. You must specify the path to the OMNIS executable as the first parameter. You
can specify the L switch to remain logged on to the database, otherwise you are logged off
automatically. This command uses the upload.bnd file which must be located in the
EXTERNAL folder.

Db2 Init upload (sys(115),’/L’)



472 Chapter 6—External Commands

DB2 Register error vars
Reversible: NO Flag affected: NO

Parameters: Error code fieldname
Error text fieldname

Syntax: DB2 Register error vars (errorcode, errortext)

This command specifies the variables to contain any errors reported while the DB2 external
commands are in operation. You must specify suitable variables for errorcode and errortext
to contain the code and text for any errors.

; declare errorcode of Long int type, and errortext as Character

DB2 Register error vars (errorcode, errortext)

DB2 Register logon info
Reversible: NO Flag affected: NO

Parameters: Database or tablespace name
Username for the specified database
Password for the specified database

Syntax: DB2 Register logon info (tablespace, username, password)

This command registers the logon info to be used when logging on to the DB2 database.
The command requires the database name, username, and password of the required DB2
database. The logon info specified in this command overrides the information contained in
the DB2 DAM as specified in the current session, if bound.

DB2 Unregister logon info
Reversible: NO Flag affected: NO

Parameters: None

Syntax: DB2 Unregister logon info ()

This command unregisters the logon info for the current DB2 database. In this case the
logon info contained in the DB2 DAM is used, if bound.



External Commands 473

DB2 Upload data
Reversible: NO Flag affected: NO

Parameters: SQL statement containing data
Logon switch to remain logged on to database

Syntax: Db2 Upload data (sql-statement [, '/L'])

This command uploads data to the current DB2 database. It takes a SQL statement
containing a user defined function (UDF) and uploads the specified data in a bind variable.
You can specify the L switch to remain logged on to the database, otherwise you are logged
off automatically.

The bind variable must be an updateable bind variable (:var) and of type binary. In addition,
the bind variable must be cast explicitly as a blob in the SQL statement. The command takes
one :var variable only and does not support @[var] bind variables.

Db2 Upload data ("INSERT INTO my_table (picture) values
(DB2Image(CURRENT SERVER, CAST(:my_bin as BLOB(2M)), 'BMP',
CAST(NULL as LONG VARCHAR), 'comment'))")

DB2 Video disable
Reversible: NO Flag affected: NO

Parameters: Table name
Column name
Logon switch to remain logged on to database
Return value

Syntax: DB2 Video disable ( [tablename][,columnname][, '/L'] ) returns
[return-value]

This command disables the Video extender data type for the current DB2 database, or the
specified table or column in the current database. To disable a database you do not need to
pass any parameters, the currently connected database is used. To disable a table in the
currently logged on database, you need to pass the tablename only. To disable a column in
the current database, you need to pass the tablename and columnname parameters. You can
specify the L switch to remain logged on to the current database, otherwise you are logged
off automatically. This command returns a value of 1 if it is successful, otherwise 0 is
returned.

DB2 Video disable ( ) returns #2

; disables the current database

DB2 Video disable (‘table1’) returns #2

; disables table1 in the current database

DB2 Video disable (‘table1’, ‘column1’) returns #2

; disables column1 in table1 in the current database



474 Chapter 6—External Commands

DB2 Video enable
Reversible: NO Flag affected: NO

Parameters: Table name
Column name
Logon switch to remain logged on to database
Return value

Syntax: DB2 Video enable ( [tablename][,columnname][, '/L'] ) returns
[return-value]

This command enables the Video extender data type for the current DB2 database, or the
specified table or column in the current database. To enable a database you do not need to
pass any parameters, the currently connected database is used. To enable a table in the
currently logged on database, you need to pass the tablename only. To enable a column in
the current database, you need to pass the tablename and columnname parameters. You can
specify the L switch to remain logged on to the current database, otherwise you are logged
off automatically. This command returns a value of 1 if it is successful, otherwise 0 is
returned.

DB2 Video enable ( ) returns #2

; enables the current database

DB2 Video enable (‘table1’) returns #2

; enables table1 in the current database

DB2 Video enable (‘table1’, ‘column1’) returns #2

; enables column1 in table1 in the current database



External Commands 475

DB2 Video is enabled
Reversible: NO Flag affected: NO

Parameters: Table name
Column name
Status variable
Logon switch to remain logged on to database
Return value

Syntax: DB2 Video is enabled ( [tablename][,columnname], status [,'/L'] )
returns [return-value]

This command checks whether or not the Video extender data type is enabled for the
current DB2 database, or the specified table or column in the current database. To check
whether or not a database is enabled for Video, you need to pass the status field only. To
check whether or not a table in the current database is enabled for Video, you need to pass
the tablename, as well as the status field. To check whether or not a column is enabled for
Video, you need to pass the tablename and columnname parameters, as well as the status
field. The status parameter returns kTrue or 1 if the database, table, or column is enabled
for Video. You can specify the L switch to remain logged on to the current database,
otherwise you are logged off automatically. This command returns a value of 1 if it is
successful, otherwise 0 is returned, regardless of the value returned in the status field.

DB2 Video Is Enabled ( , , #1 ) returns #2

; checks the current database

DB2 Video Is Enabled (‘table1’, , #1 ) returns #2

; checks table1 in the current database

DB2 Video Is Enabled (‘table1’, ‘column1’, #1 ) returns #2

; checks column1 in table1 in the current database

Delete file
Reversible: NO Flag affected: NO

Parameters: Path of file to be deleted
Return field

Syntax: Delete file (path) returns return-field

This command deletes the file specified in path. Under MacOS, files deleted with Delete
file are not moved into the Trash. You cannot recover deleted files except with advanced
disk utilities such as Norton Utilities.

It returns any error code (shown at the end of this chapter), or zero if none.



476 Chapter 6—External Commands

Does file exist
Reversible: NO Flag affected: NO

Parameters: File or folder name (including full path)
Return field

Syntax: Does file exist (file|folder-name) returns return-field

This command returns kTrue if the specified file or folder exists, otherwise it returns kFalse.
The file or folder name must include the full path.

; Windows

Does file exist  ("C:\C700\FileOps\FileOps.C")   ;; test for file

If flag true

; do this

Does file exist  ("C:\C700")   ;; test for folder

; Macintosh

Does file exist  ("HD:Desktop Folder:MyPictureFile") ;; test for file

Does file exist  ("HD:Microsoft")   ;; test for folder

FTPChmod
Reversible: NO Flag affected: NO

Parameters: Socket, Filename, Mode
Returns: Status (0 if no error, -1 or other negative number if error)

Syntax: FTPChmod(Socket, Filename, Mode

FTPChmod changes the protection mode of a remote file on the connected FTP server.

Socket is an OMNIS Integer field containing the socket previously opened to an FTP server
with FTPConnect.

Filename is an OMNIS Character field containing the name of the remote file, by default in
the current directory. If the server permits, he filename can be a fully qualified pathname in
another directory.

Mode is an OMNIS Character field containing the system-dependent file-protection
specifier to apply to the named file. Many FTP daemons accept the Unix-style
Owner/Group/World 3-digit Read/Write/Execute scheme (for example, 754 = Owner
Read/Write/Execute, Group Read/Execute World Read-Only). Consult the documentation
for the remote system to determine the acceptable syntax for this argument.

Status is an OMNIS Long Integer field that contains 0 (zero) if no error occurs. To handle
an error, use the FTPGetLastStatus  command to get the code.

Using WebDevError, one or more callback methods return error messages and codes.



External Commands 477

FTPConnect
Reversible: NO Flag affected: NO

Parameters: ServerAddr, Username, Password
Returns: Socket

Syntax: FTPConnect(ServerAddr,Username,Password) Returns Socket

FTPConnect creates a new socket open to the FTP service or port on a named server or IP
address.

ServerAddr is an OMNIS Character field containing the hostname or IP address of the FTP
server to which the socket connects.

Username is an OMNIS Character field containing the user ID of the account that will be
used for access on the server.

Password is an OMNIS Character field containing the password of the account that will be
used for access on the server.

Socket is an OMNIS Long Integer field containing the number of the allocated socket. Error
codes are socket numbers less than 0 (zero), shown at the end of this chapter. To get the
actual error code, call FTPGetLastStatus.

A WebDevError callback method returns error messages and codes.

FTPCwd
Reversible: NO Flag affected: NO

Parameters: Socket, Directory
Returns: Status (0 if no error, -1 or other negative number if error)

Syntax: FTPCwd(Socket,NewDir)

FTPCwd changes the working directory on the connected FTP server. The working
directory is the one for which the FTPList command shows a directory listing. Files are
transferred to and from this remote directory.

Socket is an OMNIS Integer field containing the number of a socket open to an FTP server.

NewDir is an OMNIS Character field containing the directory specification to change the
remote server’s current directory. The contents of this string are system-dependent.
FTPCwd accepts anything for this argument, but the remote FTP daemon may not. Most
FTP daemons accept Unix-style path and file specifications with path and file separated by
slashes, such as

/drive/user/subdirectory/filename.extension



478 Chapter 6—External Commands

Most FTP daemons accept the Unix conventions for abbreviations for special directory
specifications, that is, “..” for the next higher sub-directory, and “~userid” for the home
directory of a particular user ID.

Some FTP daemons also accept system-specific directory path formats, that is, Macintosh
colon-separated as in Macintosh HD:My Folder:My File or VMS-style path and file
specifications, as in SOME$DISK:[USER.SUBDIRECTORY]FILENAME.EXTENSION;1.

Consult the documentation for the server to determine the authoritative acceptable directory
path specifications. When in doubt, try the Unix style.

Status is an OMNIS Long Integer field that returns a negative number if an error is
encountered, or 0 (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.

FTPDelete
Reversible: NO Flag affected: NO

Parameters: Socket, Filename
Returns: Status (0 if no error, -1 or other negative number if error)

Syntax: FTPDelete(Socket, Filename) Returns Status

FTPDelete deletes a remote file on the connected FTP server.

Socket is an OMNIS Integer field containing the number of a socket that is open to an FTP
server.

Filename is an OMNIS Character field containing the name of the remote file to delete, by
default in the current directory. If the server permits, the filename can be a fully qualified
pathname in another directory.

Status is an OMNIS Long Integer field that returns a negative number if an error is
encountered, or 0 (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.



External Commands 479

FTPDisconnect
Reversible: NO Flag affected: NO

Parameters: Socket
Returns: Status (0 if no error, -1 or other negative number if error)

Syntax: FTPDisconnect(Socket)

FTPDisconnect disconnects a socket from the remote FTP daemon.

Socket is an OMNIS Integer field containing the number of a socket that is open on an FTP
server.

Status is an OMNIS Long Integer field that returns a negative number if an error is
encountered, or 0 (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.

FTPGet
Reversible: NO Flag affected: NO

Parameters: Socket, RemoteFile, LocalFile
Returns: Status (0 if no error, -1 or other negative number if error)

Syntax: FTPGet(Socket,RemoteFile,LocalFile)

FTPGet initiates transfer of a file from an FTP server to a file on the local client. The file is
transferred according to the currently set transfer type of ASCII or binary as specified by
the FTPType command.

Socket is an OMNIS Integer field containing the number of a socket that is open on the
server.

RemoteFile is an OMNIS Character field containing the name of the file on the remote
system to transfer to the local client.

Note: The remote filename may not be acceptable to the local system. The file is transferred
according to the current transfer type of ASCII or binary, as specified by the FTPType
external command. Binary files such as executables, pictures, and archives are not
transferred properly in ASCII mode.

LocalFile is an OMNIS Character field containing the specification of the file on the local
machine to receive the contents of the remote file.

Status is an OMNIS Long Integer field that returns a negative number if an error is
encountered, or 0 (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.



480 Chapter 6—External Commands

FTPGetBinary
Reversible: NO Flag affected: NO

Parameters: Socket, RemoteFile, BinField
Returns: Status (0 if no error, -1 or other negative number if error)

Syntax: FTPGetBinary(Socket,RemoteFile,BinField)

FTPGetBinary initiates transfer of a file from an FTP server directly to an OMNIS binary
variable. The file is transferred according to the currently set transfer type of ASCII or
binary as specified by the FTPType command.

Socket is an OMNIS Integer field containing the number of a socket that is open on a
remote FTP server.

RemoteFile is an OMNIS Character field containing the name of the file on the remote
system to transfer to the local client.

BinField is an OMNIS Binary field that will receive the contents of the remote file.

Status is an OMNIS Long Integer field that returns a negative number if an error is
encountered, or 0 (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.

Note: The file is transferred according to the current transfer type of ASCII or binary as
specified by the FTPType external command. Binary files such as executables, pictures, and
archives are not transferred properly in ASCII mode.



External Commands 481

FTPGetLastStatus
Reversible: NO Flag affected: NO

Parameters: Socket
Returns: Status (error code)

Syntax: FTPGetLastStatus(Socket)

Because FTP commands return a negative number (usually -1), rather than an error code
and message, you can call FTPGetLastStatus to return one of the error codes listed below.
FTPGetLastStatus indicates the most recent status from an FTP operation. It is generally
used during development, while WebDevError is used in applications.

Note: FTPGetLastStatus errors are redundant with those returned by WebDevError.
However, Web Enabler release 2.0 retains the FTPGetLastStatus function so that release 1.0
applications will not require modification.

Code Meaning

1 Attempt to connect to server failed (FTPConnect, FTPGet, FTPPut,
FTPGetBinary, FTPPutBinary, FTPList)

2 Connection lost

3 Invalid username or password

4 No such file

5 Invalid argument

6 No free sockets (too many connections)

7 No such server (DNS failed)

8 Client configuration error (can’t get local IP address)

9 Server protocol error - server response unexpected

10 Client file I/O error (disk full, network volume dismounted, and so on)

11 Out of memory error (common in FTPGetBinary/FTPPutBinary)

12 User cancel (progress method returned flag false)

Socket is an OMNIS Integer field containing the number of a socket that is open for the
operation.

Using WebDevError, one or more callback methods return these and other error messages
and codes. FTPGetLastStatus returns errors after the callback method.



482 Chapter 6—External Commands

FTPList
Reversible: NO Flag affected: NO

Parameters: Socket, List, Pathname, Mode
Returns: Status (0 if no error, -1 or other negative number if error)

Syntax: FTPList(Socket,List[,Pathname[,Mode]])

FTPList gets an OMNIS list of file information from the current directory on the remote
server.

Socket is an OMNIS Integer field containing the number of a socket that is open on a
remote FTP server.

List is an OMNIS List field containing a single column of type Character. This list receives
the file listing information, one line per file, returned by the remote FTP daemon. The list is
dependent on the type of the remote server and may be a long or short format, depending on
the setting.

Note: Very often, FTP daemons return long-format listings in a Unix file listing format. At
a minimum, this file information contains the filename, but usually includes other
information. The OMNIS method must parse this information to find the filename and other
information. For example

ListItem

total 123

drwxr-xr-x 4 userid mygroup Jan 1 1999 .

drwxr-xr-x 6 root root Jan 1 1999 ..

-rw------- 1 userid mygroup Jan 16 1998 myfile

-rw-r—r— 2 userid mygroup Jan 16 1998 myotherfile

Where the columns in the character string correspond to protection, file size, username and
group of the file owner, the date last modified and the name of the file. The files “.” and “..”
represent the current and parent directories, respectively, which may neither be retrieved nor
changed.

The file information may not be neatly spaced into columns as in this example. Columns are
separated with one or more spacing characters (space, tab, and so on).

Pathname is an optional parameter specifying an OMNIS Character field that contains a
pathname or wildcard specification for the files to include in the listing.

Mode is an optional parameter specifying an OMNIS Integer field containing a code that
indicates whether the server should return a short or long format listing:



External Commands 483

Code Meaning

0 Filename-only listing

1 Long-format listing

Status is an OMNIS Long Integer field that returns a negative number if an error is
encountered, or 0 (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.

FTPMkdir
Reversible: NO Flag affected: NO

Parameters: Socket, DirName
Returns: Status (0 if no error, -1 or other negative number if error)

Syntax: FTPMkdir(Socket,DirName)

FTPMkdir creates a new subdirectory on the remote system.

Socket is an OMNIS Integer field containing a socket open to a remote FTP server.

DirName is an OMNIS Character field containing the name of the new directory to create
on the server in the current directory. By default, the current directory is as specified by the
external command FTPConnect or FTPCwd and may be determined by the FTPPwd
external command.

Note: The name of the new directory must follow the convention and file-naming rules of
the remote system. Not all users will have permissions to create new subdirectories on
arbitrary directories on the remote system. Default file-access permissions apply to the new
directory. You may need to use the FTPCwd external command so that files are
subsequently transferred to the new directory.

Status is an OMNIS Integer field that returns a negative number if an error is encountered,
or 0 (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.



484 Chapter 6—External Commands

FTPPut
Reversible: NO Flag affected: NO

Parameters: Socket, RemoteFile, LocalFile
Returns: Status (0 if no error, -1 or other negative number if error)

Syntax: FTPPut(Socket,RemoteFile,LocalFile)

FTPPut initiates transfer of a file to an FTP server from a file on the local client. The file is
transferred according to the currently set transfer type of ASCII or binary as specified by
the FTPType external command.

Socket is an OMNIS Integer field containing the number of a socket that is open on a
remote FTP server.

RemoteFile is an OMNIS Character field containing the name of the file on the remote
machine to receive the contents of the local file.

LocalFile is an OMNIS Character field containing the name of the file on the local machine
to send the contents of the remote file.

Status is an OMNIS Long Integer field that returns a negative number if an error is
encountered, or 0 (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.

Note: The local filename may not be acceptable to the remote system. The file is transferred
according to the currently set transfer type of ASCII or binary as specified by the FTPType
external command. Binary files such as executables, pictures, archives are not transferred
properly in ASCII mode. The permission mode of the current remote directory may not
allow the creation of files by the username used in FTPConnect. You may not overwrite a
read-only or read/execute file, or a directory.

FTPPutBinary
Reversible: NO Flag affected: NO

Parameters: Socket, BinField, RemoteFile
Returns: Status (0 if no error, -1 or other negative number if error)

Syntax: FTPPutBinary(Socket,BinField,RemoteFile)

FTPPutBinary initiates transfer of a file to an FTP server from an OMNIS binary variable.
The file is transferred according to the currently set transfer type of ASCII or binary as
specified by the FTPType external command.

Socket is an OMNIS Character field containing the number of a socket that is open on a
remote FTP server.

BinField is an OMNIS Binary field to be sent to the remote file.



External Commands 485

RemoteFile is an OMNIS Character field containing the name of the file on the remote
system to receive the contents of the OMNIS Binary field.

Status is an OMNIS Long Integer field that returns a negative number if an error is
encountered, or 0 (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.

Note: The local filename may not be acceptable to the remote system. The file is transferred
according to the currently set transfer type of ASCII or binary as specified by the FTPType
external command. Binary files such as executables, pictures, archives are not transferred
properly in ASCII mode. The permission mode of the current remote directory may not
allow the creation of files by the username used in FTPConnect. You may not overwrite a
read-only or read/execute file, or a directory.

FTPPwd
Reversible: NO Flag affected: NO

Parameters: Socket
Returns: ServerDir (pathname if no error, -1 or other negative number if

error)

Syntax: FTPPwd(Socket)

FTPPwd gets the name of the remote server’s current directory.

Socket is an OMNIS Integer field containing the number of a socket that is open on a
remote FTP server.

ServerDir is an OMNIS Character field that returns the path specification of the current
remote directory on the server. A NULL string indicates that an error occurred. Call
FTPGetLastStatus for the error code.

Using WebDevError, one or more callback methods return error messages and codes.

Note: The value returned depends upon the operating system of the remote server. Many
FTP daemons return a Unix-style path specification, but do not assume that this is the case.



486 Chapter 6—External Commands

FTPReceiveCommandReplyLine
Reversible: NO Flag affected: NO

Parameters: Socket number
Returns: Reply

Syntax: FTPReceiveCommandReplyLine(Socket) Returns Reply

FTPReceiveCommandReplyLine returns the next line of the reply following an
FTPSendCommand. You have to determine if the reply is multi-line, and if so issue further
receive commands to get the remainder of the reply. FTPReceiveCommandReplyLine will
timeout after 60 seconds if it does not receive a reply.

Socket is an OMNIS Integer variable containing a socket open to a remote FTP server.

Reply is an OMNIS Character variable containing the reply from the server.

FTPSendCommand(lvSocket,'pwd') Returns #1

FTPReceiveCommandReplyLine (lvSocket) Returns lvReply

; might return the string

257 "/vol1/ftp/omnis/" is current directory

FTPRename
Reversible: NO Flag affected: NO

Parameters: Socket, OldName, NewName
Returns: Status (0 if no error, -1 or other negative number if error)

Syntax: FTPRename(Socket,OldName,NewName

FTPRename renames a remote file.

Socket is an OMNIS Integer field containing the number of a socket that is open on a
remote FTP server.

OldName is an OMNIS Character field containing the name of the file to change on the
remote server. By default, the file is assumed to be in the current remote directory as set at
connection or by the external command FTPCwd. You may specify a path in a different
directory, as long as it is correct and you have permissions in that directory.

NewName is an OMNIS Character field containing the new name for the file on the remote
server. By default, the file is renamed in place in the current remote directory as set at
connection or by the external command FTPCwd. You may specify a path and filename in a
different directory. In such a case on many systems, the file is moved to the new directory
path, as long as the path name is correct and you have permissions in the other directory.

Status is an OMNIS Long Integer field that returns a negative number if an error is
encountered, or 0 (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.



External Commands 487

Note: Local filename conventions may not be acceptable to the remote system. The
permission mode of the current remote directory may not allow files to be renamed. You
may not change a read-only or read/execute file, or rename a file to the same name as a
directory.

FTPSendCommand
Reversible: NO Flag affected: NO

Parameters: Socket number
Command

Returns: Status (0 if no error, -1 or other negative number if error)

Syntax: FTPSendCommand(Socket,Command) Returns Status

FTPSendCommand sends a command to the remote server.

Socket is an OMNIS Integer variable containing a socket open to a remote FTP server.

Command is an OMNIS Character variable or quoted literal containing the command and
its parameters.

Status is an OMNIS Long Integer variable that returns a negative number if an error is
encountered, or 0 (zero) otherwise. Using WebDevError, one or more callback methods
return error messages and codes.

FTPSendCommand(lvSocket,'pwd') Returns #1

FTPReceiveCommandReply(lvSocket) Returns lvReply

; might return the string

257 "/vol1/ftp/omnis/" is current directory



488 Chapter 6—External Commands

FTPSetProgressProc
Reversible: NO Flag affected: NO

Parameters: Proc
Returns: Invokes method if no error or returns -1 or other negative number if

error

Syntax: FTPSetProgressProc(Proc)

FTPSetProgressProc provides a mechanism to provide progress messages during an FTP
operation (FTPGet, for example).

Proc is an OMNIS Character field containing an address for an OMNIS method to be called
with progress status messages. The method can be used to display the message, log it, or
otherwise change normal execution. For example: MYCODE, MYCODE/MYPROC,
MYLIBRARY.MYCODE. You should use the method name qualified by the library if your
applications are in a multi-library environment.

An example method might look like this:

; Parameter messageText (Character   10000000)

; Display a working message while FTP operation is in progress.

Working message (High position,Large size) {[messageText]}

Using WebDevError, one or more callback methods return error messages and codes.

FTPSite
Reversible: NO Flag affected: NO

Parameters: Socket number
Command parameters

Returns: Status (0 if no error, -1 or other negative number if error)

Syntax: FTPSite(Socket,Parameters) Returns Status

FTPSite issues a host specific command to the remote server.

Socket is an OMNIS Integer variable containing a socket open to a remote FTP server.

Parameters is an OMNIS Character variable or quoted literal containing the host specific
command and its parameters.

Status is an OMNIS Long Integer variable that returns a negative number if an error is
encountered, or 0 (zero) otherwise.

Using WebDevError, one or more callback methods return error messages and codes.

FTPSite (lvSocketNum,"FILETYPE=JES") Returns lvStatus

; issues the FTP command SITE FILETYPE=JES



External Commands 489

FTPType
Reversible: NO Flag affected: NO

Parameters: Socket, FileType
Returns: Status (0 if no error, -1 or other negative number if error)

Syntax: FTPType(Socket,FileType)

FTPType specifies the type of transfer as ASCII or binary. In ASCII mode, line separators
and other text formatting characters can be changed to the characters required by the local
or remote system. In binary mode, line separators and other text formatting characters are
not changed. If the information to be transferred is not text, use FTPType to change the
transfer mode to binary. Otherwise, binary files such as archives, images, OMNIS Libraries,
and executable files may be corrupted by the processing of bytes that coincide with text-
formatting characters.

Socket is an OMNIS Integer field containing a socket open to a remote FTP server.

FileType is an OMNIS Boolean field indicating the type of subsequent transfers on this
socket.

Value Transfer Mode
kFalse/Zero ASCII

kTrue/One Binary

Status is an OMNIS Long Integer field that returns a negative number if an error is
encountered, or 0 (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.



490 Chapter 6—External Commands

Get file info
Reversible: NO Flag affected: NO

Parameters: Path
File type (the file extension under Windows)
Creator (the pathname of the executable under Windows,
provided the extension is registered with Windows)
Logical size (number of bytes in file)
Physical size (number of bytes file occupies on disk; same as
logical size under Windows)
Creation date (not stored under Windows)
Creation time (not stored under Windows)
Modified date
Modified time
Return field

Syntax: Get file info (path, type, creator, logical-size, physical-size,
creation-date, creation-time, modified-date, modified-time)
returns return-field

This command returns information about the file specified in path.

A file may occupy more physical disk space than is necessary, because disk space is usually
allocated in blocks of some fixed size. This is why the logical and physical sizes can be
different.

Windows (DOS) does not store the creation date and time. These are therefore the same as
the modified date and time. Almost all Windows FileOps commands will take wild-cards as
arguments, where the MacOS will not.

It returns any error code (shown at the end of this chapter), or zero if none.



External Commands 491

Get file name
Reversible: NO Flag affected: NO

Parameters: Path of file selected
Dialog title
File type or list of file types
Return field

Syntax: Get file name (path[,dialog-title][, file-type]...)
returns return-field

This command prompts the user to open a file with the specified file-type and path; it opens
the standard Open dialog for the current Operating System. Also you can specify a dialog-
title for the Open dialog. The optional file-type parameter limits the choice of file types
available. It returns the full pathname of the file the user selects in path, or remains empty if
no file is selected (that is, the Cancel button was clicked). The selected file is not opened.

It returns any error code (shown at the end of this chapter), or zero if none.

Windows file types
Under Windows (DOS) files do not have type codes, but they do have extensions which
serve the same purpose. You can specify one or more extensions (using wildcard patterns
like those used in many DOS commands) separated by semicolons. For example, "*.TXT"
would specify text files only.

MacOS file types
Under MacOS file types are four-character codes defined by convention (OMNIS library
files are type "O7$A", for example). You can use ResEdit, DiskTop, or other such tools to
discover file types. For example, "TEXT" would specify text files only.

Switch sys(6) = ‘M’

Case kTrue   ;; if MacOS

Get file name  (PATH, 'Select a file', 'TEXT ttro')

Default

Get file name  (PATH, 'Select a file', '*.TXT;*.DOC')

End Switch



492 Chapter 6—External Commands

Get file read-only attribute
Reversible: NO Flag affected: NO

Parameters: Path of the file
Read-flag setting returned
Return field

Syntax: Get file read-only attribute (path, read-flag) returns [return-field]

This command returns the current read-only attribute of the file specified in path. If the
read-flag parameter returns kTrue the file is read-only, otherwise if kFalse is returned the
file is read/write. Note that read-only status is the same as locked under MacOS.

It returns any error code (shown at the end of this chapter), or zero if none.

Get files
Reversible: NO Flag affected: NO

Parameters: List name
First column of list
Path name
File type
Creator type (MacOS only)
Return field

Syntax: Get files (list-name, first-column, path-name, file-type[,creator-type])
returns return-field

This command lists all the files of a specified type in a directory or folder. The list is
specified by list-name which must have at least one column defined in first-column. This
column will hold the file name of the files with the specified file-type found under the
specified path-name, including the extension for DOS machines. For file-type you can use
wildcards, such as ‘*.LBR’. Under MacOS the creator-type can be specified.

It returns any error code (shown at the end of this chapter), or zero if none.

The following example uses Get files to build a list of all the libraries in the folder returned
by sys(10). Under MacOS, you can select libraries using the file type OO$A, and ‘*.LBR’
for Windows.



External Commands 493

; Declare local vars LVFILELIST, LVPATHNAME, LVDRIVE, LVDIR,

; LVFILENAME, LVEXT, LVFILETYPE, LVCREATORTYPE

Set current list LVFILELIST

Define list {LVFILENAME}

Calculate LVPATHNAME as sys(10)    ;; path of current library

Split path name(LVPATHNAME,LVDRIVE,LVDIR,LVFILENAME,LVEXT)

Calculate LVPATHNAME as con(LVDRIVE,LVDIR)

If sys(6)=‘M’      ;; under MacOS

Calculate LVFILETYPE as ‘OO$A’

Else               ;; else, if on any other platform

Calculate LVFILETYPE as ‘*.LBR’

End If

Get files  (LVFILELIST,LVFILENAME,LVPATHNAME,LVFILETYPE)

Get folders
Reversible: NO Flag affected: NO

Parameters: List name
Column name
Path
Return field

Syntax: Get folders (list,column,’path’ ) returns return-field

This command creates a list of folders for the specified path, and places the list in the
specified column of the specified list (you can use any column in the list).

It returns any error code (shown at the end of this chapter), or zero if none.

For example, to get a list of the folders in the root of your Mac or PC use the following
method

Do LIST1.$define(COL1,COL2,COL3)

If sys(6) = ‘M’

Get folders  (LIST1,COL2,’Macintosh HD’)

Else

Get folders  (LIST1,COL2,’C:\’)

End If

Do LIST1.$sort(COL2)

Redraw lists      ;; if LIST1 is a window list



494 Chapter 6—External Commands

HTTPClose
Reversible: NO Flag affected: NO

Parameters: Socket
Returns: Status (0 if no error, -1 or other negative number if error)

Syntax: HTTPClose(Socket) Returns Status

HTTPClose is a client or server command that closes a socket that OMNIS is using for
communication with a Web server or client, functionally equivalent to TCPClose. You must
use HTTPClose when you have finished using a socket.

Socket is an OMNIS Long Integer field containing a socket previously opened. It can close
any socket, not just HTTP-related sockets.

WinSOCK error codes are returned as negative values, shown at the end of this chapter.
Using WebDevError, one or more callback methods return error messages and codes.

HTTPGet
Reversible: NO Flag affected: NO

Parameters: Hostname, URI, CGIList, HeaderList, Port

Returns: ConnectedSocket

Syntax: HTTPGet(Hostname,URI [,CGIList[,HeaderList[,Port]]])

HTTPGet is a client command that submits a GET-method CGI request to a Web server.

Note: HTTPPage allows you to get HTML text source through a server, transparently and
without additional coding. If you need to customize the process for a proxy server, you can
use a combination of HTTPGet and TCPReceive. For this technique, see the sample code in
“Accessing a Proxy Server”.

Hostname is a Character field containing the hostname of a Web server to which to connect.

URI is a Character field containing the path and the name of the CGI to be run on the Web
server. Often this can be determined by looking at the source to an HTML page that
requests the CGI.



External Commands 495

CGIList is an optional parameter specifying an OMNIS list defined to have two character
columns. The list contains information to be sent as the arguments of the CGI. There is one
row for each field passed to the GET CGI method. In this way, an OMNIS method can send
OMNIS field values to a Web server. For example

Attribute Value

Name John Smith

City Podunk

Alive On

Submit Please

Note: Before the values are sent to the Web server, HTTPGet automatically performs any
CGI encoding required to pass special characters in the arguments. There is no need to call
the CGIEncode external command to encode the value entries in the list.

HeaderList is an optional parameter specifying an OMNIS list field defined to have two
character columns. The list contains information added to the HTTP message header as
attribute/value pairs on each row of the list. There is one row for each item found on the
header.

For example, after the call, the list might contain entries such as:

Attribute Value

Accept /

Content-type text/html

Port is an optional field that includes the port number of the server.

The return value is a positive integer socket number opened to the Web server as a result of
the GET CGI. This allows OMNIS to read the results of the CGI request on this socket. In
the case of an error, a value of -1 (minus one) is returned for the socket number.

Colons are added to the attributes when HTTPGet constructs the header. Do not end
attribute names with a colon. HTTPGet adds the following header fields by default:

Attribute Value

Date The current GMT date and time in HTTP header format

Server OMNIS7/3.5

MIME-Version 1.0

Errors in parsing the message header are reported through the standard WebDevError
mechanism.



496 Chapter 6—External Commands

HTTPHeader
Reversible: NO Flag affected: NO

Parameters: Socket, Status, HeaderList
Returns: Length

Syntax: HTTPHeader(Socket,Status,HeaderList)

HTTPHeader is a server command that sends an HTTP standard header back to an HTTP
client, for example, an OMNIS application or a Web browser. HTTP headers are normally
hidden from Web clients, but convey very useful information regarding the status and
contents of the Web page. An OMNIS method must send a header back to a connected Web
browser in order to have results properly displayed.

Socket is an OMNIS Long Integer field containing the number of a socket that has already
been opened for a TCP/IP client, usually a Web browser or OMNIS application that
requires and can understand an HTTP header message.

Status is an OMNIS Long Integer field containing an HTTP status code. The status code
may change the way in which any following HTML or other information displays on the
Web browser. Some common codes:

Code Meaning

200 The request was completed successfully

201 The request was a POST method and was completed successfully. Data was sent
to the server, and a new resource was created as a result of the request.

202 A GET method returned only partial results.

204 The request was completed successfully, but there is no new information. The
browser will continue to display the document from which the request originated.

304 The GET request included a header with an If-Modified-Since field. However,
the server found that the data requested had not been modified since the date in
this field. The document was not resent (the Web browser will probably display
it from cache).

400 The request syntax was wrong

401 The request requires an Authorization field but the client did not specify one.
Usually results in a username and password to be displayed

404 The request URL could not be found.

500 The server has encountered an internal error and cannot continue with the
request.

501 The server does not support this method



External Commands 497

HeaderList is an OMNIS list defined to have two character columns. The list contains
information to be included in the HTTP message header as attribute/value pairs on each row
of the list. There is one row for each item in the header.

At a minimum, for OMNIS to return normal Web-page HTML text to the client, you should
send a header containing the line:

Attribute Value

Content-type text/html

HTTPHeader automatically includes the following lines in all HTTP response headers:

Attribute Value

Date The current GMT date and time in HTTP header format

Server OMNIS7/3.5

MIME-version 1.0

Length is an OMNIS Long Integer field containing the number of characters sent.

Standard WinSOCK and Web Enabler errors are reported using WebDevError.

HTTPOpen
Reversible: NO Flag affected: NO

Parameters: Hostname, Port
Returns: Socket

Syntax: HTTPOpen(Hostname[Port])

HTTPOpen is a client or server command that opens a socket to a Web server.

Hostname is a Character field containing the IP address or domain name of an HTTP server
that accepts HTTP requests from an OMNIS client. For example:

host.myhost.com or 255.255.255.254

Port is an optional field that specifies the local port to use for the socket.

Socket returns a positive number indicating the socket number to which the command
attached. If an error is raised, a negative error number is returned in Socket. WinSOCK
error codes are returned instead of a valid socket number. Error codes are numbers less than
0 (zero), shown at the end of this chapter.

Using WebDevError, one or more callback methods return error messages and codes.



498 Chapter 6—External Commands

HTTPPage
Reversible: NO Flag affected: NO

Parameters: URL, Port
Returns: -1 if there is an error

Syntax: HTTPPage(URL[,Port])

A client command that retrieves the HTML text of the Web page specified by URL into an
OMNIS character variable.

Note: HTTPPage allows you to get HTML text source through a server, transparently and
without additional coding. If you need to customize the process for a proxy server, you can
use a combination of HTTPGet and TCPReceive. For this technique, see the sample code in
“Accessing a Proxy Server”.

URL is an OMNIS Character field containing a standard Web page URL of the form
http://domaininfo.xxx/path/webpagepage

Port is an optional parameter that includes the port number to use on the server.

The primary role of HTTPPage is to grab, simply and quickly, the HTML text source of the
page specified by the URL. The URL may also specify a CGI name and arguments, but it is
simpler to access CGIs by using the HTTPPost or HTTPGet functions.

The command returns -1 (one) if there is an error.

Using WebDevError, one or more callback methods return WinSOCK errors.

HTTPParse
Reversible: NO Flag affected: NO

Parameters: Message, HeaderList, Method, HTTPVersion, URL, CGIList

Syntax: HTTPParse(Message,HeaderList,Method,HTTPVersion,URL,CGIList)

HTTPParse is a server utility command to parse HTTP header information from an
incoming request message.

Errors in parsing the message header are reported through the standard WebDevError
mechanism. One or more callback methods return error messages and codes.

Message is an OMNIS Character field containing the full text of an HTTP request message.

HeaderList is an OMNIS list defined to have two character columns. The list contains
information culled from the HTTP message header as attribute/value pairs on each row.
There is one row for each item found on the header.



External Commands 499

For example, after the call, the list might contain entries such as:

Attribute Value

Date The current GMT date and time in HTTP header

format

User-Agent NCSA Mosaic for the X Window System/2.4 libwww/2.12 modified

Accept /

Content-type application/x-www-form-urlencoded

Content-length 1234

Note: HTTPParse automatically strips the colons after the attribute names.

Method is an OMNIS character field that receives the type of HTTP method being
requested: GET, POST, or HEAD.

HTTPVersion is an OMNIS Character field containing the version of HTTP. Currently this
is the constant 1.0.

URL is an OMNIS Character field that receives the name of the URL to be processed for the
GET, POST, or HEAD. This contains the name of the URL, possibly preceded by a path. At
a minimum, the path is a single slash, so every URL returned from HTTPParse is of the
form /URLName.

Note: Due to the presence of the leading slash, a simple OMNIS equality string comparison
to the name of the URL fails. Use the pos() function or similar parsing mechanism to find
the URL name. The trailing question mark of a GET-method CGI, which separates the URL
path from the CGI arguments, is stripped by HTTPParse.

CGIList is an OMNIS list field defined to have two character columns. The list contains
information culled from the arguments (if any) that are passed to a CGI. There is one row
for each field by the CGI method. In this way, an OMNIS method can acquire the values
from a Web form. For example, if the following HTML form is the submitted from a
browser to the OMNIS Web listener server:

Name: 
City: 
Are you alive? 



500 Chapter 6—External Commands

and the user types in John Smith, Podunk and checks the City field, then after HTTPParse,
CGIList contains:

Attribute Value

Name John Smith

City Podunk

Alive Yes

Submit Please

Note: Before the values are placed in the list, HTTPParse automatically decodes any CGI
encoding required to pass special characters in the entry. There is no need to call the
CGIDecode command to decode the value entries in the list.

HTTPPost
Reversible: NO Flag affected: NO

Parameters: Hostname, URI, CGIList, HeaderList, Port
Returns: Returns Socket

Syntax: HTTPPost(Hostname,URI,[CGIList[,HeaderList[,Port]]] )

HTTPPost is a client command that submits a POST-method CGI request to a Web server.
HTTPPost returns a positive integer socket number opened to the Web server as a result of
the POST CGI in Socket. This allows OMNIS to read the results of the CGI request on this
socket. In the case of an error, a value of -1 (minus one) is returned for the socket number.
Errors in parsing the message header are reported through the standard WebDevError
mechanism.

Hostname is an OMNIS character field containing the hostname of a Web server to which
to connect.

URI is an OMNIS Character field containing the path and the name of the CGI to be run on
the Web server. Often this value can be determined by looking at the source to an HTML
page that requests the CGI.

CGIList is an optional parameter that specifies a 2-column OMNIS list. The list contains
information to be sent as the arguments of the CGI. There is one row for each field passed
to the POST CGI method. In this way, an OMNIS method can send OMNIS field values to
a Web server. For example:



External Commands 501

Attribute Value

Name John Smith

City Podunk

Alive Yes

Submit Please

Note: Before the values are sent to the Web server, HTTPPost performs any CGI encoding
required to pass special characters in the arguments. There is no need to call the CGIEncode
external command to encode the value entries in the list.

HeaderList is an optional parameter specifying an OMNIS list defined to have two
character columns. The list contains information added to the HTTP message header as
attribute/value pairs on each row. There is one row for each item found on the header. For
example, after the call, the list might contain HTTP Header entries such as:

Attribute Value

Accept *

/*

Content-type text/html

Port is an optional parameter that designates a local client port for the return of data.

HTTPPost adds colons to the attributes when it constructs the header. Do not end attribute
names with a colon. HTTPPost adds the following header fields by default:

Attribute Value

Date The current GMT date and time in HTTP header format

Server OMNIS7/3.5

MIME-version 1.0



502 Chapter 6—External Commands

HTTPRead
Reversible: NO Flag affected: NO

Parameters: Socket, Message
Returns: Length

Syntax: HTTPRead(Socket,Message)

HTTPRead is a server command that reads a character stream from a socket, functionally
equivalent to TCPReceive.

Socket is an OMNIS Integer field containing the number of a socket previously opened.

Stream is an OMNIS Character field used to receive the characters waiting on the socket.

Length is an OMNIS Long Integer field containing the number of characters read, if greater
than or equal to 0 (zero).

If an error occurs, Length contains a WinSOCK error code in the form of a number less than
0 (zero), shown at the end of this chapter. If the socket is set to non-blocking, an error of -
10035 is returned to indicate that there is nothing to read. Otherwise, the socket blocks
indefinitely. Using WebDevError, one or more callback methods return error messages and
codes.

HTTPSend
Reversible: NO Flag affected: NO

Parameters: Socket, HTML
Returns: Length

Syntax: HTTPSend(Socket,HTML)

HTTPSend is a server command that sends a character stream to a socket, functionally
equivalent to TCPSend.

Socket is an OMNIS Integer field containing the number of a socket previously opened.

HTML is an OMNIS Character field containing the characters to send through the socket.

Length is an OMNIS Long Integer field containing the number of characters sent if greater
than or equal to 0 (zero). If an error occurs, Length contains a WinSOCK error code in the
form of a number less than 0 (zero), shown at the end of this chapter. If the socket is set to
non-blocking, an error of -10035 is returned, indicating that the socket is blocked and the
send has failed or is incomplete.



External Commands 503

HTTPServer
Reversible: NO Flag affected: NO

Parameters: WebProc, Port

Syntax: HTTPServer(WebProc[,Port])

HTTPServer invokes a listening socket on port 80, or a user-specified port, to receive
incoming HTTP Web requests. This function shows an OMNIS working message with the
count of accepted connections. HTTPServer calls back into a user-specified OMNIS
method when a connection is accepted on port 80 or on the specified port. The user function
receives the socket number connected to the client. Even though HTTPServer is meant to
allow OMNIS to accept incoming HTTP connections, it can serve any other purpose
requiring a fast accept loop on a user-specified port.

Standard WinSOCK and command argument errors are reported using WebDevError.

WebProc is an OMNIS Character field containing an address for an OMNIS method to be
called when a connection is accepted. The method receives one parameter, the number of
the socket on which the connection has been accepted. For example: MYCODE or
MYLIBRARY.MYCODE. You should use the method name qualified by the library name
if your applications are in a multi-library environment.

;Parameter ConnectedSocket (Long integer)

You may read and write to the parameter socket with HTTPRead, HTTPSend, or
HTTPHeader external commands or a TCP equivalent ( TCPSend; for example). All
sockets are created equal.

Port is an OMNIS Integer field that is optionally used to indicate a default port number
other than 80.

Caution: You must close the connected socket with HTTPClose before quitting the
OMNIS method.

Stopping the Server Listener
Once initiated, the server runs indefinitely until it is stopped. There are two ways to stop
HTTPServer listeners:

1. Press the Cancel button on the working dialog displayed by the external command.
HTTPServer is in a very tight listening loop. Sometimes you may have to click on the
Cancel button more than once to get the external command’s attention.

2. You may set the OMNIS flag variable to false before returning from the
AcceptCallback method. The HTTPServer checks the flag and stops, continuing
execution from the next method after the original call to HTTPServer.



504 Chapter 6—External Commands

HTTPSplitHTML
Reversible: NO Flag affected: NO

Parameters: Message, TagTextList

Syntax: HTTPSplitHTML(Message,TagTextList)

HTTPSplitHTML is a client utility function to parse the HTML from a Web page into an
OMNIS list. The HTML tags are parsed out of the text, so that it easy to write a program
that grabs the Web page content or interprets the tags from a form.

Message is an OMNIS Character field containing the text of the content portion of a Web
page, including HTML tags.

TagTextList is an OMNIS list defined to have three columns, all character. Column 1
contains the opening HTML tag, column 2 the actual page text, and column 3 the closing
HTML tag.

Using WebDevError, one or more callback methods return error messages and codes.

HTTPSplitURL
Reversible: NO Flag affected: NO

Parameters: URL, Hostname, URI

Syntax: HTTPSplitURL(URL,Hostname,URI)

HTTPSplitURL is a server or client utility function to split a full URL into a hostname
name and a path (that is, a URI). Useful for following HREF links on pages. Errors in
parsing the URL are reported through the standard WebDevError mechanism.

URL is an OMNIS Character field containing a standard Web page URL of the form
http://host.mydomain.com/path/webpage.html

Hostname is an OMNIS character field that receives the domain name parsed out of the
URL argument. For example, given the URL, above, the domain portion would be
host.mydomain.com

URI is an OMNIS Character field that receives the path and page name spec parsed out of
the URL argument. For example, given the URL, above, the URI would be
path/webpage.html.



External Commands 505

MAILSplit
Reversible: NO Flag affected: NO

Parameters: Message, HeaderList, Body
Returns: Status 1 (one) if successful and a 0 (zero) if error

Syntax: MAILSplit( Message,HeaderList,Body)

MAILSplit is a utility command to parse RFC 822 mail headers. It strips the mail header
from the body of a mail message.

Message is an OMNIS Character field containing the complete text of an Internet e-mail
message, including the header. These are returned in the MailList argument of the
POP3Recv external command. For example

Received: by omnis-software.com with SMTP; 12 Aug 1996 11:49:59 -0700
Received: (from someone@localhost) by netcom8.netcom.com (8.6.13/Netcom)
id LAA09789; Mon, 12 Aug 1996 11:46:45 -0700
Date: Mon, 12 Aug 1996 11:46:45 -0700
From: someone@somedomain.com (PersonalName here)
Message-Id: <199608121846.LAA09789@netcom8.netcom.com>
To: someoneelse@somedomain.com
Subject: This is an e-mail subject
Hello from OMNIS Software, Inc.

HeaderList is an OMNIS list defined to have two character columns. The list receives the
information from the e-mail message header as attribute/value pairs on a row of the list.
There is one row for each item in the header. This function can format the message for
simpler display or to find when a message has been sent for filing and other purposes. For
example, assuming the e-mail message above:

Attribute Value

Received by omnis-software.com with SMTP;  12 AUG 1996 11:49:59 -

netcom8.netcom.com0700 (from someone@localhost) by
netcom8.netcom.com

Received (8 .6 .13/Netcom) id LAA09789 ; MON, 12 AUG

1996 11:46:45 -0700

Date Mon, 12 Aug 1996 11:46:45 -0700

From someone@somedomain.com (Personal Name here)

<199608121846.LAA09789@

Message-Id netcom8.netcom.com>

To someoneelse@somedomain.com

Subject This is an e-mail subject



506 Chapter 6—External Commands

Note: Two header lines may have the same attribute name. This is within the RFC822
message header specification. In this case, the HeaderList has two lines with the same
Attribute name, as with Received in the above example. Long header lines that are split and
continued in the message header are concatenated into one line in the list, as with the second
Received attribute in the above example. The colon at the end of the attribute is stripped.

Body is an OMNIS character field. The body of the e-mail message is returned into this
variable, minus the header. For example: Hello from OMNIS Software, Inc.

Errors are reported using the WebDevError callback mechanism.

Move file
Reversible: NO Flag affected: NO

Parameters: From path (file to be moved)
To path (the new location)
Return field

Syntax: Move file (from-path, to-path) returns return-field

This command moves the file specified in from-path to the directory named in to-path. It
returns any error code, shown at the end of this chapter, or zero if none. If to-path is a
directory only, the file is moved to that directory. If to-path includes a filename and
directory name the file is moved and renamed. This may fail if the to-path directory
contains a file with the same name as from-path filename.

Move file cannot move a file across volumes (disks). Use Copy file and Delete file instead.
The Windows version of Move file cannot move directories; the MacOS version can.



External Commands 507

NSF Add fields
Reversible: NO Flag affected: NO

Parameters: Note ID
Commit/NoCommit flag
Field list
Status return field

Syntax: NSF Add fields (note-id, commit-flag, field1[,field2]...)
returns status-field

This command writes new field values to the Note specified by the Note ID. For example

NSF Add fields  (Note_ID,'Commit') Returns R

In this form NSF Add fields does the following:

1. Opens the Note

2. For each field in the current 'map' table it adds a field to the Note

3. Writes the Note to disk

4. Returns the number of fields updated

The calls used to add the fields will delete and replace any fields that are already there.

You can specify a list of fields in which case the map table is ignored and the value of the
field or fields is added, for example

NSF Add fields  (Note_ID,'NoCommit','Field1','Field2' Returns R

The Commit/NoCommit string controls the flushing of the note from the disk cache on the
server.

NSF Attach file
Reversible: NO Flag affected: NO

Parameters: Note ID
File path
File name
Status return field

Syntax: NSF Attach file (note-id, file-path, file-name) returns
status-field

This command attaches a file attachment to a Note. The file path and name are separate
parameters, the file name being the name of the file as stored in the attachment and the path
being the location of the file on the local hard disk.



508 Chapter 6—External Commands

NSF Build view
Reversible: NO Flag affected: NO

Parameters: View name
List name
Text key
Partial
Number return field

Syntax: NSF Build view (view-name, list-name[,text-key][, 'Partial'])
returns number

This command moves data from a view into an OMNIS list. You can also search the
primary index with a text key, either using a partial or full match on the index. The search is
insensitive to diacritical marks. The view-name and list-name parameters are compulsory.
As each note is opened, its fields are read into the OMNIS record buffer and added to the
list. Thus, the last Note found in the view is always loaded into the "mapped" variables.
There is no way to prevent the values from being added to the list unless you were to
redefine the columns of the list to be different to the "map".

Set current list LIST2

Define list {Note_ID,LastName,FirstName,PhoneNumber}

NSF Map Fields ('LIST2') Returns R

NSF Build View  ('People','LIST2') Returns R

Redraw windows NotesWindow

NSF Build view does the following:

1. Opens the view note

2. Creates a collection of notes from the view

3. For each note, it uses its ID to open the view

4. For each field in the OMNIS map it tries to read the named field from the note

5. If a matching field is found, it reads the value into OMNIS

6. When all the "mapped" fields have been processed, it adds a line to the specified list.

If you use a list with no mapped fields a blank line will be added for each note. The NSF
Build View command returns the number of notes found in the view.

If you add the text-key parameter a search is carried out for a matching value in the primary
index for that view. For example

NSF Build View ('People','LIST2','Pon') Returns R

The 'Partial' parameter will search for a partial match beginning with the text value
supplied in parameter text-key.  For example



External Commands 509

;  Beginning with 'P'

NSF Build View  ('People','LIST2','P','Partial') Returns R

NSF Close all files
Reversible: NO Flag affected: NO

Parameters: Status return field

Syntax: NSF Close all files returns status-field

This command closes all open Notes database files.

NSF Close file
Reversible: NO Flag affected: NO

Parameters: Pathname or Mail_File
Status return field

Syntax: NSF Close file (path-name|'mail_file')
returns status-field

This command closes the specified file and writes any data to disk. A database remains
open until it is closed with this command.

NSF Close file  ('Mail_file')

NSF Copy Note
Reversible: NO Flag affected: NO

Parameters: Note ID
Return field

Syntax: NSF Copy Note (note-id) returns return-field

This command copies a Note from the current database to a specified database. If the target
database is not open, it will be opened, but not made current.



510 Chapter 6—External Commands

NSF Delete Note
Reversible: NO Flag affected: NO

Parameters: Note ID
Status return field

Syntax: NSF Delete Note (note-id) returns status-field

This command deletes the specified Note from the currently open file. For example

NSF Delete Note  (Note_ID) Returns #F

If flag false

OK message {Error}

End If

NSF Describe fields on form
Reversible: NO Flag affected: NO

Parameters: Form name
List name
Field name
Field type
Status return field

Syntax: NSF Describe fields on form (form-name, list-name, field-name,
field-type) returns status-field

This command builds a list of objects on the specified form. Forms in Notes contain a
certain amount of data relating to the fields and their data types. This command describes
the field names and types of the form and places the description in the named list.

This method builds a list of fields on "Myform":

NSF Describe fields on form  (MyForm,'FieldsList','Field','Type')
Returns #F



External Commands 511

NSF Find forms
Reversible: NO Flag affected: NO

Parameters: List name
Field name
Status return field

Syntax: NSF Find forms (list-name, field) returns status-field

This command builds a list of forms in the current Notes database. Forms in Notes contain a
certain amount of data relating to the fields and their data types. The following example
builds a list of forms, stripping out any aliases in the names.

Set current list FormList

Clear list

NSF Find forms  ('FormList','Form') Returns R

For each line in list from 1 to $linecount step 1

If pos(';',lst(Form))

Calculate FormList('Form',LIST.$line) as
mid(lst(Form),1,pos(';',lst(Form))-1)

End If

End For

NSF Get info
Reversible: NO Flag affected: NO

Parameters: Info string return field

Syntax: NSF Get info returns info-string

This command gets the file info for the current open Notes database file.

NSF List open NSF files
Reversible: NO Flag affected: NO

Parameters: List name
Status return field

Syntax: NSF List open NSF files (list-name)
returns status-field

This command builds a list of open NSF files. The list is built in the specified list for which
a single column must have been defined.



512 Chapter 6—External Commands

NSF Mail Note
Reversible: NO Flag affected: NO

Parameters: Note ID
Note ID return field

Syntax: NSF Mail Note (note-id) returns note-id

This command sends a Note to the mail file. The Notes DLL uses the API call

OSPathNetConstruct(NULL,szMailServerName,"MAIL.BOX",
szMailBoxPath);

to create the path to the file. After writing to the Mail file, the data is not flushed to disk
until the file is closed with NSF Close file.

NSF Make Note
Reversible: NO Flag affected: NO

Parameters: Form name
Note ID return field

Syntax: NSF Make Note form-name returns note-id

This command inserts a new note in the currently open file, sets its default form and returns
the Note_ID. For example

NSF Make Note  ('SimpleDataForm') returns Note_ID

OK message {Made [Note_ID]}

NSF Make response
Reversible: NO Flag affected: NO

Parameters: NoteID
Response flag
Return field

Syntax: NSF Make response (note-id, response-flag) returns number-field

This command creates a “response” document to a note specified by the note-id. You can
then add fields to the new note using NSF Add fields.

Set current list LIST2

Define list {PLAIN_TEXT,NUMBER,TIME_DATE,TEXT_LIST,Note_ID}

NSF Map fields ('LIST2') Returns R

NSF Make response  (Note_ID,'Response') Returns R

Calculate Note_ID as R  ;; now points to the new note

OK message (High position,Large size) {Made reponse [R]}



External Commands 513

NSF Make server path
Reversible: NO Flag affected: NO

Parameters: Server
NSF file
Path return field

Syntax: NSF Make server path (server,  nsf-file) returns path

This command returns the path to the specified server and NSF file. To access a database on
a server and open a mail file, the user must have access to the server itself. Otherwise an
error is returned when the API program attempts to open the database.

NSF Make server path  ('LANSERVE','Specs') Returns NPATH

NSF Open Notes file (NPATH) Returns #F

If flag false

Ok message {Error opening note file Specs}

End If

NSF Map fields
Reversible: NO Flag affected: NO

Parameters: List name
Status return field

Syntax: NSF Map fields (list-name) returns status-field

This command maps Notes fields onto OMNIS field names and field types; you can map up
to 32 fields. Once the map has been set up, an array of field references and associated
OMNIS field types is held in RAM by the DLL interface that you can use with subsequent
NSF Select and NSF Build view commands. The OMNIS field names have to exactly match
the Notes field names for Notes to return any information.

; set up variables for list

Set current list LIST2

Define list {Note_ID,LastName,FirstName,PhoneNumber}

NSF Map fields  ('LIST2') Returns R

NSF Build view ('People','LIST2') Returns R

Redraw windows NotesWindow



514 Chapter 6—External Commands

NSF Open file
Reversible: NO Flag affected: NO

Parameters: Pathname
Status return field

Syntax: NSF Open file (path-name) returns status-field

This command opens the database file with the specified pathname. To determine the
correct path for the file, open the file in Notes and use the Synopsis... option to read the
path to that database. When the path is not specified NSF Open file will look in the Notes
directory for the named file. A return value 1 indicates that the file was already open and
was made the 'current' file, return value 2 indicates that the file was opened for the first
time.

The number of simultaneous open databases is set to 8. The last opened database is the
"current" one and reopening an open database simply makes it the "current" one. You must
give the same path to the database file each time it is opened.

NSF Open file  ('Names') returns Statusfield

NSF Make Note ('SimpleDataForm') Returns #F

If flag false

; OK message {Error}

End if

; continue

NSF Select
Reversible: NO Flag affected: NO

Parameters: Listname
Select macro
Date
View title
Status return field

Syntax: NSF Select (list-name, select-macro, date, view-title)
returns status-field

This command uses the API call "NSFSearch". This function carries out a sequential search
of the current Notes database. It scans all the notes in a database or files in a directory.
Based on several search criteria, the function calls a user-supplied routine that fills the
OMNIS list for every note or file that matches the criteria. NSFSearch is a powerful
function that provides the general search mechanism for tasks that process all or some of the
documents in a database or all or some of the databases in a directory.

The date argument limits the search to notes created or modified since a certain time or
date.



External Commands 515

The view-title string contains the view name. If the selection formula specified by the
second argument contains the @ViewTitle function, Notes uses the view name specified by
this argument to resolve this @ViewTitle function. If the selection formula does not contain
the @ViewTitle function do not include the view-title parameter.

Set current list LIST1

Define list
{PLAIN_TEXT,NUMBER,TIME_DATE,TEXT_LIST,RichStuff,Note_ID}

Clear list (All lists)

Set current list TEXT_LIST

Define list {CVAR3}

NSF Select  ('LIST1','@All') Returns R

For each line in list

; Process list

End for

Redraw NotesWindow

NSF Servers
Reversible: NO Flag affected: NO

Parameters: List name, Status return field

Syntax: NSF Servers (list-name) returns status-field

This command returns a list of servers visible on the network. The list is built in the
specified list for which you must have defined a single column. For example,

Set current list slist

Define list {FV_Server}

NSF Servers  ('slist') Returns R



516 Chapter 6—External Commands

NSF Set error field
Reversible: NO Flag affected: NO

Parameters: Error field name
Status return field

Syntax: NSF Set error field (error-field -name) returns status-field

This command defines an error field which reports errors during method execution. Once
the error is reported to the error field execution continues. Most Notes commands return an
integer value where 0 indicates an error.

NSF Set error field  ('Error')

NSF Build view ('VIEW','LIST') Returns #F

If flag false

Ok message {Error [Error]} ;; or call error routine to log it

End if

NSF Unpack file
Reversible: NO Flag affected: NO

Parameters: Note ID
File name
File path
Status return field

Syntax: NSF Unpack file (note-id, file-name, file-path) returns
status-field

This command unpacks any files attached to the Note. The file name and path are separate
parameters, the file-name being the name of the file attachment and the file-path being the
location of the file on the local hard disk.

NSF Where’s my mail?
Reversible: NO Flag affected: NO

Parameters: Info string return field

Syntax: NSF Where’s my mail? returns info-string

This command returns the server name where the current mail file resides.

; Declare variable SERVERNAME (Character 1000)

NSF Where’s my mail?  Returns SERVERNAME



External Commands 517

NSF Who am I
Reversible: NO Flag affected: NO

Parameters: Info string return field

Syntax: NSF Who am I returns info-string

This command returns your user name for the current mail file.

NSF Who am I  Returns Username

NSF Write composite
Reversible: NO Flag affected: NO

Parameters: Note ID
Commit
Field list
Status return field

Syntax: NSF Write composite (note-id, commit-flag, field1[,field2]...)
returns status-field

This command writes a composite field (or RTF) to a Notes field. The current
implementation limits the size of text fields written to Notes as the size limit on the Notes
summary buffer of 15K. However, the NSF Write composite command can append text to
an existing RTF field no matter how big it is and you can read fields of any size into
OMNIS.

When reading composite or RTF fields into OMNIS, they are converted to plain text via the
NSFItemConvert routines in the API.  To append a text value to an existing RTF field you
issue the following command:

NSF Write Composite  (Note_ID,'Commit','RichStuff') Returns R

This command never uses the 'map' table and always appends the text in the OMNIS field to
the composite field in Notes with the same name. The text is converted using the API
convert to composite call, using the default fonts and styles. You have no control over the
style of the composite field. There are no size constraints imposed by the OMNIS interface,
thus the Notes API calls to convert an RTF to text and the NSFSetText would be the only
constraints when dealing with large fields.



518 Chapter 6—External Commands

Open file
Reversible: NO Flag affected: NO

Parameters: Path of file to be opened
Reference number or DOS file handle
R parameter (specifies read-only, otherwise read/write)
Return field

Syntax: Open file (path, refnum[,'R']) returns return-field

This command opens the file named in path. The file reference number is returned in
refnum (under Windows, this is a DOS file-handle). You use this reference number to refer
to the open file when calling Close file, Read file as character, Read file as binary, Write
file as character, and Write file as binary. The R parameter is optional and is case-
insensitive. When included this ensures the file opens as read-only, otherwise the file is
opened as read/write.

It returns any error code (shown at the end of this chapter), or zero if none.

Open resource fork
Reversible: NO Flag affected: NO

Parameters: Path (of file)
Reference number
R parameter (specifies read-only, otherwise read/write)
Return field

Syntax: Open resource fork (path, refnum[,‘R‘]) returns return-field

This command, available under MacOS only, opens the resource fork of the file specified in
path. The file reference number is returned in refnum. If you include the R parameter the
file opens as read-only, otherwise the file is opened as read/write.

It returns any error code (shown at the end of this chapter), or zero if none.



External Commands 519

POP3Recv
Reversible: NO Flag affected: NO

Parameters: Server, Username, Password, List, Delete, Status

Syntax: POP3Recv(Server,Username,Password,MailList[,Delete,Status])

POP3Recv retrieves Internet e-mail messages from a POP3 server into an OMNIS list. If an
error is raised, the Status field returns a string containing the word ERROR. When an error
occurs, all mail may not have been received, and all sockets are closed.

Server is an OMNIS Character field containing the IP address or host name of a POP3 (Post
Office Protocol Level 3) server that will serve e-mail to the client running OMNIS.
Examples: pop3.mydomain.com or 255.255.255.254.

Username is an OMNIS Character field containing the account that receives the mail on the
designated server. Usually an account username, for example, Webmaster.

Password is an OMNIS Character field containing the password for the account specified in
the Username parameter, for example, Secret.

List is an OMNIS list field defined to contain a single column of typed characters. The
column receives the Internet e-mail messages, one per line. The column variable should be
large enough to receive the e-mail message, including the header. The list should be defined
with store long data option selected.

Delete is an OMNIS Boolean field which, if set, indicates that the message will be deleted
from the server once it has been downloaded into the row in MailList. The default is false,
so messages remain on the server if the argument is omitted.

Status is an optional parameter specifying an OMNIS Character field that contains an
OMNIS method to be called with mail receive status messages. This parameter overrides
WebDevError settings. The method can display a status message in a window or status line
of a window while the SMTP process proceeds, for example, MYCODE or
MYLIBRARY.MYCODE

Note: Use the method  name qualified by the library name if your applications are in a
multi-library environment.



520 Chapter 6—External Commands

POP3Stat
Reversible: NO Flag affected: NO

Parameters: Server, Username, Password
Returns: WaitingMsgs

Syntax: POP3Stat(Server,Username,Password)

The POP3Stat command retrieves the number of Internet e-mail messages waiting for a
particular username on a specified POP3 server. If an error is raised, the command returns a
string containing the word ERROR. When an error occurs, not all mail may have been
received and all sockets are closed.

Server is an OMNIS Character field containing the IP address or hostname of a POP3
server that will serve e-mail to the client running OMNIS. For example:
pop3.mydomain.com or 255.255.255.254.

Username is an OMNIS Character field containing the account that receives the mail on the
designated server (usually an account username, for example, Webmaster).

Password is an OMNIS character field containing the password for the account specified in
the Username parameter, for example, Secret.

WaitingMsgs is an OMNIS Long Integer field containing number of e-mail messages
waiting to be collected on the specified server for the specified account.



External Commands 521

Put file name
Reversible: NO Flag affected: NO

Parameters: Path of output file
Dialog title
Prompt (ignored under Windows)
Default
Return field

Syntax: Put file name (path[,dialog-title][,prompt][,default])
returns return-field

This command prompts the user to enter a file name and path; it opens the standard Save
as... dialog. You can enter the title of the dialog. The optional prompt is put above the name
of the file the user enters. The default filename is displayed in the dialog. It returns the full
pathname of the file the user entered in path, or empty if no file was entered (that is, the
Cancel button was clicked). The named file is not opened or created.

It returns any error code (shown at the end of this chapter), or zero if none.

The prompt parameter is ignored under Windows. If no default name is specified, MacOS
uses "Untitled" and under Windows the field is left empty.

Switch sys(6) = ‘M’

Case kTrue      ;; if MacOS

Put file name  (PATH, 'Save your file',

'Save as’,'My file') returns ERROR

Default     ;; if anything else

Put file name  (PATH, 'Save your file',
'MYFILE.TXT') returns ERROR

End Switch



522 Chapter 6—External Commands

ReadBinFile
Reversible: NO Flag affected: NO

Parameters: Pathname, Binfld, Start, Length
Returns: Numbytes

Syntax: ReadBinFile(Pathname,Binfld[,Start[,Length]])

ReadBinFile reads binary data from the file system or data fork (not the resource fork).

Note for Macintosh Users: ReadBinFile and WriteBinFile are useful for reading and
writing documents but not system and application files.

Pathname is an OMNIS Character field containing the full path of the file to read.

Binfld is an OMNIS Binary field in which the data is stored.

Start is an optional parameter specifying an OMNIS Integer field that contains the byte
position in the file where the command should start reading. Defaults to 0 (zero), that is, the
beginning of the file.

Length is an optional parameter specifying an OMNIS Integer field containing the number
of bytes to read. If the parameter is not used, the value defaults to the length of the file.

NumBytes is an OMNIS Long Integer field that is the number of bytes read, if no error
occurs. Otherwise, an error code is returned, shown at the end of this chapter.

A WebDevError callback method returns error messages and codes.



External Commands 523

Read entire file
Reversible: NO Flag affected: NO

Parameters: Path of file to be read
Binary variable (for the returned data)
R parameter (specifies read-only, otherwise read/write)
Return field

Syntax: Write entire file (path, binary-variable [,‘R’] ) returns return-
field

This command reads an entire file into a binary field. It returns any error code (shown at the
end of this chapter), or zero if none. The Binary value is in the following format:

1. 12 byte header containing the Type (4 bytes), Creator (4 bytes), and Data fork size (4
bytes).

2. Data fork information.

3. Resource fork information.

The size of the data fork determines where the resource fork data is stored, as shown below.
Under Windows, the Type defaults to ‘TEXT’, the Creator to ‘mdos’, and the resource fork
is not stored.



524 Chapter 6—External Commands

Read file as binary
Reversible: NO Flag affected: NO

Parameters: Reference number or DOS file handle
Binary variable (for the returned data)
Start position
Number of bytes
Return field

Syntax: Read file as binary (refnum, binary-variable
[,start-position][,num-bytes]) returns return-field

This command reads a file, or part of a file, into a binary variable. You specify the file
reference number or DOS file handle of the file in refnum. The binary data read from the
file is returned in binary-variable.

If you specify the start-position, the file is read at that absolute byte position (0 is the first
byte in the file, 1 is the second byte in the file, and so on), otherwise it begins at the current
position (0 when the file is first opened).If you specify the number of num-bytes, only that
many bytes are read, otherwise the file is read until the end of the file is reached.

If you specify a start-position of 0 and num-bytes equal to 0, the file pointer is reset to byte
position 0 in the file. If a start-position of -1 is given, the file pointer is reset to the end of
the file. For both cases an empty binary-variable buffer is returned.

It returns any error code (shown at the end of this chapter), or zero if none.



External Commands 525

Read file as character
Reversible: NO Flag affected: NO

Parameters: Reference number or DOS file handle
Character variable for the returned text
Start position
Number of characters
Return field

Syntax: Read file as character (refnum, character-variable
[,start-position][,num-characters]) returns return-field

This command returns a file, or part of a file, into a character variable. You specify the file
reference number or DOS file handle of the file in refnum. The text read from the file is
returned in character-variable.

If you specify the start-position, the file is read at that absolute character position (0 is the
first character in the file, 1 is the second, and so on), otherwise it begins at the current
position (the first character when the file is first opened). If you specify num-characters,
only that many characters are read, otherwise the file is read until the end of the file is
reached.

If you specify a start-position of 0 and num-characters equal to 0, the file pointer is reset to
character position 0 in the file. If a start-position of -1 is given, the file pointer is reset to
the end of the file. For both cases an empty character-variable buffer is returned.

It returns any error code (shown at the end of this chapter), or zero if none.

Register DLL
Reversible: NO Flag affected: NO

Parameters: Library name (of the DLL)
Procedure name
Type definition string
Return field

Syntax: Register DLL (library-name, procedure-name, type-definition)
[returns return-field]

This command registers a DLL and its parameters. The library-name is a text string
specifying the name of the DLL that contains the procedure specified by procedure-name.
The type-definition is a text string specifying the data type of the return value and the data
type of all arguments to the DLL. The first letter of type-definition specifies the return
value. The following table contains the codes to be used in type-definition including a
description of how the argument or return value is passed and a typical declaration for the
data type in the C programming language.



526 Chapter 6—External Commands

Code Description Pass By C declaration

A Logical Value short int

B IEEE 8-byte floating point Value double

C Null-terminated string Reference char *

D Pascal string Reference unsigned char *

E IEEE 8-byte floating point Reference double *

H Unsigned 2-byte integer Value unsigned short int

I Signed 2-byte integer Value short int

J Signed 4 byte integer Value long int

L Logical Reference short int *

M Signed 2-byte integer Reference short int *

N Signed 4-byte integer Reference long int *

V void void

All procedures in the DLL are called using the Pascal calling convention.

The following example opens the Windows Character Map Editor.

Do method OpenExe (‘charmap.exe',1)

; OpenExe

; Declare Parameter APPNAME (Character 255)

; Declare Parameter INSTRUCTS (Short integer (0 to 255))

Register DLL  ('KRNL386.EXE','WinExec','ICI') Returns RESULT

Call DLL ('KRNL386.EXE','WinExec',APPNAME,INSTRUCTS) Returns RESULT

If RESULT < 18

Do method Errors

End If



External Commands 527

Set creator type
Reversible: NO Flag affected: NO

Parameters: File name (including full path)
New file type
New creator
Return field

Syntax: Set creator type (file-name[,file-type][,creator])
returns return-field

This command changes the creator and/or file type of a MacOS file; the file name must
include the full path. If either the file-type or creator is left empty, the old file type or
creator is used.

Set creator type  (‘HD:PicFile’,’PICT’,’SPNT’)

Set creator type  (‘HD:OMNIS:SimpSql.LBR’,’TEXT’,’ttxt’)

It returns any error code (shown at the end of this chapter), or zero if none.

Set file read-only attribute
Reversible: NO Flag affected: NO

Parameters: Path of the file
Read-flag setting
Return field

Syntax: Set file read only attribute (path, read-flag) returns [return-field]

This command lets you set the read-only attribute of the file specified in path. If you set the
read-flag parameter to kTrue the file is set to read-only, or if kFalse the file is set to
read/write. Note that read-only status is the same as locked under MacOS.

It returns any error code (shown at the end of this chapter), or zero if none.



528 Chapter 6—External Commands

SMTPSend
Reversible: NO Flag affected: NO

Parameters: Server, From, To, Subj, Body, CC, BCC, FromName, StatCall, Priority

Syntax: SMTPSend(Server,From,To,Subj,Body
[,CC,BCC,FromName,StatCall,Priority])

SMTPSend sends Internet e-mail messages via an SMTP server.

Server is an OMNIS Character field containing the IP address or hostname of an SMTP
server that will accept e-mail requests from the client running OMNIS, for example,
smtp.mydomain.com or 255.255.255.254.

From is an OMNIS Character field containing the RFC 822 Internet e-mail address that will
be placed in the header to identify the sender. Recipients can reply to this address, for
example, webmaster@www.omnis-software.com.

To is either an OMNIS Character field or an OMNIS list field. If the field is character, it
contains the RFC 822 Internet e-mail address to which the e-mail will be sent. The To: line
of the message header, for example, webmaster@www.omnis-software.com. If the field is a
list, it is defined to contain a single character column, which contains one RFC 822 Internet
e-mail addressee per row. The addresses appear in the To: line of the message header. For
example:

ToAddresslist
webmaster@www.omnis-software.com
info@omnis-software.com

Subj is an OMNIS character field containing the subject of the e-mail message. The text
appears on the Subject: line of the message header, for example, Regarding use of
MAILSend ...

Body is an OMNIS Character field containing the body of the e-mail message. The text
appears as the actual e-mail message.

CC is either an OMNIS Character field or an OMNIS list field. If the field is character, it
contains the RFC 822 Internet e-mail address to which the e-mail will be sent. The To: line
of the message header might be, for example, webmaster@www.omnis-software.com. If the
field is a list, it is defined to contain a single character column, which contains one RFC 822
Internet e-mail addressee per row. The addresses appear in the CC: line of the message
header. For example:

CCAddresslist
webmaster@www.omnis-software.com
info@omnis-software.com

BCC is either an OMNIS Character field or an OMNIS list field. If the field is a Character
field, it contains the RFC 822 Internet e-mail address to which the e-mail will be sent (the
To: line of the message header, for example, webmaster@www.omnis-software.com). If the



External Commands 529

field is a list, it is defined to contain a single character column, which contains one RFC 822
Internet e-mail addressee per row. The addresses appear in the BCC: line of the message
header. For example:

BCCAddresslist
webmaster@www.omnis-software.com
info@omnis-software.com

FromName is an OMNIS Character field containing a personal name that will appear in the
header to identify the user by a more descriptive name than just the e-mail address, for
example, OMNIS Webmaster

StatCall is an OMNIS character field containing an OMNIS method that will be called with
status messages about the mail-sending operation. The method can display a status message
in a window or status line of a window while the SMTP process proceeds, for example,
MYCODEor MYLIBRARY.MYCODE.

Note: Use the method name qualified by the library name if your applications are in a multi-
library environment.

Priority is on OMNIS Short Integer field that sets the priority of the e-mail. It accepts a
single value in the range of 1 through 5, a 1 (one) indicating the highest priority.



530 Chapter 6—External Commands

Split path name
Reversible: NO Flag affected: NO

Parameters: Path (to be split)
Drive name
Directory
File name
File extension
Return field

Syntax: Split path name (path, drive-name, directory, file-name,
file-extension) returns return-field

This command splits a full path name into its component parts: the drive name, directory
and file name, and file extension. It returns any error code (shown at the end of this
chapter), or zero if none. The following examples show how Split path name operates.

Mac

Path Dr Directory Filename Extn

HD:TESTDIR:TESTSDIR:TESTFILE HD :TESTDIR:TESTSDIR: TESTFILE

HD:TESTDIR:TESTFILE.EXT HD :TESTDIR: TESTFILE .EXT

HD:TESTFILE HD : TESTFILE

Non-Mac

Path Dr Directory Filename Extn

C:\TESTDIR\TESTSDIR\TESTFILE C: \TESTDIR\TESTSDIR\ TESTFILE

C:\TESTDIR\TESTFILE.EXT C: \TESTDIR\ TESTFILE .EXT

C:\TESTFILE C: \ TESTFILE



External Commands 531

TCPAccept
Reversible: NO Flag affected: NO

Parameters: Socket
Returns: Socket

Syntax: TCPAccept(Socket)

TCPAccept accepts the first connection on the queue of pending connections on a socket,
creates a new accept socket with the same properties, and returns the number of the new
socket. If no pending connections are present on the queue, and the listenable socket is
marked as blocking, TCPAccept blocks the caller until a connection is present. If the socket
is marked non-blocking and no pending connections are present on the queue, TCPAccept
returns an error as described below. The accept socket is used for all further communication
with that client. The original socket remains open and can accept additional connections.

Socket is an OMNIS Long Integer field containing a socket number for a new socket
connection to the client if there is no error.

A negative value indicates an error. Check the error status in the WinSOCK error table.

TCPAddr2Name
Reversible: NO Flag affected: NO

Parameters: Address
Returns: Hostname

Syntax: TCPAddr2Name(Address)

TCPAddr2Name is a domain name service external command to resolve the hostname for a
given IP address.

Address is an OMNIS Character field containing the IP address to convert to a hostname.
The IP address is of the form 255.255.255.254

Hostname is an OMNIS Character field containing a hostname converted from the given IP
address. The hostname is of the form machine[.domainame.dom]

WinSOCK error codes are returned. Error codes are numbers less than 0 (zero), shown at
the end of this chapter.

Note: This command fails if the address of a Domain Name Server has not been defined in
your computer. Not all host IP Addresses may be known to the Domain Name Server. If the
Domain Name Server is busy or unavailable, the command times out and returns an error.
Defining often -used servers to a local host’s file or using a caching Domain Name Server
increases performance of this command.



532 Chapter 6—External Commands

TCPBind
Reversible: NO Flag affected: NO

Parameters: Socket, Service/Port
Returns: Status

Syntax: TCPBind(Socket,[Service/Port])

TCPBind binds a socket created with TCPSocket() to a particular local port.

Socket is an OMNIS Long Integer field, containing the number of the socket.

Service/Port is an optional parameter, either an OMNIS integer field containing either the
number of the port to which the socket should be bound or an OMNIS character field
containing a name from the Windows Services file.

Status is an OMNIS Long Integer field containing a 0 (zero) if the bind was successful, or a
standard WinSOCK error code, shown at the end of this chapter, if the bind was
unsuccessful.

TCPBlock
Reversible: NO Flag affected: NO

Parameters: Socket, option
Returns: Status

Syntax: TCPBlock(Socket,option)

The TCPBlock command makes a socket blocking or non-blocking. If a socket is blocking,
an Accept, Receive, Send, or Connect stops processing, that is, “blocks” until satisfied. A
receive waits until the remote machine has performed a send. For example, a non-blocking
socket returns -10035 if no information is available to read or if the socket is not ready to
send information. WinSOCK error codes are returned, shown at the end of this chapter.

Please note that this is a Windows command only. Therefore, before issuing this command,
test sys(6) for ‘W’ or ‘N’. This prevents the following dialog from appearing to a Macintosh
end user: TCPBlock not implemented yet.

Non-blocking sockets are usually preferable, although more coding is necessary. WinSOCK
defaults to non-blocking. The Mac is non-blocking only. If you attempt to use a blocking-
type socket on the Windows 16-bit platform, the machine hangs while the socket is waiting
for a message.

Socket is an OMNIS Long Integer field containing a number identifying a valid socket.

option is an OMNIS field with the value of 1 (one) or 0 (zero). One (1) is for non-blocking
and 0 (zero) is for blocking.

Status is an OMNIS Long Integer field that, if no error occurs, returns a 0 (zero). If an error
occurs, a negative value indicates an error.



External Commands 533

TCPClose
Reversible: NO Flag affected: NO

Parameters: Socket
Returns: Status

Syntax: TCPClose(Socket)

TCPClose closes and releases a socket.

Socket is an OMNIS Integer field containing a number representing a previously opened
socket.

Status is an OMNIS Long Integer field that, if no error occurs, returns a socket number for
the new socket connected to the client. If an error occurs, a standard WinSOCK error code
is return, shown at the end of this chapter.

Note: Non-blocking sockets may return an error code of -10035 if the socket is busy and
cannot be closed.

TCPConnect
Reversible: NO Flag affected: NO

Parameters: Server, Service
Returns: Socket

Syntax: TCPConnect(Server,Service

TCPConnect creates a new socket open to a particular service or port on a named server or
IP address.

Server is an OMNIS Character field containing the domain name or IP address of the server
to which the socket is to connect.

Service is an OMNIS Character field containing either a port number or a name (from the
Services file on a Windows system) of the port to connect with on the named server.

Socket is an OMNIS Long Integer field that returns the number of the allocated socket. If an
error occurs, a standard WinSOCK error code, shown at the end of this chapter, is returned
in Socket.

Note: This differs from the more standard implementation of the connect-sockets call.
Instead of creating a socket with one command (such as TCPSocket), then sending the
socket number to a connect command, TCPConnect creates the socket and returns the
socket number in one step.



534 Chapter 6—External Commands

TCPGetMyAddr
Reversible: NO Flag affected: NO

Parameters: None
Returns: Address

Syntax: TCPGetMyAddr()

TCPGetMyAddr is a domain name service external command to resolve the IP address of
the local computer running OMNIS.

Address is an OMNIS Character field containing an IP Address of the local host. The IP
address is of the form 255.255.255.254

WinSOCK error codes are returned. Error codes are numbers less than 0 (zero), shown at
the end of this chapter.

TCPGetMyPort
Reversible: NO Flag affected: NO

Parameters: Socket
Returns: Port

Syntax: TCPGetMyPort(Socket)

TCPGetMyPort is a command to return the number of the TCP port to which a given socket
is connected.

Socket is an OMNIS Long Integer field containing a socket connected to a peer or bound to
a port.

Port is an OMNIS Long Integer field containing the number of the port to which the socket
is bound.

WinSOCK error codes are returned. Error codes are numbers less than 0 (zero), shown at
the end of this chapter.

Note: This command fails if the socket is not connected or bound to a port. Some
implementations of WinSOCK return a number that is offset from the actual port number.



External Commands 535

TCPGetRemoteAddr
Reversible: NO Flag affected: NO

Parameters: Socket
Returns: Address

Syntax: TCPGetRemoteAddr(Socket)

TCPGetRemoteAddr is a command to return the IP address of the remote computer to
which a given socket is connected.

Socket is an OMNIS Long Integer field containing a socket connected to a peer.

Address is an OMNIS Character field containing the IP Address host to which the socket is
connected. The IP address is of the form 255.255.255.254

WinSOCK error codes are returned. Error codes are numbers less than 0 (zero), shown at
the end of this chapter.

Note: This command fails if the socket is not connected.

TCPListen
Reversible: NO Flag affected: NO

Parameters: Socket
Returns: Status

Syntax: TCPListen(Socket)

TCPListen puts a socket created with TCPSocket into passive mode. Incoming connections
are acknowledged and placed in a queue pending acceptance via TCPAccept.

Socket is an OMNIS Long Integer field containing the number of a socket that has been
bound to a port.

Status is an OMNIS Long Integer field that, if no error occurs, TCPListen returns a 0 (zero).
If there is an error, a value of -1 (one) is returned.



536 Chapter 6—External Commands

TCPName2Addr
Reversible: NO Flag affected: NO

Parameters: Hostname
Returns: Address

Syntax: TCPName2Addr(Hostname)

TCPName2Addr is a domain name service external command that resolves the IP address
for a given hostname.

Hostname is an OMNIS Character field containing a hostname to convert to an IP address.
The hostname is of the form machine[.domainame.dom]

Address is an OMNIS Character field containing the IP Address corresponding to the given
hostname. The IP address is of the form 255.255.255.254

WinSOCK error codes are returned. Error codes are numbers less than 0 (zero), shown at
the end of this chapter.

Note: This command fails if the address of a Domain Name Server has not been defined in
your computer. Not all host IP Addresses may be known to the Domain Name Server. If the
Domain Name Server is busy or unavailable, the command times out and returns an error.
Defining often-used servers to a local host’s file or using a caching Domain Name Server
increases performance of this command.

TCPPing
Reversible: NO Flag affected: NO

Parameters: server, size, timeout
Returns: Milliseconds

Syntax: TCPPing(Server[,Size[,Timeout]])

TCPPing sends an ICMP request packet to a specified IP address or named host. It returns
the round-trip packet time in milliseconds. If the host is unreachable or not available, the
command will returns a negative number and an error message.

Server is an OMNIS Character field containing the IP address or domain name of the host
to ping.

Size is an optional parameter specifying an OMNIS Long Integer field containing the size,
in bytes, of the packet to ping the specified host. Typical values are from 512 to 2,048
bytes.

Timeout is an optional parameter specifying an OMNIS Long Integer field containing the
number of milliseconds to use as a timeout value for the ping request. If the host is
unavailable or does not respond in the specified number of milliseconds, the TCPPing
function cancels the ping request and returns an error.



External Commands 537

Milliseconds is an OMNIS Long Integer field. When no error occur, TCPPing returns the
number of milliseconds that it took to receive the ping response from the host. On very fast
LANs, it is possible that the ping can complete so quickly that the value may be 0 (zero). A
negative number indicates a WinSOCK error code, shown at the end of this chapter.

A value of -1 (one) is returned if the ping times out. Error messages are returned using the
standard WebDevError mechanism.

TCPReceive
Reversible: NO Flag affected: NO

Parameters: Socket, Buffer
Returns: receivedCharCount

Syntax: TCPReceive(Socket,Buffer)

TCPReceive receives a message on a socket.

HTTPPage allows you to get HTML text source through a server, transparently and without
additional coding. If you need to customize the process for a proxy server, you can use a
combination of HTTPGet and TCPReceive. For this technique, see the sample code in
“Accessing a Proxy Server” .

Socket is an OMNIS Long Integer field containing the number of a socket previously
opened.

Buffer is an OMNIS Character field containing a character variable to receive the characters
waiting on the socket.

receivedCharCount is an OMNIS Long Integer field containing the number of characters
received into the message.

WinSOCK error codes are returned when error codes are values less than 0 (zero), shown at
the end of this chapter.

Note: Non-blocking sockets may return an error code of -10035 if the socket is not ready or
able to read the characters. Some implementations of socket libraries may have limits on the
number of characters you can receive at one time. Consult the documentation for your
installed sockets libraries. You may have to read the message of characters in multiple
chunks and assemble the entire message. Always check the number of characters returned to
make sure there was no error.



538 Chapter 6—External Commands

TCPSend
Reversible: NO Flag affected: NO

Parameters: Socket, Message
Returns: sentCharCount

Syntax: TCPSend(Socket,Message)

TCPSend sends a message on a socket.

Socket is an OMNIS Long Integer field containing a socket previously opened.

Message is an OMNIS Character field containing characters to send on the socket.

receivedCharCount is an OMNIS Long Integer field containing the number of characters
sent.

WinSOCK error codes are returned when error codes are values less than 0 (zero), shown at
the end of this chapter.

Note: Non-blocking sockets may return an error code of -10035 if the socket is not ready or
able to send the characters. Some implementations of socket libraries may have limits on the
number of characters you can send at one time. Consult the documentation for your installed
sockets libraries. You may have to read the message of characters in multiple chunks in
order to send a very long message. Always check the number of characters returned to make
sure it matches the length of the message argument.

TCPSocket
Reversible: NO Flag affected: NO

Parameters: None
Returns: Socket

Syntax: TCPSocket()

TCPSocket creates a new socket.

Socket is an OMNIS Long Integer field containing the number of the allocated socket.

WinSOCK error codes are returned when error codes are socket numbers less than 0 (zero),
shown at the end of this chapter.



External Commands 539

Truncate file
Reversible: NO Flag affected: NO

Parameters: Reference number or DOS file handle
End position
Return field

Syntax: Truncate file (refnum[,end-position]) returns return-field

This command truncates a file. You specify the file reference number or DOS file handle of
the file in the refnum. The file is truncated at the current position of the file pointer or the
specified end-position if given.

It returns any error code (shown at the end of this chapter), or zero if none.

UUDecode
Reversible: NO Flag affected: NO

Parameters: stream
Returns: DecodedField

Syntax: UUDecode(stream)

UUDecode turns Uuencoded information back into text or binary information. It is the
converse of UUEncode. Uuencoded information is commonly sent over the Internet in a
manner that preserves binary information. Errors are reported via the WebDevError
callback mechanism.

Stream is an OMNIS Character or Binary field containing the information to UUDecode.

DecodedField is an OMNIS Character or Binary field that holds the resulting Uudecoded
representation of the stream argument. Because Uuencoding is generally used for binary
information, a Binary field is the norm.



540 Chapter 6—External Commands

UUEncode
Reversible: NO Flag affected: NO

Parameters: stream
Returns: EncodedField

Syntax: UUEncode(stream)

UUEncode can send binary information via e-mail or other Internet facilities that might
otherwise not transfer binary data correctly. UUEncoding turns a file into a stream of
64-character lines of print-only ASCII characters. The encoded version is approximately
1.25 times larger than the original. Errors are reported via the WebDevError callback
mechanism.

Stream is an OMNIS Character or Binary field containing the information to UUEncode.

EncodedField is an OMNIS Character or Binary field that hold the resulting Uuencoded
representation of the stream parameter.

WebDevError
Reversible: NO Flag affected: NO

Parameters: Proc
Returns: Error

Syntax: WebDevError(Proc)

The WebDevError external command provides for the specification for an OMNIS method
to be called when an error occurs in any of the Web Enabler external commands. The
methodis called with the mehtod name. Generally, when one of the external commands
encounters an error while processing, the WebDevError callback mehtod  is called prior to
returning to the caller of the original function.

Note: The Web Enabler commands cannot determine whether a particular command is
being executed on a machine acting as a server or a client. If you do not use WebDevError
to set up a mehtod  for receiving errors, Web Enabler external commands report errors by
displaying a modal OK message containing the text of the error. This stops processing until
the dialog is dismissed. If Web Enabler is being used as a server, having processing stop is
highly undesirable.

Proc is an OMNIS Character field containing an address for an OMNIS mehtod  to be
called with error status messages. The mehtod  can be used to display or log the error
message or otherwise change normal execution. For example: MYCODE,
MYCODE/MYPROC, MYLIBRARY.MYCODE. You should use the method name
qualified by the library if your applications are in a multi-library environment.

In the example, MYCODE would invoke a method defined as:

;Parameter ErrorMsg (Character 1000000)



External Commands 541

;Parameter ErrorID (Short Integer)
;Parameter CommandName (Character)
OK {Web Enabler Error raised: ErrorMsg]}
Quit method

In the method, the parameters are as follows:

ErrorMsg is an OMNIS Character field containing the text of the error message.

ErrorID is an OMNIS Short Integer field containing the error code for the error message,
shown at the end of this chapter.

CommandName is an OMNIS Character field containing the name of the command that
generated the error.

ProtocolErrorID is an optional OMNIS Character field containing the WinSOCK protocol
error that was generated by a socket operation (for example, one of the TCP sockets
external commands).

Note: See the WinSOCK and Web command error codes at the end of this chapter. Code
1011 means an Error setting callback method: %s, where ‘%s’ is at least the beginning of
the error callback method specification.

WriteBinFile
Reversible: NO Flag affected: NO

Parameters: Pathname, Binfld, Start, Length
Returns: Numbytes

Syntax: WriteBinFile(Pathname,Binfld[,Start [,Length]])

WriteBinFile writes binary data to the file system or data fork (not the resource fork).

Note for Macintosh Users: ReadBinFile and WriteBinFile are useful for reading and
writing documents but not system and application files.

Pathname is an OMNIS Character field containing the full path of the file to which to write.
If the output file does not already exist, WriteBinFile() creates it.

Binfld is an OMNIS Binary field from which to write the data.

Start is an OMNIS Integer field specifying the byte position in the file where writing should
begin. If the parameter is not used, the command defaults to 0 (zero), that is, the beginning
of the file. To append data to an existing file, set Start to -1 (minus one).

Length is an OMNIS Integer field containing the number of bytes to write. If the parameter
is not used, the value defaults to the length of the Binary field.

NumBytes is an OMNIS Long Integer field that is the number of bytes written if no error
code is returned.

Using WebDevError, one or more callback methods return error messages and codes.



542 Chapter 6—External Commands

Write entire file
Reversible: NO Flag affected: NO

Parameters: Path of file to be written to
Binary variable containing data
Return field

Syntax: Write entire file (path, binary-variable) returns
return-field

This command writes an entire file from a binary field, previously populated by using Read
entire file. It returns any error code (shown at the end of this chapter), or zero if none. The
Binary value is in the following format:

1. 12 byte header containing the Type (4 bytes), Creator (4 bytes), and Data fork size (4
bytes).

2. Data fork information.

3. Resource fork information.

The size of the data fork determines where the resource fork data is stored, as shown below.
Under Windows, the Type defaults to ‘TEXT’, the Creator to ‘mdos’, and the resource fork
is not written.



External Commands 543

Write file as binary
Reversible: NO Flag affected: NO

Parameters: Reference number or DOS file handle
Binary variable containing data
Start position
Return field

Syntax: Write file as binary (refnum, binary-variable [,start-
position]) returns return-field

This command writes the contents of the specified binary-variable to a file. You specify the
file reference number or DOS file handle of the file in refnum.

If you specify the start-position, writing begins at that byte (0 is the first byte in the file, 1 is
the second byte, and so on), otherwise it begins at the current position (the first byte when
the file is first opened).

It returns any error code (shown at the end of this chapter), or zero if none.

Write file as character
Reversible: NO Flag affected: NO

Parameters: Reference number or DOS file handle
Character variable containing text
Start position
Return field

Syntax: Write file as character (refnum, character-variable
[,start-position]) returns return-field

This command writes the contents of the specified character-variable to a file. You specify
the file reference number or DOS file handle of the file in refnum.

If you specify the start-position, writing begins at that absolute character position (0 is the
first character in the file, 1 is the second character, and so on), otherwise it begins at the
current position (the first character when the file is first opened).

It returns any error code (shown at the end of this chapter), or zero if none.



544 Chapter 6—External Commands

FileOps External Command Error
Codes

The following errors are returned from the FileOps external commands.

Error Codes returned under Windows
Error
Code

Description

1 Too few parameters passed on the command line

12 Out of memory error

998 Undefined error

999 No operation on this platform

-30 Unable to delete directory or file

-36 Disk IO error (or error during operation)

-43 File not found

-48 File or directory already exists

-51 Bad file reference number

-59 Problem during rename

Error Codes returned under MacOS
Error
Code

Description

1 Too few parameters passed on the command line

998 Undefined error

999 No operation on this platform

-33 File or directory full

-34 All Allocation blocks on the volume are full

-35 Specified volume doesn't exist

-36 Disk IO error

-37 Bad file name or volume name (perhaps zero-length)

-38 File not open

-39 Logical end-of-file reached during read operation



FileOps External Command Error Codes 545

Error
Code

Description

-40 Attempt to position before start of file

-42 Too many files open

-43 File not found

-44 Volume is locked by a hardware setting

-45 File is locked

-46 Volume is locked by a software flag

-47 One or more files are open

-48 A file with the specified name already exists

-49 Only one access path to a file can allow writing

-50 No default volume

-51 Bad file reference number

-53 Volume not on-line

-54 Read/write permission doesn't allow writing

-55 Specified volume is already mounted and on-line

-56 No such drive number

-57 Volume lacks MacOS-format directory

-58 External file system error

-59 Problem during rename

-60 Master directory block is bad; must re-initialize volume

-61 Read/write permission doesn't allow writing

-120 Directory not found

-121 Too many working directories open

-122 Attempted to move into offspring

-123 Attempt to do HFS operation on a non-HFS volume

-127 Internal file system error



546 Chapter 6—External Commands

Web Command Error Codes
The Web commands return two types of error as negative values: WinSOCK protocol error
codes, and Web command error codes. With the exception of the FTPGetLastStatus errors,
the error message, error code, and the name of the Web command causing the error are
reported by the WebDevError callback mechanism. Macintosh TCP/IP error codes are not
used. You can specify an OMNIS method to handle errors using the Error! Bookmark not
defined. command.

WinSOCK Error Codes
The following WinSOCK Error Codes are returned by Web commands as negative values,
together with a brief explanation.

Error Error
Code

Explanation

WSAEINTR -10004 Interrupted system call

WSAEBADF -10009 Bad socket number

WSAEACCES -10013 Permission denied

WSAEFAULT -10014 Bad address

WSAEINVAL -10022 Invalid argument

WSAEMFILE -10024 Too many sockets open

WSAEFBIG -10027 Data too large

WSAWOULDBLOCK -10035 Operation would block

WSAEINPROGRESS -10036 Operation now in progress

WSAEALREADY -10037 Operation already in progress

WSAENOTSOCK -10038 Socket operation on invalid socket

WSAEDESTADDRREQ -10039 Destination address required

WSAEMSGSIZE -10040 Message too long

WSAEPROTOTYPE -10041 Protocol wrong type for socket

WSAENOPROTOOPT -10042 Protocol not available

WSAEPROTONOSUPPORT -10043 Protocol not supported

WSAESOCKTNOSUPPORT -10044 Socket type not supported

WSAEOPNOTSUPP -10045 Unknown service or bad port number

WSAEADDRINUSE -10048 Address already in use

WSAEADDRNOTAVAIL -10049 Cannot assign requested address



Web Command Error Codes 547

Error Error
Code

Explanation

WSAENETDOWN -10050 Network is down

WSAENETUNREACH -10051 Network is unreachable

WSAENETRESET -10052 Network dropped the connection on reset

WSAECONNABORTED -10053 Software caused connection abort

WSAECONNRESET -10054 Connection reset by peer

WSAENOBUFS -10055 No buffer space available

WSAEISCONN -10056 Socket is already connected (in use)

WSAENOTCONN -10057 Socket is not connected

WSAESHUTDOWN -10058 Cannot send after socket shutdown

WSAETOOMANYREFS -10059 Too many references: cannot splice

WSAETIMEDOUT -10060 Connection timed out

WSAECONNREFUSED -10061 Connection refused

WSAELOOP -10062 Too many levels of symbolic links

WSAENAMETOOLONG -10063 File name too long

WSAEHOSTDOWN -10064 Host is down

WSAEHOSTUNREACH -10065 No route to host

WSAENOTEMPTY -10066 Directory not empty

WSAEPROCLIM -10067 Too many processes

WSAEUSERS -10068 Too many users

WSAEDQUOT -10069 Disk quota exceeded

WSAESTALE -10070 Stale NFS file handle

WSAEREMOTE -10071 Too many levels of remote in path

WSASYSTEMNOTREADY -10091 Network subsystem is unusable

WSAVERNOTSUPPORTED -10092 WinSOCK DLL cannot support this app

WSANOTINITIALISED -10093 WinSOCK not initialized

WSAEDISCON -10101 Disconnected

WSAHOST_NOT_FOUND -11001 Host not found

WSATRY_AGAIN -11002 Nonauthoritative host not found

WSANO_RECOVERY -11003 Nonrecoverable DNS error

WSANO_DATA -11004 Valid name no data record of request type

WSAEHOSTUNREACH -11065 Connect failed (DNS)



548 Chapter 6—External Commands

Web Command Error Codes
The following errors are returned by the Web commands as negative values, together with a
brief explanation. To avoid collisions and provide an easy way to test for a message type,
certain error codes are reserved for Web errors.

With the exception of the FTPGetLastStatus error codes, the following scheme applies to
error-code numbering:

Code Description

0 to -999 Programming error

-1000 and
higher

Runtime error caused by a programming error or by an occurrence
outside the application’s control, such as a network error, non-responding
server, and so on

The error message, error code, and command causing the error are reported by the
WebDevError callback mechanism, and handled by the OMNIS method specified in the
Error! Bookmark not defined. command.

Note: The TCP commands return socket errors only. See the WinSOCK Errors.



Web Command Error Codes 549

Reserved Codes
Class/Subclass Range Type

Common caused by
more than one Web
command

-500 to -599 Programming error

FTP -600 to -649 FTP programming error. Reported by
WebDevError callback mechanism.

HTTP -650 to -699 HTTP programming error. Reported by
WebDevError callback mechanism.

E-mail -700 to -749 E-mail programming error. Reported by
WebDevError callback mechanism.

Common caused by
more than one Web
command

-1000 to -
1099

Runtime error caused by programming or by
events outside application control

FTP -1100 to -
1149

FTP runtime error caused by programming or
by events outside the control of the application

HTTP -1150 to -
1199

HTTP runtime error caused by programming
or by events outside the control of the
application

E-mail -1200 to -
1249

E-mail runtime error caused by programming
or by events outside the control of the
application

Web Errors
The following Web Error Codes are returned by Web commands as negative values,
together with a brief explanation.

� Common errors are generated by more than one command set.

� FTP runtime client errors are generated by FTP commands.

� HTTP runtime errors are generated by HTTP commands.

� E-mail runtime errors are generated by e-mail commands.

Where a number or name is returned within the message, the following abbreviations are
used in citing the error below:

%u Numerics (for example, a column number)

%s Text (for example, a fieldname)



550 Chapter 6—External Commands

Common Programming errors
Error
Code

Error Text

-501 Invalid argument type for: %s (arg %u)

-502 Problem obtaining argument (arg %u)

-503 Incorrect number of arguments

-504 Must supply a %s (arg %u)

-505 Invalid value for %s (arg %u)

-520 %s list must contain %u columns (arg %u)

Common Runtime errors
Error
Code

Error Text

-1010 Insufficient memory to satisfy the request

-1011 Error setting callback method: %s

-1012 Invalid %s (arg %u)

-1051 Unable to locate the required service on the server: %s

-1052 Error establishing communications with server

-1053 Error establishing a connection with the server

-1054 Error while receiving response from server

-1055 Error while sending data to server

-1056 Error while responding to the client

-1057 The current command failed because it timed out on the server



Web Command Error Codes 551

FTP Errors
Error codes returned by FTPGetLastStatus command or reported by WebDevError callback
mechanism. FTPGetLastStatus returns only codes -1 to -12. The command is redundant but
is retained for backward compatibility. WebDevError callback returns codes -500 to -599, -
600 to -649, and -1101 to -1140. FTP errors are client runtime errors.

Error
Code

Error Text

-1 Attempt to connect to server failed

-2 Connection lost

-3 Invalid username or password

-4 No such file

-5 Invalid argument

-6 No free sockets (too many connections)

-7 No such server (DNS failed)

-8 Client configuration error (i.e., can’t get local IP address)

-9 Server protocol error - server response unexpected

-10 Client file I/O error (disk full, network volume dismounted, etc.)

-11 Out of memory error (common in FTPGetBinary/FTPPutBinary)

-12 User cancel (progress method returned flag false)

-501 Invalid argument type for: %s (arg %u)

-502 Problem obtaining argument (arg %u)

-503 Incorrect number of arguments

-504 Must supply a %s (arg %u)

-505 Invalid value for %s (arg %u)

-1010 Insufficient memory to satisfy the request

-1011 Error setting callback method: %s

-1012 Invalid %s (arg %u)

-1051 Unable to locate the required service on the server: %s

-1052 Error establishing communications with server

-1053 Error establishing a connection with the server

-1054 Error while receiving response from server

-1055 Error while sending data to server

-1056 Error while responding to the client

-1057 The current command failed because it timed out on the server



552 Chapter 6—External Commands

Error
Code

Error Text

-1101 Error while setting FTP mode on server

-1102 Error establishing a connection with server

-1103 The connection with the FTP server was lost

-1104 A severe error occurred while retrieving data from the server

-1110 The specified file was not found: ‘%s’

-1111 Unable to open the specified file: ‘%s’

-1112 Error while writing to file: ‘%s’

-1140 Operation cancelled by user

HTTP Errors
All HTTP errors are runtime errors reported by the WebDevError command

Error
Code

Error Text

-1150 Unknown header type. Must be GET, POST, or HEAD.

-1151 Invalid HTML content header received from server

-1152 Badly formed header fields (arg 1)

-1153 Badly formed header, no POST fields found

-1154 Unable to determine end of header

-1160 Missing value for %s in %s list

-1161 Mismatched tag brackets

-1170 Error sending the response header from the server, the failing tag was ‘%s’.

-1171 Error sending the request header to the server, the failing tag was ‘%s’.

-1172 Error occurred while sending content data.

-1173 Error occurred while reading the HTML content header from the client



Web Command Error Codes 553

E-mail Errors
E-mail errors are runtime errors reported by the WebDevError command.

Error
Code

Error Text

-1200 Badly formed message header (arg %u)

-1201 Recipient list or name is empty

-1210 Error sending the mail header to the server, the failed tag was ‘%s’. Mail was
not sent.

-1211 Error sending the mail text to the server. Mail was not sent.

-1212 Error completing the sending of the mail text to the server. Mail may not have
been properly delivered.



554 Index

Index
# variables. See also Hash variables
#???, 72
#1, #2,..,#60, 72
#ALT, 73
#CLIST, 73
#COLORMAP, 44
#COMMAND, 73
#CT, 73
#CTRL, 73
#D, 73
#ENTER, 74
#ERRCODE, 16, 74
#ERRTEXT, 16, 74
#F, 74
#FD, 31, 75
#FDP, 31, 75
#FDT, 32, 33, 76
#FT, 32, 33, 54, 77
#L, 77
#L1,..,#L8, 78
#LM, 78
#LN, 78
#LSEL, 79
#MU, 79
#NULL, 79
#OPTION, 79
#P, 79
#PI, 80
#R, 80
#RAD, 80
#RATE, 80
#RETURN, 80
#S1,..,#S5, 80
#SHIFT, 80
#SUBFLD, 80
#T, 81
#UL, 81

$ money sign
jst() function, 31

$accumulate(), 115
$add(), 99, 110, 120
$addafter(), 99, 111
$addbefore(), 99, 110

$appendlist(), 98
$assign(), 96
$assigncols(), 112
$assignrow(), 112
$att(), 96
$average(), 111
$bringtofront(), 119
$canassign, 95
$canassign(), 96
$canclose(), 101, 114
$canomit, 95
$canomit(), 96
$chain(), 96
$changeworkingdir() external function, 59
$checkbreak(), 115
$clear(), 109, 111, 112, 122
$clearallnodes(), 120
$close(), 101, 114
$cmd(), 113
$collapse(), 121
$copydefinition(), 108
$copyfile() external function, 59
$count(), 98, 111, 120
$createdir() external function, 60
$createnames(), 117
$currentnode(), 120
$define(), 108
$definefromtable(), 108
$delete(), 119
$deletefile() external function, 60
$dodelete(), 119
$dodeletes(), 118
$doesfileexist() external function, 61
$doinsert(), 118
$doinserts(), 118
$dotoolmethod(), 100
$doupdate(), 118
$doupdates(), 118
$dowork(), 118
$edittext(), 121
$ejectpage(), 116
$enablepane(), 122
$endpage(), 116
$endprint(), 116



Index 555

$exechelp(), 97
$expand(), 121
$fetch(), 117
$filelist() external function, 61
$filter(), 110
$findident(), 98, 121
$findname(), 98, 121
$findnodeident(), 120
$findnodename(), 120
$first(), 98, 110, 120
$flush(), 101
$getcolumnalign(), 121
$getfileinfo() external function, 63
$getfilename() external function, 64
$getnodelist(), 120
$getparam(), 101
$getvisiblenode(), 121
$getworkingdir() external function, 64
$includelines(), 110
$insert(), 119
$insertlist(), 98
$insertnames(), 117
$isa(), 102, 103, 104, 105, 106, 107
$ispaneenabled(), 122
$ispaneshown(), 122
$loadcols(), 112
$makelist(), 98
$makesubclass(), 102, 103, 104, 105, 106,

107
$maximize(), 119
$maximum(), 111
$merge(), 109
$minimize(), 119
$minimum(), 111
$modify(), 114
$movefile() external function, 64
$new(), 107
$next(), 98, 110
$nextnode(), 121
$open(), 101, 102, 103, 104, 105, 106
$openjobsetup(), 115
$openonce(), 102, 103, 104, 105, 106
$pagesetup(), 122
$prevnode(), 121
$print(), 116, 122
$printpage(), 122
$printrecord(), 115
$printsection(), 115
$printtotals(), 115

$putfilename() external function, 64
$redefine(), 108
$redirect(), 122
$redraw(), 97, 119, 120
$refilter(), 110
$remove(), 99, 110, 121
$removeduplicates(), 111
$rename() external function, 65
$replistfonts() external function, 68
$reptextheight() external function, 69
$reptextwidth() external function, 69
$revertlistdeletes(), 109
$revertlistinserts(), 110
$revertlistupdates(), 110
$revertlistwork(), 110
$root, 97
$root methods, 97
$savelistdeletes(), 109
$savelistinserts(), 109
$savelistupdates(), 109
$savelistwork(), 109
$search(), 109
$select(), 117
$selectdirectory() external function, 65
$selectdisticnt(), 117
$selectnames(), 117
$sendall(), 98
$senddata(), 101
$sendtext(), 101
$serialize(), 100
$setcolumnalign(), 121
$setcurrentnode(), 121
$setfileinfo() external function, 66
$setnodelist(), 120
$setparam(), 101
$showpane(), 122
$skipsection(), 115
$sort(), 109
$sortfields(), 122
$splitpathname() external function, 66
$sqlerror(), 117
$startpage(), 116
$total(), 111
$undodeletes(), 118
$undoinserts(), 118
$undoupdates(), 118
$undowork(), 118
$unfilter(), 110
$update(), 119



556 Index

$updatenames(), 118
$welcome(), 100
$wherenames(), 118
$winlistfonts() external function, 70
$wintextheight() external function, 70
$wintextwidth() external function, 71
$zoom(), 122

£ money sign
jst() function, 31

About the Commands, 123
abs() function, 8
Absolute value

abs() function, 8
Accept advise requests command, 124
Accept commands command, 124
Accept field requests command, 125
Accept field values command, 125
acos() function, 8
Add line to list command, 126
Advise on find/next/previous command, 127
Advise on OK command, 127
Advise on redraw command, 128
AND selected and saved command, 128
ann() function, 8
anna() function, 9
Annuity

ann() function, 8
ansichar() external function, 9
ansicode() external function, 9
asc() function, 9
ASCII conversion

chr() function, 18
asin() function, 10
atan() function, 10
atan2() function, 10
Autocommit command, 129
Average value

avgc() function, 10
avgc() external function, 10

bdif() function, 10
Begin print job command, 130
Begin reversible block command, 131
Begin SQL script, 408
Begin SQL script command, 133
Begin text block command, 133
binchecksum() function, 11

bincompare() function, 11
binfromhex() function, 11
binfromlong() function, 11
binlength() function, 11
bintohex() function, 12
bintolong() function, 12
bitand() function, 12
bitclear() function, 12
bitfirst() function, 12
bitmid() function, 13
bitnot() function, 13
bitor() function, 13
bitrotatel() function, 13
bitrotater() function, 14
bitset() function, 14
bitshiftl() function, 14
bitshiftr() function, 14
bittest() function, 15
bitxor() function, 15
Boolean values

not() function, 40
Break to end of loop command, 134
Break to end of switch command, 135
Breakpoint command, 135
Bring window instance to front command,

136
Build export format list command, 136
Build externals list command, 137
Build field names list command, 138
Build file list command, 139
Build indexes command, 139
Build installed menu list command, 140
Build list columns list command, 141
Build list from file command, 142
Build list from select table command, 143
Build list of event recipients command, 144
Build menu list command, 145
Build open window list command, 145
Build report list command, 146
Build search list command, 147
Build window list  command, 148
bundif() function, 15
bytecon() function, 15
bytemid() function, 15
byteset() function, 16

Calculate command, 148
Calculations

Evaluating, 25



Index 557

Call DLL external command, 455
Call external routine command, 150
Cancel advises command, 150
Cancel event recipient command, 151
Cancel prepare for update command, 152
Cancel publisher command, 153
Cancel subscriber command, 153
cap() function, 16
Capitalization

cap() function, 16
jst() function, 31

Case command, 154
cdif() function, 16
CGIDecode external command, 455
CGIEncode external command, 456
Change user password command, 155
Change working directory external command,

456
Check data command, 155
Check menu line command, 157
chk() function, 17
chr() function, 18
Clear all files command, 157
Clear check data log command, 158
Clear class variables command, 158
Clear data command, 159
Clear DDE channel item names command,

159
Clear find table command, 160
Clear line in list command, 161
Clear list command, 162
Clear main & connected command, 162
Clear main file command, 163
Clear method stack command, 163
Clear range of fields, 80
Clear range of fields command, 164
Clear search class command, 164
Clear selected files command, 165
Clear sort fields command, 165
Clear timer method command, 166
Close all designs command, 166
Close all windows command, 166
Close check data log command, 167
Close client import file command, 168
Close cursor command, 168
Close data file command, 169
Close DDE channel command, 169
Close design command, 170
Close file external command, 457

Close import file command, 170
Close library command, 170
Close lookup file command, 171
Close other windows command, 171
Close port  command, 172
Close print file command, 172
Close task instance command, 172
Close top window command, 173
Close window command, 173
Close working message command, 174
CMAttach external command, 457
CMMCBegin external command, 458
CMMCEnd external command, 459
CMMGBegin external command, 459
CMMGEnd external command, 460
CMMGet external command, 460
CMMInsert external command, 462
cmp() function, 18
CMQuery external command, 463
Commands, 123

About the commands, 123
Comment command, 174
Commit current session, 408
Commit current session command, 175
Common methods, 96
Comparison

chk() function, 17
Compound interest

cmp() function, 18
con() function, 18
Concatenation

con() function, 18
Copy file external command, 464
Copy list definition command, 177
Copy to clipboard command, 177
cos() function, 19
CPU type

sys(110), 53
Create data file command, 178
Create directory external command, 464
Create file external command, 465
Create library command, 179
Create statement, 19
createnames() function, 19
cundif() function, 21
Current session

sys(137), 54
Cut to clipboard command, 180



558 Index

dadd() external function, 21
dat() function, 22
Data file pathname

sys(11), 52
DB2 Audio disable external command, 466
DB2 Audio enable external command, 467
DB2 Audio is enabled external command,

468
DB2 Get logon info external command, 469
DB2 Image disable external command, 469
DB2 Image enable external command, 470
DB2 Image is enabled external command,

471
DB2 Init upload external command, 471
DB2 Register error vars external command,

472
DB2 Register logon info external command,

472
DB2 Unregister logon info external

command, 472
DB2 Upload data external command, 473
DB2 Video disable external command, 473
DB2 Video enable external command, 474
DB2 Video is enabled external command,

475
ddiff() external function, 22
Declare cursor command, 180
Default command, 181
Define list command, 182
Define list from SQL class command, 183
Delete class command, 184
Delete client import file command, 185
Delete command, 183
Delete data command, 185
Delete file external command, 475
Delete line in list command, 186
Delete selected lines command, 187
Delete with confirmation command, 187
Describe cursors command, 188
Describe database command, 189
Describe results command, 190
Describe server table command, 191
Describe sessions command, 193
Deselect list line(s) command, 194
dim() function, 23
Disable all menus and toolbars command,

194
Disable automatic publications command,

195

Disable automatic subscriptions command,
196

Disable cancel test at loops command, 196
Disable enter & escape keys command, 197
Disable fields command, 197
Disable menu line command, 198
Disable receiving of Apple events command,

199
Disable relational finds command, 200
dname() external function, 23
Do code method command, 201
Do command, 200
Do default command, 202
Do inherited command, 203
Do method command, 204
Do not close others option, 272, 303
Do not flush data command, 206
Do not open startup task option, 272, 303
Do not wait for semaphores command, 207
Do redirect command, 208
Does file exist external command, 476
dpart() external function, 23
Drop indexes command, 208
dtcy() function, 23
dtd() function, 24
dtm() function, 24
dtw() function, 24
dty() function, 24
Duplicate class command, 209

Else command, 210
Else If calculation command, 210
Else If flag false command, 211
Else If flag true command, 211
E-mail errors, 553
Enable all menus and toolbars command, 212
Enable automatic publications command, 213
Enable automatic subscriptions command,

214
Enable cancel test at loops command, 215
Enable enter & escape keys command, 215
Enable fields command, 216
Enable menu line command, 216
Enable receiving of Apple events command,

217
Enable relational finds command, 218
Enclose exported text in quotes command,

219
End export command, 219



Index 559

End For command, 220
End If command, 220
End import command, 221
End print command, 221
End print job command, 222
End reversible block command, 222
End SQL script command, 223
End Switch command, 224
End text block command, 223
End While command, 224
Enter data command, 225
Error codes

FileOps external commands, 544
Web commands, 546, 548
WinSOCK, 546

evAfter, 85
eval() function, 25
evalf() function, 25
evBefore, 85
evCancel, 93
evCanDrop, 90
evCellChanged, 86
evCellChanging, 86
evClick, 85
evClose, 93
evCloseBox, 93
evCustomMenu, 93
evDisabled, 91
evDoubleClick, 85
evDrag, 90
evDrop, 90
evEnabled, 91
Event codes, 82
Event parameters, 84

sys(86), 52
Events, 82

Event parameters, 84
field events, 85
key events, 89
Modify report field, 89
mouse events, 90
scroll events, 91
status events, 91
Tab pane and Tab strip events, 91
Tree list events, 92
window events, 93

evExtend, 86
evHeadedListEditFinished, 87
evHeadedListEditFinishing, 87

evHeadedListEditStarting, 87
evHeaderClick, 87
evHidden, 91
evHScrolled, 91
evIconDelete, 88
evIconDeleteStarting, 88
evIconEditFinished, 88
evIconEditFinishing, 88
evIconEditStarting, 88
evKey, 89
evMaximized, 93
evMinimized, 93
evMouseDouble, 90
evMouseDown, 90
evMouseEnter, 90
evMouseLeave, 90
evMouseUp, 90
evMoved, 93
evOK, 93
evOpenContextMenu, 85, 94
evResized, 94
evRestored, 94
evRMouseDouble, 90
evRMouseDown, 90
evRMouseUp, 90
evRowChange, 86
evScrollTip, 86
evSelectionChanged, 89
evSent, 85
evShiftTab, 89
evShown, 91
evStandardMenu, 94
evTab, 89
evTabSelected, 91
evToTop, 94
evTreeCollapse, 92
evTreeExpand, 92
evTreeExpandCollapseFinished, 92
evTreeNodeIconClicked, 92
evTreeNodeNameFinished, 92
evTreeNodeNameFinishing, 92
evVScrolled, 91
evWillDrop, 90
evWindowClick, 94
Execute SQL script command, 226
exp() function, 26
Exponential

exp() function, 26
Export data command, 227



560 Index

External commands, 123, 454
External components

Methods, 113
External functions

FileOps, 59
FontOps, 68

fact() function, 26
Factorial

fact() function, 26
fday() external function, 26
Fetch current row command, 227
Fetch first row command, 227
Fetch last row command, 228
Fetch next row command, 228
Fetch previous row command, 229
Field events, 85
FileOps external commands

Error codes, 544
FileOps external function error codes, 67
FileOps external functions, 59
Find command, 230
Find first command, 232
Find last command, 233
fld() function, 26
Floating default data file command, 234
Flush data command, 235
Flush data now command, 236
fontlist() external function, 26
FontOps external functions, 68
For each line in list command, 236
For field value command, 237
Formatting strings

jst() function, 30
FTP errors, 551
FTPChmod external command, 476
FTPConnect external command, 477
FTPCwd external command, 477
FTPDelete external command, 478
FTPDisconnect external command, 479
FTPGet external command, 479
FTPGetBinary external command, 480
FTPGetLastStatus external command, 481
FTPList external command, 482
FTPMkdir external command, 483
FTPPut external command, 484
FTPPutBinary external command, 484
FTPPwd external command, 485

FTPReceiveCommandReplyLine external
command, 486

FTPRename external command, 486
FTPSendCommand external command, 487
FTPSetProgressProc external command, 488
FTPSite external command, 488
FTPType external command, 489
Functions, 7

syntax, 7

Get file info external command, 490
Get file name external command, 491
Get file read-only attribute external

command, 492
Get files external command, 492
Get folders external command, 493
Get SQL script command, 238
Get text block command, 239
getfye() external function, 27
getseed() external function, 27
getws() external function, 27
Go to next selected line command, 239
Group methods, 98

Hash variables, 72
Headed list boxes

Methods, 121
Hide fields command, 241
Hide Toolbar command, 240
HTTP errors, 552
HTTPClose external command, 494
HTTPGet external command, 494
HTTPHeader external command, 496
HTTPOpen external command, 497
HTTPPage external command, 498
HTTPParse external command, 498
HTTPPost external command, 500
HTTPRead external command, 502
HTTPSend external command, 502
HTTPServer external command, 503
HTTPSplitHTML external command, 504
HTTPSplitURL external command, 504

Icon arrays
Methods, 121

If calculation command, 241
If canceled command, 242
If flag false command, 242
If flag true command, 243



Index 561

Import data command, 243
Import field from file command, 244
Import field from port command, 245
Insert line in list command, 246
Insert statement, 27
insertnames() function, 27
Install menu command, 247
Install Toolgroup command, 248
Instance properties and methods, 114
int() function, 29
Integers

int() function, 29
Invert selection for line(s) command, 248
isfontinstalled() external function, 29
isnull() function, 29
isnumber() function, 29
isoweek() function, 29

jst() function, 30
Jump to start of loop command, 249

Key events, 89

Launch program command, 250
lday() external function, 34
len() function, 34
Library pathname

sys(10), 52
List column properties and methods, 111
List Row properties and methods, 112
List variable methods, 108
list() function, 34
Lists

Current list #CLIST, 73
ln() function, 35
Load connected records command, 251
Load error handler command, 252
Load event handler command, 254
Load external routine command, 255
Load from list command, 256
log() function, 35
Logical Not

not() function, 40
Logoff from host command, 257
Logon to host command, 257
lookup() function, 35
low() function, 35
Lower case

jst() function, 31

low() function, 35
lst() function, 36

MAILSplit external command, 505
Main file

Set main file, 386
Make schema from server table command,

258
max() function, 36
maxc() external function, 37
Maximize window instance command, 259
Maximum value

max() function, 36
Menu Classes

Methods, 103
Merge list command, 260
Message timeout command, 261
Messages

Events, 82
Method lines

Methods, 114
Methods, 95

$root, 97
Common, 96
External components, 113
Group methods, 98
List variables, 108
Menu Classes, 103
Method lines, 114
Object classes, 107
OMNIS modes, 100
OMNIS preferences, 100
Printing devices, 101
Report Classes, 105
Table classes, 106
Table instance, 117
Task Classes, 106
Toolbar Classes, 104
Window Classes, 102
Window instance, 119
Window instance object methods, 120

mid() function, 37
min() function, 37
minc() external function, 37
Minimize window instance command, 261
Minimum value

min() function, 37
mod() function, 38
Modes, 100



562 Index

Modify class command, 262
Modify methods command, 262
Modify report field events, 89
Modify report fields

Methods, 122
Mouse events, 90
mousedn() function, 38
mouseover() function, 38
mouseup() function, 39
Move file external command, 506
msgcancelled(), 265, 453
msgcancelled() function, 39

nam() function, 39
natcmp() function, 39
nday() external function, 40
New class command, 263
Next command, 263
No/Yes message command, 264
not() function, 40
Notation

Methods, 95
NSF Add fields external command, 507
NSF Attach file external command, 507
NSF Build view external command, 508
NSF Close all files external command, 509
NSF Close file external command, 509
NSF Copy Note external command, 509
NSF Delete Note external command, 510
NSF Describe fields on form external

command, 510
NSF Find forms external command, 511
NSF Get info external command, 511
NSF List open NSF files external command,

511
NSF Mail Note external command, 512
NSF Make Note external command, 512
NSF Make response external command, 512
NSF Make server path external command,

513
NSF Map fields external command, 513
NSF Open file external command, 514
NSF Select external command, 514
NSF Servers external command, 515
NSF Set error field external command, 516
NSF Unpack file external command, 516
NSF Where’s my mail? external command,

516
NSF Who am I external command, 517

NSF Write composite external command, 517
Null values, 29

#NULL, 79
jst() function, 32

Object classes
Methods, 107

Object methods, 120
oemchar() external function, 40
oemcode() external function, 41
OK message command, 265
OMNIS folder

sys(115), 53
OMNIS modes

Methods, 100
OMNIS preferences

Methods, 100
OMNIS version number

sys(1), 51
omnischar() external function, 41
omniscode() external function, 41
On command, 266
On default command, 267
Open check data log command, 267
Open client import file command, 268
Open cursor command, 268
Open data file command, 269
Open DDE channel command, 270
Open desk accessory command, 271
Open file external command, 518
Open library command, 272
Open lookup file command, 273
Open resource fork external command, 518
Open runtime data file browser command,

275
Open task instance command, 276
Open trace log command, 276
Open window instance command, 277
Optimize method command, 279
OR selected and saved command, 280

Paste from clipboard command, 281
pCellData, 84
pChannelNumber, 84
pClickedField, 84
pClickedWindow, 84
pCommandNumber, 84
pContextMenu, 84
pday() external function, 41



Index 563

pDdeItemName, 84
pDdeValue, 84
pDragField, 84
pDragType, 84
pDragValue, 84
pDropField, 84
Perform SQL, 408
Perform SQL command, 282
pEventCode, 84
pHorzCell, 84
Pi, value of, 80
pick() function, 42
pIsVertScroll, 84
pKey, 84
Platform code

sys(6), 51
pLineNumber, 84
pMenuLine, 84
pNextCode, 84
pNodeItem, 84
POP3Recv external command, 519
POP3Stat external command, 520
Popup menu command, 282
Popup menu from list command, 283
pos() function, 42
Prepare current cursor command, 283
Prepare for edit command, 284
Prepare for export to file, 287
Prepare for export to port, 287
Prepare for import from client command, 288
Prepare for import from file command, 288
Prepare for import from port command, 289
Prepare for insert command, 290
Prepare for insert with current values

command, 291
Prepare for print command, 291
Previous command, 293
Print check data log command, 294
Print class command, 295
Print record command, 295
Print report command, 296
Print report from disk command, 297
Print report from memory command, 298
Print top window command, 298
Printing devices

Methods, 101
Process event and continue command, 298
Program type

sys(2), 51

Prompt for data file command, 299
Prompt for destination command, 300
Prompt for event recipient command, 300
Prompt for import file command, 301
Prompt for input command, 302
Prompt for library command, 303
Prompt for page setup command, 304
Prompt for port name command, 304
Prompt for print file command, 305
Prompt for word server command, 305
Prompted find command, 306
Properties and methods

Report instance, 115
Propeties and methods

Instance, 114
pRow, 84
pScrollPos, 84
pScrollTip, 84
pSelectionCount, 84
pSystemKey, 84
pTabNumber, 84
Publish field command, 307
Publish now command, 308
Put file name external command, 521
pVertCell, 84
pwr() function, 42

Qualified field names, 20, 28, 46, 57
Queue bring to top command, 308
Queue cancel command, 309
Queue click command, 309
Queue close command, 311
Queue double-click command, 312
Queue keyboard event command, 313
Queue OK command, 315
Queue quit command, 316
Queue scroll command, 316
Queue set current field command, 317
Queue tab command, 317
Quick check command, 318
Quit all if canceled command, 319
Quit all methods command, 319
Quit cursor(s) command, 320
Quit event handler command, 321
Quit method command, 322
Quit OMNIS command, 322

rand() external function, 43
randintrng() external function, 43



564 Index

randrealrng() external function, 43
Read entire file external command, 523
Read file as binary external command, 524
Read file as character external command, 525
ReadBinFile external command, 522
Redefine list command, 323
Redraw command, 324
Redraw lists command, 324
Redraw menus command, 325
Redraw Toolgroup command, 325
Redraw working message command, 326
Register DLL external command, 525
Reinitialize search class command, 327
Remainder

mod() function, 38
Remove all menus command, 327
Remove final menu command, 328
Remove menu command, 328
Remove Toolgroup command, 329
Rename class command, 329
Rename data command, 330
Reorganize data command, 331
Repeat command, 332
Replace line in list command, 334
Replace standard Edit menu command, 335
Replace standard File menu command, 335
replace() function, 43
replaceall() function, 43
Report Classes

Methods, 105
Report instance object properties, 116
Report Instance properties and methods, 115
Request advises command, 336
Request field command, 337
Reset cursor(s) command, 337
Reset cursorsession, 408
Restore selection for line(s) command, 338
Retrieve rows to file command, 339
Revert class command, 339
rgb() function, 44
Right justification

jst() function, 30
rmousedn() function, 44
rmouseup() function, 44
rnd() function, 44
Rollback current session, 408
Rollback current session command, 340
rolldice() external function, 45
rollstring() external function, 45

row() function, 45

Save class command, 341
Save selection for line(s) command, 341
Screen height

sys(105), 53
Screen report fields

Methods, 122
Screen width

sys(104), 52
Scroll events, 91
SEA continue execution command, 342
SEA repeat command command, 343
SEA report fatal error command, 343
Search list command, 344
Select list line(s) command, 346
Select printer command, 347
Select statement, 45
selectnames() function, 45
Send advises now command, 348
Send command command, 348
Send Core event command, 349
Send Core event returns command, 351
Send Database event command, 353
Send field command, 359
Send Finder event command, 360
Send to a window field command, 361
Send to clipboard command, 362
Send to DDE channel command, 362
Send to file command, 363
Send to page preview command, 364
Send to port command, 365
Send to printer command, 365
Send to screen command, 366
Send to trace log command, 367
Send Word Services event command, 367
Server specific keyword command, 368
server() function, 46
Set 'About...' method command, 368
Set advise options command, 369
Set batch size command, 370
Set bottom margin command, 371
Set break calculation command, 371
Set character mapping command, 372
Set class description command, 373
Set client import file name command, 373
Set closed files command, 374
Set creator type external command, 527
Set current cursor command, 374



Index 565

Set current data file command, 375
Set current list command, 376
Set current session command, 376
Set database version command, 377
Set DDE channel item name command, 377
Set DDE channel number command, 378
Set default data file command, 379
Set event recipient command, 380
Set export format command, 381
Set file read-only attribute external command,

527
Set final line number command, 382
Set hostname command, 382
Set import file name command, 383
Set label width command, 383
Set labels across page command, 384
Set left margin command, 385
Set lines per page command, 385
Set main file command, 386
Set memory-only files command, 387
Set OMNIS window title command, 388
Set page width command, 389
Set palette when drawing command, 389
Set password command, 390
Set port name command, 391
Set port parameters command, 391
Set print file name command, 392
Set publisher options command, 393
Set read/write files command, 394
Set read-only files command, 394
Set record spacing command, 395
Set reference command, 396
Set repeat factor command, 396
Set report main file command, 397
Set report main list command, 397
Set report name command, 398
Set right margin command, 399
Set search as calculation command, 399
Set search name command, 400
Set server mode command, 401
Set sort field command, 402
Set SQL blob preferences command, 403
Set SQL script command, 404
Set SQL separators command, 404
Set subscriber options command, 405
Set timer method command, 406
Set top margin command, 407
Set top window title command, 407
Set transaction mode command, 408

Set username command, 409
setfye() external function, 47
setseed() external function, 47
setws() external function, 47
Show 'About...' window command, 409
Show fields command, 410
Show OMNIS maximized command, 410
Show OMNIS minimized command, 411
Show OMNIS normal command, 411
Show Toolbar command, 412
shufflelist() external function, 48
Signal error command, 412
sin() function, 48
Single file find command, 413
SMTPSend external command, 528
Sort list command, 414
Sound bell command, 414
Split path name external command, 530
SQL

command, 415
SQL error code

sys(131), 53
SQL error text

sys(132), 53
sqr() function, 48
Start program maximized command, 416
Start program minimized command, 416
Start program normal command, 417
Start session command, 417
Status events, 91
stddevc() external function, 48
strpbrk() external function, 49
strspn() external function, 49
strtok() external function, 49
style() function, 50
Subscribe field command, 418
Subscribe now command, 419
Substring

mid() function, 37
Swap lists command, 419
Swap selected and saved command, 420
Switch command, 421
Syntax, functions, 7
sys() function, 51
System date, #D, 73
System information

sys() function, 51
System time, #T, 81



566 Index

Tab pane events, 91
Tab panes

Methods, 122
Tab strip events, 91
Table classes

Methods, 106
Table Instance methods, 117
tan() function, 54
Task Classes

Methods, 106
TCPAccept external command, 531
TCPAddr2Name external command, 531
TCPBind external command, 532
TCPBlock external command, 532
TCPClose external command, 533
TCPConnect external command, 533
TCPGetMyAddr external command, 534
TCPGetMyPort external command, 534
TCPGetRemoteAddr external command, 535
TCPListen external command, 535
TCPName2Addr external command, 536
TCPPing external command, 536
TCPReceive external command, 537
TCPSend external command, 538
TCPSocket external command, 538
Test check data log command, 423
Test clipboard command, 424
Test data with search class command, 425
Test for a current record command, 425
Test for a unique index value command, 426
Test for field enabled command, 426
Test for field visible command, 427
Test for menu installed command, 427
Test for menu line checked command, 428
Test for menu line enabled command, 428
Test for only one user command, 429
Test for program open command, 430
Test for valid calculation command, 430
Test for window open command, 431
Test if file exists command, 431
Test if list line selected command, 432
Test if running in background command, 433
Text

command, 434
textsize() external function, 54
tim() function, 54
Time

tim() function, 54
Toolbar Classes

Methods, 104
tot() function, 55
totc() function, 55
Trace off command, 435
Trace on command, 435
Translate input/output command, 436
Transmit text to port command, 436
Transmit text to print file command, 437
Tree list events, 92
Tree lists

Methods, 120
trim() function, 56
truergb() function, 56
Truncate file external command, 539

Uncheck menu line command, 438
Unload error handler command, 438
Unload event handler command, 439
Unload external routine command, 439
Until break command, 440
Until calculation command, 441
Until flag false command, 441
Until flag true command, 442
Update data dictionary command, 442
Update files command, 443
Update files if flag set command, 445
Update statement, 56
updatenames() function, 56
upp() function, 57
Upper case

jst() function, 31
upp() function, 57

Use event recipient command, 445
UUDecode external command, 539
UUEncode external command, 540

Variable menu command, 446

Wait for semaphores command, 448
Web commands

Error codes, 546, 548
WebDevError external command, 540
Where clause, 57
wherenames() function, 57
While calculation command, 449
While flag false command, 449
While flag true command, 450
Window Classes

Methods, 102



Index 567

Window events, 93
Window instance methods, 119
Window instance object methods, 120
WinSOCK error codes, 546
Working message command, 450
Write entire file external command, 542
Write file as binary external command, 543

Write file as character external command,
543

WriteBinFile external command, 541

XOR selected and saved command, 451

Yes/No message command, 453





How to use this manual
The on-line documentation is designed to make the task of identifying and accessing
information about OMNIS Studio as easy and intuitive as possible.

You can navigate this document, or find topics, in a number of different ways.

Bookmarks
Bookmarks mark each topic in a document. To view the bookmarks in this
document, click on the Bookmark icon on the Acrobat toolbar or select the
View>>Bookmarks and Page menu item.

Click on an arrow icon  to open or close a topic, and click on a topic name or double-click a
page icon  to move directly to a topic.

Thumbnails
Thumbnails are small images of each page in the document. To view the
Thumbnails in this document click on the Thumbnails button on the Acrobat
toolbar, or select the View>>Thumbnails and Page menu item.

You can click on a thumbnail to jump to that page. Also you can adjust the view of the current
page by moving and/or sizing the gray page-view box shown on the current thumbnail.

Links
Links in this document connect related information or take you to a specific location in the
document. Links are indicated with blue italic text. To jump to a related topic, move the
pointer over a linked area (the pointer changes to a pointing finger) and simply click your
mouse. Try it!

To return to your last view or
location, click on the Go back
button on the Acrobat toolbar.

Browsing
You can use the Browse buttons on the Acrobat toolbar to
move back and forth through the document on a page by
page basis. You can also click on the Go Back to return
to your last view or location.



Find
You can find a text string using the Tools>>Find menu item. To find the next occurrence of
the text you can use the Tools>>Find Again option. If you reach the end of the document, you
can use the Ctrl-Home key to go to the beginning and continue your find.

Search
If you have the Acrobat Search plug-in (available under the Tools>>Search menu in some
versions of Acrobat Exchange and Reader), you can use the Studio Index to perform full-text
searches of the entire OMNIS Studio on-line documentation set. Searching the Studio Index is
much faster than using the Find command, which reads every word on every page in the
current document only.

To Search the Studio Index, select Tools>>Search>>Indexes to
locate the Studio Index (Studio.pdx) on the OMNIS CD. Next, select
Tools>>Search>>Query to define your search text: you can use
Word Stemming, Match Case, Sounds Like, wildcards, and so on
(refer to the Acrobat Search.pdf file for details about specifying a query). In the Search
Results window, double-click on a document name (the first one probably contains the most
references). Acrobat opens the document and highlights the text. To go to the next or previous
occurrence of the text, use the Search Next or Search Previous button on the Acrobat toolbar.

Grabbing Text from the Screen
You can cut and paste text from this document into the clipboard using the
Text tool. For example, you could copy a code segment and paste it into the
OMNIS method editor.

Getting Help
For more information about using Acrobat Reader see the PDF documents installed with the
Reader files, or select the Help menu on the main Reader menu bar.

 
Start manual


	OMNIS Studio Reference
	About This Manual
	Chapter 1 -- Functions
	Syntax
	Functions
	FileOps External Functions
	FileOps External function Error Codes

	FontOps External Functions

	Chapter 2 - Hash Variables
	About the Hash Variables
	Hash Variables

	Chapter 3 -- Events
	About the Event Codes
	Event Parameters
	Field Events
	Grid Events
	Headed List Box Events
	Icon Array Events
	Key Events
	Modify Report Field Events
	Mouse Events
	Scroll Events
	Status Events
	Tab Pane and Tab Strip Events
	Tree List Events
	Window Events

	Chapter 4 -- Methods
	Common
	$Root
	Group
	OMNIS Modes
	OMNIS Preferences
	Printing Devices
	Window Class
	Menu Class
	Toolbar Class
	Report Class
	Task Class
	Table Class
	Object Class
	List Variable
	External Components
	Method Lines
	Instance
	Report Instance
	Table Instance
	Window Instance
	Window Instance Object


	Chapter 5 -- Commands
	About the Commands
	Commands

	Chapter 6 -- External Commands
	FileOps External Command Error Codes
	Web Command Error Codes

	Index
	How to use this manual
	Bookmarks
	Thumbnails
	Links
	Browsing
	Find
	Search
	Grabbing text from the screen
	Getting Help
	Start manual



