OMNIS Studio
Reference

OMNIS Software

September 1998

The software this document describes is furnished under a license agreement. The software may be
used or copied only in accordance with the terms of the agreement. Names of persons, corporations, or
products used in the tutorials and examples of this manual are fictitious. No part of this publication may
be reproduced, transmitted, stored in a retrieval system or translated into any language in any form by
any means without the written permission of OMNIS Software.

© OMNIS Software, Inc., and its licensors 1998. All rights reserved.
Portions © Copyright Microsoft Corporation.

OMNIS® is a registered trademark and OMNIS 5™, OMNIS 7™, and OMNIS Studio are trademarks of
OMNIS Software, Inc.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows 95, Win32, Win32s are registered
trademarks, and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other
countries.

Apple, the Apple logo, AppleTalk, and Macintosh are registered trademarks and MacOS, Power
Macintosh and PowerPC are trademarks of Apple Computer, Inc.

IBM and AlX is a registered trademark and OS/2 is a trademark of International Business Machines
Corporation.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company
Ltd.

Sun, Sun Microsystems, the Sun Logo, Solaris, Java, and Catalyst are trademarks or registered
trademarks of Sun Microsystems Inc.

HP-UX is a trademark of Hewlett Packard.

OSF/Motif is a trademark of the Open Software Foundation.

Acrobat is a trademark of Adobe Systems, Inc.

ORACLE is aregistered trademark and SQL*NET is a trademark of Oracle Corporation.

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase
Inc.

INFORMIX is a registered trademark of Informix Software, Inc.
EDA/SQL is a registered trademark of Information Builders, Inc.
CodeWarrior is a trade mark of Metrowerks, Inc.

Other products mentioned are trademarks or registered trademarks of their corporations.

Table of Contents

Table of Contents

ABOUT THIS MANUAL......oiieiiiiieeeeee e, 5
CHAPTER 1—FUNCTIONS ... 7
FUNCTIONS. ..ttt e e e e e e e e e e e 8
FILEOPSEXTERNAL FUNCTIONS.......uuiiiiiiiiieeceei e eeeiineeeeens 59
FONTOPSEXTERNAL FUNCTIONS......cccvviieeeeeiiieeeeeiiieeeeeeennn 68
CHAPTER 2—HASH VARIABLESciieeeevieeeee, 72
ABOUT THEHASH VARIABLES.....ccuuniiiieeiiieeeeeeeeeeeee e 72
HASHVARIABLES.ccuuiiieeee ettt 72
CHAPTER 3—EVENTS ... 82
ABOUT THEEVENT CODES......cciiiiiiiieeeeeiiieeeeeeiiee e e eeeniee e eeane 82
EVENT PARAMETERS.uuiiiiiiiieeeeetiieeeeetineeeeeaineeeseananaeesennnns 84
FIELD EVENTS ..ottt e e e e e e e e e 85
GRID EVENTS ...ttt e et e e e e et e e e e e anan e e 86
HEADED LISTBOX EVENTS.....iiiiiieie e 87
ICONARRAY EVENTS ..ottt e et e e e 88
N2 =Y = N = TP 89
MODIFY REPORTFIELD EVENTS......cuiiiiiiiiiiie et eeeeeeie e 89
MOUSEEVENTS....ccttiiiiiiiiiii et e et e e e et e e e e e 90
SCROLLEVENTS ..ottt 91
STATUS EVENTS ...t 91
TAB PANE AND TAB STRIPEVENTS....covviiiiieeieeeeeeeeeeeeeee 91
TREELISTEVENTS ...t 92
WINDOW EVENTS...ctutiiiiiiiiee et e et eee e e e e 93
CHAPTER 4—METHODScoieiieeeeeeieeeeeeeeeeeee 95
(070] V11V (o] PSR TPPR 96
BROOT ...ttt e ettt ettt e et e e e e e e e e e e e e e e e e e eaees 97
GROUP.....c et e e et e e e banas 98
OMNIS MODES......ii ittt 100
OMNIS PREFERENCES........ciitiiiiiieeeeie e 100
PRINTING DEVICES.......ciiiiiiiee e 101
WINDOW CLASS ...ttt e et et e e 102
MENU CLASS. ...eiieei et e e 103
TOOLBAR CLASSuiiiii ettt eeaa s 104
REPORTCLASS ... oot ea s 105

TASK CLASS ... ittt bttt e e e e e e e e 106

TABLE CLASS .. et iiie ettt e e e e e e e e e e e eaas 106
OBJIECTCLASS. .. ettt ettt e et e e e e e e e 107
LISTVARIABLE .. .ccvviieeee et ee ettt e e e e e e e e eteeeeanees 108
EXTERNAL COMPONENTS .. .ctueietieeeneeerieeeeaniereaeeeaneeeenneees 113
METHODLINES.. ..ottt et e e e e e 114
NS YN = 114
REPORTINSTANCE.....uiiiii et 115
TABLE INSTANCE ... ccvuuiiiieeeit e ee e e e e e et e e e eeaaas 117
WINDOW INSTANCE......cuiiiieieiiieceeieeee e e e e e eeeanas 119
CHAPTER 5—COMMANDS ...t 123
ABOUT THE COMMANDScttiitiiiiiieiee i iee e e e eaaeeaaas 123
COMMANDSttt et e e r e et e r e e e eans 124
CHAPTER 6—EXTERNAL COMMANDS 454
EXTERNAL COMMANDSuiiiinieeetieeeeee e eee e e ee e e eeanees 455
FILEOPSEXTERNAL COMMAND ERRORCODES...........vvveee. 544
WEB COMMAND ERRORCODES........ccviiivieeeiieeeee e 546
[N 1D 554

Table of Contents

About This Manual

This manual contains a description of all the following OMNIS objects

About This Manual

(I W W W N

a

Functionsand external functions
Hash variables

Event Codeand event parameters
Methods

Commands

External commands

To program in OMNIS you should be familiar with the method editor, and using the
OMNIS commands and notation. All these topics are discussed in detail in the
OMNIS Programmingnanual

Note that object properties and the OMNIS constants are not listed here since the vast
majority of them are self-explanatory. You can view the properties of any object using the
Property Manager and Notation Inspector, and you can view the OMNIS constants in the
Catalog. For your convenience, all objects including properties, methods, and constants are
listed in the OMNIS Help.

Your Notes

Chapter 1—Functions

Syntax

Functions

OMNIS provides a vast array fifnctionsfor manipulating numbers, strings, binarys, and
dates, and for performing complex calculations and trigopnometric operations. You can
browse and access the OMNIS functions in the Catalog. You can use the functions in any
calculation, and in any text string using square bracket notation. This chapter lists all the
functions available in OMNIS in alphabetical order, and includes the FileOps and FontOps
external functions at the end of the chapter.

Generally the functions accept one or more string or numeric values and return a value.
They have no direct effect on the flag, although most of the functions have a true result for a
successful operation (that is, any non-zero result) and false for failure (or no result), so you
can test the result of a calculation containing a function.

To select a function

® Press F9/Cmnd-9 to display tBatalog
® Click on theFunctionstab
® Click on the function group you require in the left-hand list

® Double-click on the function you require in the right-hand list

or you can

® Drag the function from the Catalog and drop it into a calculation field in the method
editor

All possible arguments to each function are in italic and parentheses. Square brackets
further enclose optional argumentsi(fmber?), for example; do not type the square
brackets when you enter an optional argument.

Strings appear agring, numerical values asumber list names alistname and so on.
Where a function requires more than one argument of the same type, the description
appends a number to the word: for examgilienglis the first stringstring2is the second
string, and so on. Literal strings are always quoted.

Some functions take a list of values or arguments; for example teeifidd[,stringd...)
function. This means you must enter at least one string and any number of subsequent
strings, separated by commas.

Functions
abs()

absfiumbe}
Returns the magnitude of a remimberignoring its positive or negative sign.
abs(1002) ;; returns 1002

abs(-203.45") ;; returns 203.45
abs('12ABC") ;;returns 0

acos()

acosfumbeyj

Returns the arc cosine ohamberin the range 0 to 180 degrees (0 to pi radians if #RAD is
true), or returns O if the number is not in the range -1 to 1.

acos(sqr(2)/2) ;; returns 45

ann()

anngate,nper,pmt,pv,fyord])

Evaluates an unknown for an annuity. The first five arguments are mandatory, but you can
replace any one of them with '?* which is the unknown value returned by the function.

Parametergate is the interest rate per payment periogeris the number of payment
periods, which should be an integer greater than penbis the payment made to you (or

by you) at the end of each perigul;is the amount paid to you (or by you) at the start of the
first period;fv is the amount paid to you (or by you) at the end of the final pgridds
optional and represents a specific period which must be betweempemi is used for
obtaining the split of interest and capital payments in a period.

The convention is that positive values font, pvandfv denote a payment matteyouy and
negative amounts denote a payment nigdsgou It is important to ensure thette, nper
andpmtall refer to the same period length. The annuity is evaluated so that the sum of all
payments made to you (or by you) when compounded at the interest rate evaluates to zero.

For example, a 25 year mortgage for $30000 at 11% pa interest payable monthly in arrears
has monthly payments, paid by you, equal to:

rnd(ann(.11/12,25*12,'?',30000,0),2) ;; returns -294.03

8 Chapter 1—Functions

Functions

anna()

annagate,nper,pmt,pv,jv

Evaluates an unknown for an annuity in advance. This function works in the same way as
theann() function except that the annuity is calculated in advance. The payments are
assumed to be made at the start of each period instead of the end of each period. For
example, using the same arguments as those used for the exarapig(fdsut using the
anna()function, where the mortgage payments are assumed to be made in advance, the
monthly payment is:

rnd(anna(.11/12,25*12,'?',30000,0),2) ;; returns -291.36

ansichar()
ansichar¢ode

Returns a string containing the ANSI symbol for the specifete(available under .
Windows only). You can display the result with an ANSI or TrueType font like T39S
New Roman or Arial.

ansicode()
ansicodegtring,indey

Returns the ANSI character code for the specHteidg (available under Windows 1
only).

asc()

ascétring,numbe}

Returns the ASCII value of a character istigng. The position of the character is specified
by number.The value returned is between 0 and 255, or Atirifiberis less than 1 or
greater than the length sifring.

asc('Quantity',1)

; returns 81, that is the ASCII value of the 1st character

asc('Car',3)
; returns 114, that is the ASCII value of the 3rd character
asc(Train',9) ;; returns -1

10

asin()
asinhumbe}

Returns the arc sine ofrmmberin the range -90 to 90 degrees (-pi/2 to pi/2 radians if
#RAD is true), or returns 0 if the number is not in the range -1 to 1.

asin(sqr(3)/2) ;; returns 60

atan()

atanqumbe}

Returns arc tangent ofrmmberin range -90 to 90 degrees (-pi/2 to pi/2 radians if #RAD is
true).

atan(1) ;; returns 45

atan2()
atan2y,X)

Returns the arc tangent of the point witkcoordinates.
atan2(1,1) ;; returns 45

avgc()
avgc(istname,columpignore_null§)

Returns the average value for a list column specifieiéstmameandcolumn.If you set
ignore_nullsto 1, null values are ignored and not counted. If you omit this parameter or it
evaluates to zero, nulls are treated as zero values and are counted.

Calculate LVAR30 as avgc(PLIST,Age,1)
; returns the average for Age not including null or zero values

bdif()

bdif(oldbinary,newbinary

Returns a binary representation of the differences betaldbmary andnewbinary It is
useful for comparing different versions of the same file, whether it is an OMNIS library,
external component, picture or text file, and so on.

Chapter 1—Functions

binchecksum()
binchecksuntfinary)

Calculates a checksum fobaary field. OMNIS generates the checksum by summing the
bytes of the binary field, using a 32 bit number, ignoring overflow.

Calculate CHECKSUM as binchecksum(binary)

bincompare()
bincompardgfinaryl, binary2

Compares two binary fieldbjnaryl andbinary2 Returns true if they are equal, and false if
they are not. Fields of different length & equal, meaning that the rule about extending
the length of the shortest field does not apply in this case.

Calculate LVAR1 as bincompare(binaryl, binary2)

binfromhex()
binfromhexétring)

Returns a binary field value generated from the specified chastigtgy. The character
string encodes a hexadecimal value in ASCII. Stieg must not contain a leading Ox or
0X.

Calculate BINARY as binfromhex(string)

binfromlong()

binfromlong{ongint)

Returns a binary field value containing the binary representation of a long ilutegiert.

The binary value has a length of 4 bytes. Bit zero of the returned value is the most
significant bit of the long, and bit 31 is the least significant bit. For example, the long value
0x12345678 is returned with byte 0 = 0x12, byte 1 = 0x34, byte 2 = 0x56 and byte 3 =
0x78.

Calculate BINARY as binfromlong(longint)

binlength()

binlengthpinary)
Returns the length ofla@inary field, in bytes.
Calculate LENGTH as binlength(binary)

Functions 11

12

bintohex()
bintohexpinary)

Returns a character string representing the valudufay field, in ASCIl hexadecimal.
Calculate STRING as hintohex(binary)

bintolong()
bintolongbinary)

Returns a long value from the first 4 bytes biraary field. For example, if the binary field
contains 0x12345678, the returned long has the value 0x12345678.

Calculate LONG as bintolong(binary)

bitand()

bitandpinaryl, binary2
Performs an AND operation dainaryl andbinary?, and returns the result.
Calculate BINARY as bitand(binary1, binary?2)

bitclear()

bitclearpinaryl, firstBitNumber, secondBitNumbper

Clears a range of bits in a single argunignaryl by setting them to zero, that itclear()
clears all bits with numbers firstBitNumberand <=secondBitNumber

The function operates directly on thimaryl argument, and returns 1 for success and O for
failure. If the bit numbers identify some bits which are outside the current length of the
binary field, OMNIS extends the field by appending bytes with value zero, and clears the
bits.

Calculate STATUS as bitclear(binaryl, firstBitNumber,
secondBitNumber)

bitfirst()

bitfirst(binary)
Returns the number of the most significant bit with value 1bimary field.

Calculate NUMBER as hitfirst(binary)

sets NUMBER to the bit number of the first bit set to 1. If all bits are béfost()
returns -1.

Chapter 1—Functions

bitmid()
bitmid(binary1l, firstBitNumber, secondBitNumbper

Generates a binary field value identified as a range of bitbiofay field, that is bitmid()
extracts the bits with numbers firstBitNumberand <=secondBitNumber

Calculate BINARY as bitmid(binary1, firstBitNumber, secondBitNumber)
Bit firstBitNumberof binaryl becomes bit zero of BINARY, and so on.

bitnot()
bitnot(inaryl)

Performs the 1's complement of a single argument. The function operates directly on the
argumenbinaryl, and returns 1 for success and 0 for failure.

Calculate STATUS as bitnot(binaryl)

bitor()

bitor(binary1, binary2
Performs an inclusive-OR drinarylandbinary?, and returns the result.
Calculate BINARY as bitor(binary1, binary2)

bitrotatel()

bitrotatelpinary, couny

Rotates dinary field to the left, by a number of bits specifieccmunt The function
operates directly on the argument, and returns 1 for success and 0 for failure. The vacated
bits are replaced by the bits shifted off the left-hand end.

If the specified number of bits is greater than the bit-length of the field, OMNIS returns O,
and the field is unchanged.

Calculate STATUS as bitrotatel(binary, count)

Functions 13

14

bitrotater()

bitrotaterpinary, couny

Rotates @inary field to the right, by a number of bits specifieccount The function
operates directly on the argument, and returns 1 for success and O for failure. The vacated
bits are replaced by the bits shifted off the right-hand end.

If the specified number of bits is greater than the bit-length of the field, OMNIS returns O,
and the field is unchanged.

Calculate STATUS as bitrotater(binary, count)

bitset()

bitsetpinary, firstBitNumber, secondBitNumber

Sets a range of bits in a single argument to 1, thbitsgt()sets all bits in &inary field
with numbers >HfirstBitNumberand <=secondBitNumber

The function operates directly on the argument, and returns 1 for success and O for failure.
If the bit numbers identify some bits which are outside the current length of the binary field,
OMNIS extends the field by appending bytes with value zero, and sets the bits.

Calculate STATUS as bitset(binary, firstBitNumber, secondBitNumber)

bitshiftl()

bitshiftl(binary, coun}

Shifts abinary field to the left, by a number of bits specifieccmunt The function operates
directly on the argument, and returns 1 for success and 0 for failure. Vacated bits become
zero. Bits shifted past bit O are lost.

Calculate STATUS as bitshiftl(binary, count)

bitshiftr()

bitshiftr(binary, couny

Shifts abinary field to the right, by a number of bits specifieccount The function
operates directly on the argument, and returns 1 for success and O for failure. Vacated bits
become zero. Bits shifted past the right-most bit are lost.

Calculate STATUS as bitshiftr(binary, count)

Chapter 1—Functions

Functions

bittest()

bittestpinary, firstBitNumber, secondBitNumber

Tests a range of bits in a single argument, thaitigst()tests all bits in &inary field with
numbers >HfirstBitNumberand <=secondBitNumbelf any are 1, the function returns 1,
otherwise it returns zero.

Calculate BOOL as bittest(binary, firstBitNumber, secondBitNumber)

bitxor()
bitxor(binaryl, binary2

Performs an exclusive-OR (XOR) bimaryl1 andbinary2, and returns the result.
Calculate BINARY as bitxor(binaryl, binary?2)

bundif()
bundif(differences,binary

Restores an older version obmmary file using thedifferencescreated by thédif()
function. The differences must be passed to an older version sdrtebinary file.

bytecon()

byteconbinaryl, binary2

Concatenates two binary fieldgharyl andbinary2, and returns the result. Note that
bytecon()concatenatelsinary2 on to the end dbinaryl

Calculate BINARY as bytecon(binaryl, binary?2)

bytemid()
bytemidpinary1l, firstByteNumber, secondByteNumber

Generates a binary field value identified as a range of bytes in a binary field, that is

Calculate BINARY as bytemid(binary1, firstByteNumber,
secondByteNumber)

sets BINARY to the value generated by extracting bijteByteNumbeto
secondByteNumbaénclusive ofbinaryl Thus byte 0 of BINARY becomes byte
firstByteNumbenof binary1,and so on.

15

16

byteset()

bytesetbinaryl, byteNumber, vallie

Sets a byte in a binary field to a specified value, thalyigset(sets the bytbyteNumber
of binarylto value The function operates directly on the argument, and returns 1 for
success and O for failure.

Calculate STATUS as byteset(binaryl, byteNumber, value)

cap()

capétring)
Returns the capitalized representation sfring, that is, the first letter of each and every
word in the string is capitalized.

cap('gRaVes, hutton, MONKS') ;; returns 'Graves, Hutton, Monks'
cap(‘on the 8TH day") ;; returns 'On The 8th Day'

cdif()

cdif(classl,classp

Returns a list of differences between two clast&sslandclass2 the first parameter is the
older class, and the second parameter is the newer class.

Thecdif() function returns a binary representation of differences between two OMNIS
library classes of the same type, for example, you can compare two versions of the same
window class.

If an error occurs during execution, the flag is set to false. #ERRCODE will contain the
error number, and #ERRTEXT will contain the error text. Examples of error teodif@yr
are:

"Classes are of different types and cannot be compared."

"One of the classes to be compared has an invalid structure. (One of
the classes may be corrupt.)"

An #ERRCODE value of 8095 means that the classes are identical. If no error occurs, the
returned binary representation will contain data items of objects which have changed
between the two classes.

Chapter 1—Functions

Functions

; Define local vars DIF_LIST, OLD_CLASS, and
; NEW_CLASS with Binary type

Calculate OLD_CLASS as $windows.window1.$classdata
Calculate NEW_CLASS as $windows.window?2.$classdata

Calculate DIF_LIST as cdif(OLD_CLASS,NEW_CLASS)
If (#ERRCODE)

OK message (High position,Sound bell) {[#ERRTEXT]}

Quit method kTrue
End If

chk()

chk(string1,string2,string3

Returns true or false depending on a character-by-character compassamgdfwith

string2 andstring3 using the ASCII value of each character for the basis of the comparison.

Firstly, each character sfring2is compared with the corresponding charactestririgl to
ensure that, for each characsring2<=stringl A character is said to be less than or

greater than another character if its ASCII code is less than or greater than the ASCII code
of the corresponding character. Secondly and provitiing2<=string1, each character of
stringlis compared with the corresponding charactestriig3to ensure that, for each

characterstringl<=string3 If both conditions are true, that s¢ring2<=stringl and

stringl<=string3 are both satisfied, the function returns true, otherwise it returns false.

chk(b',",'c")
; the second string is a null
; returns true because 'b">" and 'b'<'c’
chk('B','B','C")
; returns true because 'B'='B' and 'B'<'C'
chk('SD04''AA00','2Z99")
; returns true, since for each character of the respective
; strings, it is true that 'SD04'>'AAQ0' and 'SD04'<'ZZ99'
; Thatis, S>=A, D>=A, 0>=0, 4>=0

and S<=Z, D<=Z, 0<=9, 4<=9
chk('SDA4','AA00','2Z99")
; returns false, since in comparing the strings
; 'SDA4" and 'ZZ99', the character 'A'>'9'
chk('SDA4''AA00','2ZZ99")+1=0+1 ;;returns 1

17

18

chr()

chr(number],number?...)

Returns a string by converting ASCII codes to characters. The first character of the resulting
string has ASCII valuaumber] second character ASCII valnember2 and so on. Any
argument with a value less than zero or greater than 255 is ignored.

Only normal printable characters should be stored in Character or National fields. Also,
since OMNIS uses the character with ASCII value 0 as the end of string marker, this means
that if you use this character in any other way, the part of the string following the 0 value is
ignored. Control characters in the data file may also cause problems when trying to import
or export data. Records with index fields which contain characters with ASCII value 255
may not have the correct index order. It is safe, however, to have unprintable characters in
the text for thélransmit texcommands.

chr(66,111,111,107) ;; returns 'Book’
chr(257,-1,66,111,111,107) ;; returns 'Book’ (first two ignored)

cmp()

cmp(ate,periody

Returns the compound interest multiplier for a given inteegstover a given number of
periods that is,cmp()evaluates the expression (fat€/100)periods the interest rate is
given by the argumemate/100.

The following approximations are correct to 2 decimal places.

cmp(10,10) = (1+(10/100))10 ;; returns 2.59 approx
cmp(15,25) = (1+(15/100))25 ;; returns 32.92 approx
cmp(5,0.5) = (1+(5/100))0.5 ;; returns 1.02 approx

con()
con(stringl,string?,string3...)

Returns a string by concatenating or combining two or istoireg values.

Calculate FirstName as 'Dick'
Calculate LastName as 'Rawkins'
con(FirstName,' ',LastName)

; returns 'Dick Rawkins'
con('OMNIS', library")

; returns 'OMNIS library'

Chapter 1—Functions

con(‘July ',5,'th 19',97)
; returns 'July 5th 1997
; Note the use of spaces in the above examples

con()has a limit of 100 parameters. You can exceed this limit by @Gahgulate CVAR1 as
con(CVAR2,CVAR3)here CVAR2 has 99 items and CVARS has 99 items, and so on.

cos()

cos@ngle
Returns the cosine of amglewhere theangleis in degrees (or radians if #RAD is true).

cos(60) ;; returns 0.5

createnames()
createnamefile(field1],file[field2]...)
Returns the column specification to be used in a SQL Create statement.

Thecreatenames(function produces a column specification clause suitable for inclusion in
a SQL Create Table statement of the form

NAME1 CHAR(10), NAME2 NUMBER(16,2), NAME3 VARCHAR(N),....

This specification is based on an OMNIS file class, although you can omit individual fields.
For example, this command creates a temporary table on Sybase based on the file class
AUTHORS:

SQL: Create table TEMP (createnames(AUTHORS))

The file class AUTHORS supplies the data definition for the table. The advantage of using
createnames(ver explicit SQL is that the DAM interface does the work of finding

suitable server data types for you. With the interface your "Create table" looks the same on
Sybase, Oracle, ODBC, and so on, although the actual Create statements generated by
OMNIS will vary with the server type.

By default,createnames@oes not specify whether null values are permitted in each column
created and uses the server default. A further complication is that some servers default to
"not null", others to "null". You can add the options /N (for "null value permitted") or /NN
(for "not null") to createnames(pllowing a field name. For example:

SQL: createnames(field1/N,field2/NN)
; This line generates the function
: fieldl Char Null, field2 int Not Null

Functions 19

20

The following example prompts the user with the SQL create function before sending:
; Define class var FCHAR with Character type
Begin SQL script
SQL: createnames(Felements)
End SQL script
Get SQL script {FCHAR}
Yes/No message {Send create statement?: [FCHAR]}
If flag true
Execute SQL script
Else
Reset cursor(s) (Current)
End If

Field name list

The general format of the field name list is to combine file and field names in a coma
separated list:

createnames(Filel,File2,field1,field3)

For all the fields in a file,

(filename)

You can remove particular fields from the values clause by inserting a minus sign before the
field name. For example, to remove the sequence field FSEQ from the clause,

(Filel,-FSEQ)

Field names from a List

If you have a list variable with field names in the first column, you can include these in the
values clause using théstnamenotation, for example

Set current list LIST_NAMES

Define list {FileClass 1}

Build field names list {FileClass 1}

SQL: Create table TABLE createnames("LIST_NAMES)

Qualified Field Names

If the Unique field names option is turned off, you can uséil#iieldname/Q notation to
force OMNIS to qualify each field with the file name, that is, Filel.Fieldnamel,
Filel.Fieldname2, and so on.

(File1 /Q)

corresponds to the expression

(File1.FIELDNAMEL, File1.FIELDNAME2,....)VALUES
(@[File1.FIELDNAME1],@[File1.FIELDNAMEZ],..)

Chapter 1—Functions

Functions

cundif()

cundif(ist,clasg
Restores an older version otlassusing thdist of differences created logif().

The cundif() function is used to roll back the changes made to a class after having compared
two versions of the same class wattif(). Thelist of binary differences must be passed to
an older version of theameclass.

; having created DIF_LIST with cdif()...
Calculate OLD_CLASS as cundif(DIF_LIST,NEW_CLASS)
If #ERRCODE
OK message (Sound bell) {{#ERRTEXT]}
Quit method
End If

; how assign the binary field containing the

; class to a window class

Calculate LVARL1 as wl.$classdata.$assign(OLD_CLASS)

If LVAR1=0 ;; class in OLD_CLASS is not valid window
OK message (Sound bell) {The assign has failed...}
Quit method

End If

Note that you can store multiple sets of differences or “revisions” of a class and, at any
time, “reconstruct” an earlier version by successively applyimglif()against that
particular class.

dadd()

dadd@latepart,number,daje

Adds anumberof date parts to date.Thedatepartargument can be a number of days,
months, or quarters depending on the constant you usewintigeris interpreted as the
number of date or time parts or units specified bpi@partconstant. Theumber

argument must be an integer when specifgatgpartas kYear, kMonth, kWeek, kQuarter,

or kCentiSecond (the fractional part of a number is ignored). You can use fractions for the
other date parts.

The datepart constants that you can use are: kYear, kMonth, kWeek, kQuarter, kDay,
kHour, kMinute, kSecond, kCentiSecond.

; examples assume #D is June 9, 1998
dadd(kDay,3,#D)
; returns June 12, 1998, that is, 3 days are added

21

22

dadd(kWeek,1.2 #D) ;; returns June 16, 1998
; that is, one week is added, the fraction is ignored

dat()

datdatestringnumbef,dateforma})

Converts aatestringor numberto a date value using an optiodakeformatstring. If you
don't specify adateformatithe first argument is converted using #FD. You can use the
following symbols in thelateformatstring:

Y Year (89) d Day (12th)

y Year (1989) W | Day of week (5)

C Century (19) | w Day of week (Friday)
M Month (06) \% Short day of week (Fri)
m Month (JUN) | E Day of year (1-366)

n Month (June) | G Week of year (1-52)

D Day (12) F Week of month (1-6)

dat('June 7th, 98") ;; returns '7 JUN 98' if #FD="Dm Y’
dat('July 8th, 1998','MDY") ;; returns '070898'

dat(91,'w, d n, y")

; returns 'Monday, 1st April, 1901" i.e. the 91st day of 1901

ddiff()

ddiff(datepart,datel,datg2

Returns the difference between two datiedelanddate? in the units specified by a
datepartconstant; the specified dates are included in the evaluation. When you specify one
of the day of the week constants (kSunday thru kSaturday) datigartargument, you

get the number of occurrences of that day between the two dates. When you specify kYear,
kQuarter, kMonth, or kWeek as thatepartargument, the function counts the end of years,
quarters, months, or weeks between the two dates.

The datepart constants that you can use are: kYear, kMonth, kWeek, kQuarter, kDay,
kSunday thru kSaturday, kHour, kMinute, kSecond, kCentiSecond.

ddiff(kMonth,”1/31/98",”3/1/98") ;; returns 2
ddiff(kDay,”5/9/98" #D)

; returns 31, the number of days between the two dates
; assumes #D is June 9, 1998

Chapter 1—Functions

Functions

dim()
dim(datestringnumbe}

Increments aatestringby anumberof months. Months containing different numbers of

days are accounted for. For example, Jan 31 96 increased by one month gives Feb 29 96,
but beware, Feb 29 96 decreased by one month (using a negative value) gives Jan 29 96, not
Jan 31 96.

dim(dat('4/23/97"),15) ;; returns 'JUL 23 98'if #fFD ='m D Y'
dim(dat('6/23/98"),-1) ;; returns 'MAY 23 98'if #fFD="'m D Y'

dname()

dname(latepart,dat®

Returns the name of the day or month of a speaifedd depending on datepartconstant
which can be either kMonth or kDay.

dname(kMonth,#D) ;; returns June; assumes #D is June 9, 1998

dpart()

dpart@atepart,datg

Returns a number that represents a part of the spediftedepending on thdatepart
constant used. This is useful when you want to know the week number (that is, the week of
the year; use kWeek), the day of the year or the day of the week, and so on.

The datepart constants that you can use are: kYear, kMonth, kWeek, kDayofYear, kQuarter,
kMonthofQuarter, kWeekofQuarter, kDayofQuarter, kWeekofMonth, kDay, kDayofWeek,
kHour, kMinute, kSecond, kCentiSecond.

When this function returns the week of the year (kWeek) the calculation is based on 1 Jan
being the first day of the first week of the year, the last day of the year is week 53.

dpart(kWeek,#D) ;; returns 23 (the week number)
dpart(kMonth,#D) ;; returns 6
: the above assume #D is June 9, 1998

dtcy()

dtcy(datestring

Returns the year and century adatestringas a string.

dtcy(#D) ;; returns '1998"
dicy('12 06 98") ;; returns '1998'

23

24

dtd()
dtd(datestring

Returns the day part ofdatestringas a string unless it is part of a calculation in which case
it is returned as a number.

dtd(dat('Jul 21 98")) ;; returns '21st'
con(dtd(dat(‘'Jul 21 98")," day’) ;; returns '21st day'
dtd(dat('Jul 21 98") + 20 ;;returns 41
dtm()

dtm(datestring

Returns the month part ofdatestringas a string unless it is part of a calculation in which
case it is returned as a number.

dtm(dat('Apr 16 1998") ;; returns 'April'
dtm(dat('Jul 21 98")) + 20 ;; returns 27
dtm(dat(dat('Jul 21 98') + 20)) ;; returns 'August’

dtw()

dtw(datestring
Returns the day of the week oflatestringas a string unless it is part of a calculation in
which case it is returned as a number.

dtw(dat('Jun 9 1951") ;; returns 'Saturday"
dtw(dat('Jul 21 98") + 20 ;; returns 22
dtw(dat(dat('Jul 21 98") + 20)) ;; returns ‘Monday’

dty()

dty(datestring

Returns the year part ofdatestringas a string unless it is part of a calculation in which

case it is returned as a number. The string representation of the year part of a date is the set
of numeric characters representing the year, that is, 00, 01, 02, 03, and so on, while the
numeric representation is the number of years since the start of the century.

dty(dat('16 Apr 98") ;; returns '98'
dty(dat('Jul 12 98") + 20 ;; returns 118

Chapter 1—Functions

Functions

eval()

evalfieldnamévariable)

Evaluates a calculation held as a strinfieldnameor variable For example, if CVAR1
contains the string '3*4/2val(CVAR] returns the result 6. You should use this function
with extreme care because a runtime error will occur if the string is not a valid calculation.
You can use the commane@st for valid calculatiorio test a string before attempting to
evaluate it.

Calculate CVAR1 as '3*LVAR1/15.5'
Test for valid calculation {eval(CVAR1)}
If flag true

Calculate TAX as eval(CVAR1)
End If

evalf()

evalf(fieldnamdvariable)

Evaluates a calculation held as a string but stores the calculation in tokenized form back in
fieldnameor variable The functiorevalf()is faster than the equivalezal() you should

use it when your code will repeat an evaluation several times. You should use Bét the
search as calculationommand and as the calculation for a window list field.

evalf()takes a single argument that must Bieldnameor variable If the contents of this
field or variable is the text for a valid calculati@valf() returns the result of the
calculation, else a runtime error occurs. At the same time, the tokenized form of the
calculation is stored back in the field or variable, so that nexteiral()is called, there is
no need to tokenize or check the string. Tokenizing a string is part of the interpretation
process; once done, OMNIS can evaluate the calculation quickly. If you change the contents
of the field or variablevalf() uses, OMNIS will recognize that the new string requires
checking and tokenizing.
Test for valid calculation {evalf(SEARCH)}
If flag true

Set search as calculation {evalf(SEARCH)}
End If
Find first on TOWN (Use search)

Calculate CVAR1 as 'TAX*100'
Calculate TOTAL as VALUE + evalf(CVARL1)

25

26

exp()

expumbej

Returns e raised to the power of a gimeimber or 1100 on overflow.
exp(0.5) ;; returns 1.6487

fact()

fact(humbe}

Returns the factorial of aumberrounded to an integer. iiumbex=0, 1 is returned, and if
numbep=70, 1e100 is returned.

fact(4) ;; returns 24, that is 4*3*2*1

fday()

fday(datepart,dat®

Returns the date of the first day of the year, month, week, or quarter in which the specified
datefalls.

The period is specified using one of the followdaepartconstants: kYear, kQuatrter,
kMonth, kWeek.

fday(kWeek,#D)

; returns June 8, 1998 if the start of the week is set to kMonday
fday(kQuarter,#D)

; returns April 1 1998, that is, the first day of the

; quarter in which today falls, #D is June 9, 1998

fld()

fld(string1],string?]...)

Returns the value of the field name given by concatenating or combining one @tningre
values. For example, if the current values of the fields RATE1 and RATE2 are 10 and 15
respectively, then

fid(RATE','1") ;; returns 10
fld'RATE','2") ;; returns 15

fontlist()

fontlist(listhamé

Returns a list of fonts currently installed in your system, including the font name and type.
Thelisthnameparameter is any list field or variable. A return value of O indicates no fonts

Chapter 1—Functions

Functions

found or some error, otherwise 1 is returned indicating a list was built. You should define
the following columns in your list field or variable.

Column 1 Column 2 (Optional) | Column 3 (Optional)

String Numeric variable to String variable to hold a name for the

variable to | hold value (0..7) for value in column 2. This will be

hold name of| type of font combination of "Raster", "Vector",

the font "TrueType" together with "Fixed" or
"Proportional”

Set current list LIST1
Define list (FONT_NAME,FONT_TYPE,FONT_DESCRIPTION)
If fontlist(LIST1) <> 0
Redraw lists
End If

getfye()
getye(

Returns the current date of the fiscal year end (note no argument).

getseed()
getseed()

Returns the current content of the seed as an integer number (note no argument).

getws()
getws()
Returns the day of the week which is set as the beginning of the week (note no argument).

The day of the week is returned as one of the datepart constants: kSunday, kMonday,
kTuesday, kWednesday, kThursday, kFriday, kSaturday.

insertnames|()
insertnamedileffield1[,file[field2]...)
Returns a list of fields and values to be used in a SQL Insert statement.

Theinsertnames(junction produces a field name list and a values list suitable for inclusion
in a SQL Insert statement of the form

(NAME1,NAME2,.....) VALUES (@[NAME1],@[NAMEZ].....)

27

28

When inserting a complete row for which you have a corresponding set of OMNIS fields,
use

SQL: Insert into FTEL inserthnames(FTEL)

which OMNIS expands to the expression

Insert into FTEL (FTNAME, FTNUM) VALUES (@[FTNAME], @[FTNUMY])

There are cases where you don't want to insert a value (or the default NULL) into certain
columns. You can eliminate some columns from the insert statement like this:

SQL: Insert into FTEL insertnames(FTEL,-FTNUM)

Begin SQL script

SQL: Insert into CLIENTS

SQL: insertnames(CLIENTS,-C_TOWN,-C_CITY,-C_TEL)

Field name list

The general format of the field name list is to combine file and field names in a coma
separated list:

createnames(Filel,File2,field1,field3)

For all the fields in a file,

(filename)

You can remove particular fields from the values clause by inserting a minus sign before the

field name. For example, to remove the sequence field FSEQ from the clause,
(File1,-FSEQ)

Field names from a List

If you have a list variable with field names in the first column, you can include these in the
values clause using théstnamenotation, for example

Set current list LIST_NAMES

Define list {FileClass 1}

Build field names list {FileClass 1}

SQL: Create table TABLE createnames(*LIST_NAMES)

Qualified Field Names

If the Unique field names option is turned off, you can usél#jieldname/Q notation to
force OMNIS to qualify each field with the file name, that is, File1l.Fieldnamel,
Filel.Fieldname2, and so on.

(File1 /Q)
corresponds to the expression

(File1.FIELDNAME1,File1.FIELDNAME2,...)VALUES
(@[File1.FIELDNAME1],@[File1.FIELDNAMEZ],..)

Chapter 1—Functions

int()
int(humbe)

Returns the integer part ohamber it does not round to the nearest integer.

int(23.1056) ;; returns 23
int('-2.66") ;; returns -2
abs(int(-1.999)) ;; returns 1

isfontinstalled()

isfontinstalledfontnamé

Returns a true or false value indicating whether the named font has been fully installed into
your system. Théonthameargument can be a string literal, character field or variable with
a maximum length of 255.

If not(isfontinstalled('O7Font"))
Ok message { Cannot run library without 'O7Font' }
End If

isnull()

isnull(fieldnamé

Returns true ifieldname a field in the current record, is null. A null value is one where no
value has been entered and the field definitia®as be null without Insert as Empty.

isnumber()

isnumberstring[,decimal_char][,thousands_char]

Returns kTrue if the specifiexiring can be evaluated as a number; kFalse otherwise. The
optional parameters can be used to define the decimal and thousand separator If the
optional parameters are not specfied the default separators are used, a ‘.’ for the decimal
and a ‘,’ for the thousand.

Calculate STATUS as isnumber(STRING)
; STATUS is kTrue if STRING can be evaluated as a number

isoweek()

isoweek@ate

Returns the ISO 8601 standard week number for the week containing the spltdied
isoweek(#D) ;; returns the current iso week number

Functions 29

30

jst()
jst(stringl,number],string2number?...)

Returns a string containing the specifsgdng left or right justified with sufficient spaces
added to make a total length specifiechimmber Thejst() function also includes
concatenation. liumberis negative the resultirggring is right justified, if thenumberis
positive thestring is left justified;numbermust be in the range 1 to 999.

jst('This is left justified’,30)

; gives

|This is left justified |

jst('This is right justified',-30)

; gives

| This is right justified|

When you define the columns for a list() lets you fix the column width and using a non-

proportional font the list columns will line up properly. For example, the calculation for a
list containing the fields CODE and COMPANY could be

jst(CODE,7,COMPANY,25)
Thejst() function also includes concatenation, for example

jst(p1,p2,p3,p4,p5,p6,...)
; is the same as

con(jst(pl,p2),jst(p3,p4),jst(p5,pb)....)

However it has a limit of 100 parameters, but you can exceed this limit by using
Calculate CVARL1 as jst(CVAR2,CVARB)ere CVAR2 has 99 items and CVARS3 has 99
items, and so on.

Formatting Strings Using jst()
Thejst() function can take a string for the second argument instead of a number, that is

jst(stringl,stringl],string2,string2...)

This form ofjst() formats the firsstringl argument in a way controlled by the second

string2 argument. The second argument consists of a series of formatting options which you
can use separately or together. Each option is represented by one or more characters. The
order of the various formatting options is not important but the case is.

n (caret) causes the data to be centered in the field n characters wide.
jst(‘abc','""5") ;o returns 'abc '
jst(FIELD,~25")
; as a list calculation will center the FIELD values in
; a column 25 characters wide

Chapter 1—Functions

Functions

£

Pc

Nnn

Fnn

places a £ sign in front of the data.
jst(TOTAL,'E") i returns '£12.12" if TOTAL = 12.12

places a $ sign in front of the data.

jst(TOTAL,'$") returns ' $12.12' if TOTAL = 12.12

left justification, overriding the default set up in a report class. This is used by the
Ad hoc report generator to control the justification of fields.

causes the part of the field not filled by the data to be filled by character c.
jst(‘abc','-5P*) ;; returns **abc'

causes the data to be truncated if its length exceeds the field length. The default is
not to truncate.

jst(‘abcdef','4") ;; returns 'abcdef'

jst(‘abcdef','4X") ;; returns ‘abcd'

causes the data to be converted to upper case.

jst(this IS it','U") ;; returns 'THIS IS IT'

causes the data to be converted to lower case.

jst(THIS is IT''L") ;; returns 'this is it'

causes the data to be capitalized.

jst(thisis it','C") ;; returns 'This Is It'

jSt(THIS IS IT','C") ;; returns 'This Is It'

jst('this IS IT",'C") ;; returns 'This Is It

causes the data to be treated as a fixed decimal number with nn decimal places. If nn
is not specified, a suitable number of decimal places is used.

jst(0.235,N") ;; returns '0.235'

jst(0.235,'N2") ;; returns '0.24'

causes the data to be treated as a floating decimal number with format specified by
nn. The nn argument can be a positive or negative number and has the same meaning
as described for the #FDP variable. If nn is not specified, it defaults to the current
value of #FDP.

jst(12.35,'-10F9") ;returns ' 12.35

jst(12.35,'-10F-9) ;; returns '1.23500000e+01'

jst(12.35,'-10F-3U") ;; returns ' 1.24E+01'

causes the data to be treated as a date. The default formatting string is #FD, but you
can specify a formatting string as described later.

jst('26/11/97','DC")

; returns '26 Nov 97" if #fFD =D m Y'

31

DT

32

causes the data to be treated as a long date and time. The default formatting string is
#FDT but you can specify a formatting string using the : (colon) argument as
described below.

jst(#D,'DT")

; returns '26 Nov 97 15:30' if #/DT is'D m Y H:N'

causes the data to be treated as a time using the formatting¢stfingou can
include a format string using the : (colon) argument as described below.
jst('0620','T") ;; returns '06:20" if #FT = 'H:N'

displays a null value as 'NULL".

jst(Field1,'A") ;; returns 'NULL' when Field1 is null

causes the data to be treated as Boolean.

jst(1,'LB") ;; returns ‘yes'

applies to numbers only and turns on the 'Zero shown empty" attribute.

jst(0,'N2") ;; returns '0.00'

jst(0,'N2E") ;; returns "

(comma) applies to numbers only and turns on the 'Shown like 1,234" attribute.
jst(1234,'N2" :; returns '1234.00'

jst(1234,'N2,) ;; returns '1,234.00'

(open bracket) applies to numbers only and turns on the 'Shown like (1234)'
attribute.

jst(-1234,'N2") ;; returns -1234.00'

jst(-1234,'N2(") ;; returns '(1234.00)'

jst(1234,'N2(") ;; returns '1234.00'

(close bracket) applies to numbers only and turns on the 'Shown like 1234-' attribute.
jst(-1234,'N2)" ;; returns '1234.00-'

jst(1234,'N2)) ;; returns '1234.00"

(plus sign) applies to numbers only and causes positive numbers to be shown with a
u+n Slgn.

jst(1234,'N2+") :returns '+1234.00'

jst(1234,'N2)+") ;; returns '1234.00+'

(colon) characters following a colon are interpreted as a formatting string. This must
be the last option since all characters following it become part of the formatting
string. The meaning of the formatting string depends on the type of the data.

Chapter 1—Functions

The formatting string has a similar format to #FDT if the data is a date/time, using the
following characters:

Y Year (99) H Hour (0..23)

y Year (1999) h Hour (1..12)

C Century (19) N Minutes

M Month (06) S Seconds

m Month (JUN) S Hundredths

n Month (June) A AM/PM

D Day (12) V Short day of week (Fri)

d Day (12th) E Day of year (1-366)

W Day of week (5) G Week of year (1-52)

w Day of week (Friday) F Week of month (1-6)
For example:

jst(#D,'D:w, d n CY")

; returns 'Saturday, 29th November 1997

cap(jst(#D,'D:Vd nY")

; returns 'Sat 29th Nov 97

The formatting string has a similar format to #FT if the data is a time. #FT is used as the
formatting string if a formatting string is not specified for a time.

jSt@#T,'T:H-N') ;; returns '14-07'

If the data is neither a date nor a time, and if the formatting string contains an X, the data
value is inserted at the position of the X to produce the data value.

jst(0,'BC:The answer is X!")

; returns 'The answer is No!'

The formatting string is concatenated to the left of the data value if the formatting string
doesnotcontain an X. The data value is left unchanged if a formatting string is not
specified.

jst(12,-7N2:$") ;; returns ' $12.00'

jst(12,-7N2:£") ;; returns ' £12.00'

jst(12,-8N2:DM") ;; returns ' DM12.00'

Functions 33

34

lday()

Iday(datepart,dat@

Returns the date of the last day of the year, month, week, or quarter in which the specified
datefalls.

The period is specified using one of the followdaepartconstants: kYear, kQuatrter,
kMonth, kWeek.

Iday(kWeek,#D)

; returns June 14, 1998 if the start of the week is set to kMonday
Iday(kMonth,#D)

; returns June 30 1998, that is the last day of the month

; the above assume #D is June 9, 1998

len()

len(string)

Returns the length of &tring, that is, number of characters.

len('Hello there!") ;; returns 12
len(abs(-10.25)) ;; is the same as len(10.25) which returns 5
len(OMNIS") + 20 ;; returns 25

list()
list(rowl],row?]...)

Returns a list from a number fw variables of identical structure, that is, the data type of
each column in each row variable should match. One row in the list is created for each row
variable passed. For example

Set current list myList

Define list {col1, col2, col3}

Calculate myList as list(row1, row2, row3)

: returns a list from row variables row1, row2, and row3

If the type of a particular column in the list does not match the type of a row variable
column,list() tries to convert the row variable column to that of the list column, from
number to string, for example. If the column type cannot be converted the column is left
blank.

Chapter 1—Functions

Functions

In()

In(hnumbej

Returns the log to base e (the natural logarithm)rafraber or -1e100 ifhumbex=0.
In(exp(.5)) ;; returns 0.5

log()

log(numbey}

Returns the log to base 10 ofiamber or -1e100 ifnumbex=0.

log(100) ;; returns 2
log(0.001) ;; returns -3

lookup()

lookup([refname]searchvalugfieldnumbel)

Returns a field value from another data fdname(opened as a lookup file) using a
searchvalueThefieldnumberargument specifies the particular field in the lookup file to be
returned by the function. Each lookup file is opened usin@tien lookup fileommand at
which time a reference label is assigned to that lookup.

If you omit the third argument, the value of the second field is returned by default. If one
argument is given, the default lookup file is used, that is, the lookup file which was opened
without a reference label, or the first lookup file opened if all have labels.

If no exact match is found, an empty value is returned. All field types are returned,
including pictures and long text.

Open lookup file {City/Cities.df1/FCITY/1}

; Reference name is City, file class FCITY

: Uses first field in FCITY as the index

OK message {CNAME is [lookup('City','FOS",2)]}

low()

low(string)

Returns the lower case representation gifiag. Any non-alphabetic characters in the
strings are unaffected byw().

low('DAVID') ;; returns 'david'
low('OrAcLe7") ;; returns 'oracle?’
low(1017) ;; returns '1017'

mid(low(PERIPHERAL),3,3) ;; returns 'rip'

35

36

Ist()

Ist([[listname]linenumbeyifieldnamé

Returns the value difeldnamefrom a line specified bimenumberin a list specified by
listhame Thefieldnameargument must be a field stored in the list, not a constant or
expression. Ifistnameis not specified the current list is used. If onlyfieelname
argument is specified the current line of the current list is used.

Ist(L3,23,PRICE)

: returns PRICE field value stored at line 23 of list L3

Ist(23,PRICE)

: returns PRICE field value stored in line 23 of the current list

Ist(PRICE)

; returns PRICE field value stored at current line of current list
Ist(L3,0,LM)

; returns the maximum number of lines in list L3

max()

max{value],valuel...)

Returns the maximum value from a list of values. The values should all be numbers when

numeric comparison is used or all strings when string comparison is used.

max(3,6,2,7) ;; returns 7
max('dagger','dog','dig") ;; returns 'dog’

Chapter 1—Functions

maxc()

maxc(istname,columpignore_null$)

Returns the maximum value for a list column specifietidtigameandcolumn.If you set
ignore_nullsto 1, null values are ignored and not counted. If you omit this parameter or it
evaluates to zero, nulls are treated as zero values and are counted.

mid()
mid(string,position,length

Returns a substring of a specifiedgth starting at a specifigabsition from a larger

string. If positionis less than 1 it is taken as 1, that is the first character; if it is greater than
the length of thetring, an empty string is returned.lé&ngthis greater than the maximum
length of any substring @tring starting aposition the returned substring will be the
remainder obtring starting aposition

mid('Information’,6,3) ;; returns 'mat'
int(mid(12.45,2,3)) .y is the same as int('2.4"), returns 2
mid(interaction',6,24) ;; returns 'action’

min()
min(value,valuel...)

Returns the minimum value from a list of values. The values should all be numbers when
numeric comparison is used or all strings when string comparison is used.

min(3,6,2,7) ;; returns 2
min('cat','dog','apple") ;; returns 'apple’
minc()
minc(istname,columpignore_null§)

Returns the minimum value for a list column specifiedistpameandcolumn.If you set
ignore_nullsto 1, null values are ignored and not counted. If you omit this parameter or it
evaluates to zero, nulls are treated as zero values and are counted.

Calculate LVAR4 as minc(LIST1,Salary,1)

Functions 37

38

mod()

modnumberinumber?

Returns the remainder of a number division, that is, wiuenberlis divided bynumber2
to produce a remainder; it is a true modulus function.

mod(6,4) ; returns 2
mod(4,6) ;; returns 4
mod(-5,-2) ;; returns -1

mousedn()

mousedn()

Returns true if the mouse button is held down, otherwise returns false (note no argument).
This function returns a Boolean value describing the state of mouse button (the left-hand
mouse button under Windows).

mouseover()

mouseoveronstany

Returns information about the mouse position defined by a predefimsthntat the

instant the function is evaluated. The function only works in an "open" user-defined window
(not reports or searches). Moreover, it returns references only for fields and not background
objects (text and graphic objects).

The mouse position is returned in a variety of ways depending on the constant you use. You
can use the following constants:

kMItemref returns a reference to the object under the mouse. The window instance itself
can be returned as item O of the window.

kMCharpos returns the nth character in an edit field.
kMLine returns the line number for a list.

kMHorz returns the horizontal position of the mouse relative to the topmost open user-
defined window; if no user-defined window is open, returns the horizontal
position of the mouse relative to the OMNIS application window

kMVert returns the vertical position of the mouse relative to the topmost open user-
defined window; if no user-defined window is open, returns the relative
position to the OMNIS application window

Chapter 1—Functions

Functions

mouseup()

mouseup()

Returns true if the mouse button is released after having been pressed, otherwise returns
false (note no argument).

msgcancelled()

msgcancelled()

Returns true if the Cancel button is pressed on a message box. For example, you can use thi
to distinguish between No and Cancel oves/No messagehich both clear the flag.
Yes/No message (Cancel button) {Do you want to proceed?}
If flag false

If not(msgcancelled())

; user chose No

End If
Else

; user chose Yes
End If

nam()

nam(fieldname

Returns the name of a field as a strifigfjdnamemust be a field name or variable, not a
constant or an expression.

nam(CCODE) ;; returns the string 'CCODE'
nam(#SUBFLD) ;; returns the name of the subtotal field

natcmp()

natcmpyaluel,valuep

Returns the result of comparing two values using the national sort ordering. Returns 0 if the
strings are equal, 1vlaluel>value2 and -1 ifvaluel<value2 Both values are converted

to strings before the comparison is mascmp()uses the same rules for comparing the
strings as it does for normal strings, except that it uses the national sort ordering.

natcmp(valuel,value2) ;; returns O if values are equal

39

40

nday()
nday@atepart,dat®

Returns the date of the dafter the specifiedlatewhen thedatepartconstant is set to
kDay. However, if one of the day of the week constants is used, this function returns the
date of that day of the week following the specifiede

The datepart constants that you can use are: kDay, kSunday, kMonday, kTuesday,
kWednesday, kThursday, kFriday, kSaturday.

nday(kDay,#D) ;; returns June 10, 1998
nday(kMonday,#D)

; returns June 15, 1998 which is the next Monday after #D

; the above assume #D is June 9, 1998 which is a Tuesday

not()

not(expressioh
Returns the Logical Not of a@xpression

All expressions in OMNIS have a Boolean (truth) value. Firstly, non-zero numeric values
(including negative values) are TRUE, zero values are FALSE. Secondly, string values are
TRUE or FALSE depending on their numeric equivalent. String '1' has boolean value 1,
thereforenot('1") is 0. 'Bill' has boolean value 0, 'YES' has numeric value 0.

not(2501) ;o returns O
not('Hello there!") ;; is the same as not(0) which returns 1

The numeric value of an expression that evaluates to true is 1, theretigree)is 0.
Similarly, not(false)is 1.

not(31<45) ;; is the same as not(true) which returns false

You can use&ot() to make method code more readable.

Do method ProcessList Returns Done
If not(Done)

oemchar()
oemchar¢ode

Returns a string containing the PC symbol for the spedifielé(available under Windows
only). You can display the result with the Windows Terminal font, since these characters are
intended for DOS use only.

Chapter 1—Functions

oemcode()
oemcodegtring,indey

Returns the current PC character code for the spesiiied) (available under Windows
only). The result will depend on the nationality and code-page used, as installed by
Windows' setup.

omnischar()

omnischar¢ode

Returns a character for the specifeedieas defined by the OMNIS character set (available
under Windows only). These characters are useful to display under MacOS, but most you
can display with a full TrueType font. Some characters you can display only with an
Accuware font, and some will have no representation at all. You can finddeéor a
character usingmniscode()

omniscode()

omniscodegtring,indey

Returns the OMNIS code or character value/number (available under MacOS) for the
specified character withinstring (the function is available under Windows only).

Calculate LVAR1 as omniscode(‘ABC’,1)
: returns the OMNIS code for the first character

pday()
pday@atepart,datg

Returns the date of the dagforethe specifiedlatewhen thedatepartconstant is set to
kDay. However, if one of the day of the week constants is used, this function returns the
date of that day of the week preceding the specifatd

The datepart constants that you can use are: kDay, kSunday, kMonday, kTuesday,
kWednesday, kThursday, kFriday, kSaturday.

pday(kDay,#D) ;; returns June 8, 1998
pday(kThursday,#D)

; returns June 4, 1998 which is the Thursday before #D
; the above assume #D is June 9, 1998 a Tuesday

Functions 41

pick()
pick(humber,value0,valu¢alued...)

Selects an item from a list @élues(strings or numbers) depending on the value or result of
thenumberargument.

Thenumberargument is rounded to an integer and used to select thevétier®0is

returned if the result is @aluelif the result is lyalueZ2if the result is 2, and so on. If the
numberis less than zero or greater than the number of values in the list, an empty value is
returned. Note the list of values can be a mixture of string and numeric values.

pick(LVAR2,123,'/ABC','abc") ;; returns 123 if LVAR2 evaluates to 0
pick(LVAR1,2200,4500,6800) ;; returns 6800 if LVAR1 = 2
pick(LVAR30,'one’,2,'three’) ;; returns null if LVAR30 =5

pos()
posEubstringstring)

Returns the position ofsubstringwithin a largerstring. Thesubstringmust be contained
within string in its entirety for the returned value to be non-zero. Also, the comparison is
case sensitive and only the first occurrence of substring is returned (see third example).

pos('Mouse','Mickey Mouse') ;; returns 8
pos('mouse’,'Mickey Mouse') ;; returns 0, note case
pos('','R S W Smith")

; returns 2, that is the position of the first space character

For example, you can strip the extension from a file name usihg andpos()combined,
as follows.

If pos('.',FileName) ;; if FileName contains a dot
Calculate FileName as mid(FileName,1,pos('.",IntName)-1)
End If

pwr()

pwr(numberpowel) raises anumberto apower.

pwr(2,5) 1 returns 32
pwr(21.37,0.831) ;; returns 12.74 approx
int(pwr(1.105,5)) ;; is the same as int(1.65) which returns 1

Chapter 1—Functions

rand()
rand()

Returns a real number in the range 0.0 < number > 1.0, inclusive (note no argument is
required).

randintrng()

randintrngbumberl,numbe)2

Returns an integer betweanmberlandnumber2 jnclusive.

randrealrng()

randrealrngfumberl,numbe)2

Returns a real number betwaaimimberlandnumber2jnclusive.

replace()

replacegource-string, target-string, replacement-stiing

Replaces the first occurrence of theget-string,within thesource-string with the
replacement-stringThereplace()function returns the new string containing the changes, if
any. If you replace part of a window field's contents, you should redraw it.

Calculate NEW_STRING as replace(STRING,chr(65),'a")
; replaces the first occurrence of upper case A in STRING
; with lower case a, and places the result in NEW_STRING

replaceall()

replaceall§ource-string, target-string, replacement-stijing

Replaces all occurrences of tiaeget-string,within thesource-string with the
replacement-stringThereplaceall()function returns the new string containing the changes,
if any. If you replace part of a window field’s contents, you should redraw it.

Calculate NEW_STRING as replaceall(STRING,' ',-"

; replaces all occurrences of underscores in STRING with hyphens

; and places the result in NEW_STRING

Functions 43

44

rgb()
rgb(red,green,blug

Sets the color of an object. The three argumerdtsgreen, blueorrespond to the RGB
value of the desired color; each must be an integer in the range 0-255. For example, yellow
has an RGB value of 255,255,0.

Do $cinst.$objs.FIELD1.$forecolor.$assign(rgh(0,178,178))
; changes the object forecolor to green

rmousedn()

rmousedn()

Returns true if the right mouse button is held down (under Windows), or the Ctrl key is held
down while the mouse is clicked (under MacOSjmbusedn(js true,mousedn()s also
true but not vice versa. (Note no argument is required.)

rmouseup()

rmouseup()

Returns true if, after being pressed, the right mouse button is up (in Windows) or the mouse
is up after it has been pressed with the Ctrl key held down (under MacOS). (Note no
argument is required.)

rnd()

rnd(hnumberdp)

Rounds aaumberto a number of decimal places specifiedm

rnd(2.105693,5) ;; returns 2.10569
rmd(2.105693,3) ;; returns 2.106
rnd(0.5,0) ;returns 1

It is often essential to used() when comparingany two variables with field values to round
the values to the same precision. For example

If rnd(LVAR1,2) = NUMBERFIELD ;; if NUMBERFIELD is a Number 2 dp
; do what's expected
Else...

Chapter 1—Functions

rolldice()

rolldice(number,faces

Returns the result of a die roll. You specify thenberof dice to roll and the number of
faceson each die.

Calculate DICEROLL as rolldice(2,6)
; rolls two normal, six-sided dice and puts the result in DICEROLL

rollstring()

rollstring(stringformulg
Returns the result of a die roll fronsting formula. The format of thstringformulais:
rollstring NdF [+ - * / offset]

where N is the number of dice, d is a delimiter, and F is the number of faces for each die. In
addition, you can add, subtract, multiply, or divide by an offset. For example

Calculate MY_NUM as rollstring(‘2d6’)

; returns the result of rolling two standard six-faced dice
Calculate MY_NUM as rollstring(‘3d6+1’)

Calculate MY_NUM as rollstring(‘12d4+67)

row()

row(variablel,variable3...)

Creates a row variable from a numbewafiables it creates one column for each variable
passed.

Calculate myRowVar as row(varl, var2, var3)
; creates a row variable with the columns varl, var2, and var3

selectnames()
selectnameféieffield1],file[field2]...)
Returns a list of field names to be used in a SQL Select statement.

Theselectnames(unction produces a comma-separated list of field names suitable for
inclusion in a SQL Select statement and elsewhere of the form

NAME1,NAMEZ2,.....

The following examples use the file class FTEL which contains two fields FTNAME and
FTNUM. The file FTEL is also a table on the server:

Functions 45

46

Perform SQL {Select selectnames(FTEL) from FTEL}

; sends the statement: Select FTNAME, FTNUM from FTEL
;and

Perform SQL {Select selectnames(FTEL,-FTNUM) from FTEL}
: sends the statement: Select FTNAME from FTEL

Field name list

The general format of the field name list is to combine file and field names in a coma
separated list:

createnames(Filel,File2,field1,field3)

For all the fields in a file,

(filename)

You can remove particular fields from the values clause by inserting a minus sign before the
field name. For example, to remove the sequence field FSEQ from the clause,

(Filel,-FSEQ)

Field names from a List

If you have a list variable with field names in the first column, you can include these in the
values clause using théstnamenotation, for example

Set current list LIST_NAMES

Define list {FileClass 1}

Build field names list {FileClass 1}

SQL: Create table TABLE createnames("LIST_NAMES)

Qualified Field Names

If the Unique field names option is turned off, you can uséil#jieldname/Q notation to
force OMNIS to qualify each field with the file name, that is, Filel.Fieldnamel,
Filel.Fieldname2, and so on.

(File1 /Q)

corresponds to the expression

(File1.FIELDNAMEL, File1.FIELDNAME2,....)VALUES
(@[File1.FIELDNAME1],@[File1.FIELDNAMEZ],..)

server()

serverfunction
Sends a servéunctiondirect to the DAM in the current session.

Theserver()function takes an argument in which you specifyrectionto be carried out
within the SQL interface. The result can be returned to OMNIS by including the function
call in aCalculatecommand, for example

Chapter 1—Functions

Functions

Calculate RESULT as server('Version')

; RESULT contains the version number of the active DAM
Calculate PATH as server('Path’)

; PATH contains the directory path of the DAM

Calculate API as server('vendorAPI")

; API contains the directory path of server API if

; available, otherwise returns -1 if not available

Calculate DAM as server('DAM")

; DAM contains the name of the current DAM
Calculate FILE as server('File")

; FILE contains the file name of the current DAM

Other functions are specific to the server and are documented with the installation notes for
the particular interface.

setfye()
setfyeflate

Sets thalateof the fiscal year end. Thdatedoes not have to be in the current year, that is,

the function ignores the year part of the date. The setting of the fiscal year end affects all
other date functions that involve quarters. It returns the previous value so you can save it for
later use.

setfye('MAR 31') ;; sets the fye to March 31st
setfye(‘12 31 98")
; sets the fye to December 31st & ignores the year

setseed()

setseed{eed

Sets the random numbseedfor the random functions, such@nd(). setseed(fonverts
seedinto a Long number. It returns the previous seed as an integer number.

setws()

setwsflatepan)

Sets the beginning of the week to a particular day, using one of the day of theatesedct
constants. It returns the previous value so you can save it for later useldfapartis
invalid this function still returns the week start but does not change it.

The datepart constants that you can use are: kSunday, kMonday, kTuesday, kWednesday,
kThursday, kFriday, kSaturday.

setws(kMonday) ;; sets Monday as the week start

47

shufflelist()

shufflelistourcelist, targetlist, numbgr

Shuffles the items isourcelist,the specifiechumberof times, and puts the results in
targetlist A value of 2 or 3 fonumberprovides a good shufflshufflelist()does not

support Binary fields, List fields, and Picture fields stored in a list. An empty or null date
converts to '31 DEC 00' in thargetlist

sin()

sin@ngle
Returns the Sine of aanglewhere theangleis in degrees (or radians if #RAD is true).
sin(30) ;; returns 0.5

sqr()
sqr(humbej

Returns the square root ohamber OMNIS defines the square root of a negative number
X assgr(abs(X)).

sqr(100) ;; returns 10
sqr('-301.56") ;; returns 17.37 approx
mid(OMNIS',sqr(16),2) ;; returns 'is'
stddevc()

stddevclistname,columpignore_null$)

Returns the standard deviation for a list column specifidéstmameandcolumn.If you set
ignore_nullsto 1, null values are ignored and not counted. If you omit this parameter or it
evaluates to zero, nulls are treated as zero values and are counted.

Calculate %RESULT as jst(stddevc(LIST,COL),'N2’)
; returns the standard deviation rounded to 2 decimal places

Chapter 1—Functions

strpbrk()

strpbrkétring1, string2

Returns a substring sfring1from the point where any of the characterstimg2 match
stringl

Calculate CVAR1 as “this is a test”

Calculate CVAR2 as strpbrk(CVAR1, “ absj”)

OK Message { Result = [CVAR2] }

; displays the message “s is a test”!

strspn()
strspnétringl, string2

Returns the index of the first charactesiringlthatdoes not matchny of the characters
in thestring2

Calculate LENGTH as strspn(STRING, CONTAINEDCHARS)

; If STRING does not contain any of the characters in

: CONTAINEDCHARS, zero is returned in LENGTH

strtok()

strtok(‘stringl’, string?

Tokenizesstringl, usingstring2 as the delimiter with which to tokenize. This function
returns tokens which are a substringwingl until any character istring2 matches a
character irstringl Whenstrtok()is called, the token found 8iringlis removed, so that
the function looks for the next token the next time it is called.

Calculate CVAR1 as “The quick brown fox, jumped over the lazy dog”
Repeat
Calculate CVAR2 as strtok(‘CVARL", “, ")
OK Message { Token = [CVAR2] }
Until CVAR2 = *
; returns each word in CVARL1 in an OK Message

Functions 49

50

style()
style(style-characte,valug)

Inserts astyle-characterepresented by an OMNIS constant into a calculation. Depending
on the style character, you can also specifglag which itself can be a constant. You can
use this function to format the columns in a headed list box field. You can insert an icon by
specifying its ID, a center tab, right tab, left tab, a color value, or text property such as
italic. For example, to format the columns in a headed list box you could use the following
calculation

con(Col1,style(kEscBmp,1756),chr(9),

Col2,style(kEscColor,kRed),style(kEscRTab),chr(9),
Col3,style(kEscStyle,klitalic))

; gives Coll a blue spot icon, Col2 is red and
; right-justified, and Col3 italic

Chapter 1—Functions

sys()
sysfiumbej

Returns information about the current system dependinghamaerargument. Using the
sys()function, you can obtain system information such as the current printer name, the
pathname of the current library, the screen width or height in pixels, and so on. The
following example usesys(6)to test the current OS and branches accordingly.

; declare IvListHD of List type, and IvFolder of Char type
Do IvListHD.$define(IvFolder)
If sys(6) = ‘M’ ;; on MacOS
Get folders (lvListHD,lvFolder,'Mac HD’)
Else ;; on other platforms
Get folders (IlvListHD,IvFolder,'C:\)

End If
Do IvListHD.$sort(lvFolder)
Redraw lists ;; if it’'s a window list

You can use the followingumbervalues with the sys() function.

Sys(n) Description

1 returns the OMNIS version number.

2 returns the OMNIS program type byte:
bit 0 = full program (value 1),

bit 1 = runtime (value 2),

bit 2 = evaluation (value 4),

bit 3 = integrated (value 8),

bit 4 = unicode (value 16).

For example, a runtime evaluation returns 6, that is 2+4. Note that the current
version of OMNIS does not support the use of integrated versions

3 returns your company name entered on installation.
4 returns your name entered on installation.
5 returns your serial number entered on installation.
6 returns the platform code of the current executable:
'W' = Windows 3.x or Windows 95,
‘N’ = Windows NT,
'M" = Mac or PowerMac,
'S'=08S/2,
‘U’ = UNIX.
7 returns a string containing the version number of the current OS. For

example, returns "3.11" under Windows for Workgroups version 3.11, "4.0"
under Windows 95, and "7.5" under MacOS System Software 7.5.

Functions 51

52

Sys(n)

Description

returns the platform type of the current OMNIS program as a string:
'MACG68K', 'MAC600', 'WIN16', 'WIN32', '0S2'

File

tion

ted).

10 returns the pathname of the current open library file.

11,..,20 | returns the pathname(s) of the current open data file segment(s) (empt
none are open).

21 returns the pathname of the current print file name (empty if not open).

22 returns the pathname of the current import file name (empty if not open).

23 returns the current port name (empty if no port open).

24 returns the current report device, for example, Printer, Screen, Preview.
(Screen is the default).

30,..,49 | returns the name of the installed user-defined menu(s) starting from the left-
most menu (empty if none are installed).

50,..,79 | returns the name of the open user-defined window(s) starting with the t
window (empty if none are open).

80 returns the current report name (empty if no report set).

81 returns the current search name (empty if no search set).

82 returns the main file name (empty if no main file set).

83 returns the number of records in main file.

85 returns the name of currently executing method in the form class
name/method number.

86 returns a list of event parameters for the current event. The first parameter is
always pEventCode containing an event code representing the event, fqr
example, evClick for a click on a button: a second or third event parameter
may be supplied which tells you more about the event

87 returns horizontal screen resolution in pixels per inch

88 returns vertical screen resolution in pixels per inch

89 returns the text for the current search calculation, or empty if no calcula
is set.

91 returns the decimal separator

92 returns the thousand separator

93 returns the parameter separator for calculations

94 returns the file class field name separator

101 returns the current printer name, and network path (empty if not conneg

104 returns the screen width in pixels.

Chapter 1—Function

S

Sys(n)

Description

105

returns the screen height in pixels.

106

(MacOS only) returns the application heap size in bytes (empty on othe
platforms).

107

(MacOS only) returns the current free memory in bytes in the applicatio
heap after adding memory used for discardable objects (empty on other
platforms).

=

108

(MacOS only) returns the current free memory in bytes in the applicatio

n

heap without adding memory used for discardable objects (empty on other

platforms).

109

returns the unused memory in bytes. OMNIS attempts to use this for so
and lists.

rting

110

returns the CPU type for PCs, Macs, and compatibles. For PC: 3 = 803
= 80486, 5 = Pentium. For Mac: 3 = 68030, 4 = 68040. For PowerMac:
= PowerPC 601, 259 = PowerPC 603, 260 = PowerPC 604.

86, 4
257

111

(MacOS only) returns the Apple ROM version: 121 = Sl, 124 = lIsi, Cl &
FX.

112

(MacOS only) returns 1 (true) if balloon help is available, O otherwise.

113

(MacOS only) returns 1 (true) if Publish and Subscribe is available, 0
otherwise.

114

(MacOS only) returns 1 (true) if Apple events are available, O otherwise|

115

returns the pathname of the folder containing the OMNIS executable,
including the terminating path separator.

120

(Windows 95 only) returns the width of the current dialog base-width un
based on the current system font; differs for Small and Large font mode

121

(Windows 95 only) returns the height of the current dialog base-width u
based on the current system font; differs for Small and Large font mode

t

h

130

returns the server name for the current session. For example, '‘Oracle v
[1.2 rO]' (empty if no server connected).

Brsion

131

returns the SQL error code, or O for no error.

132

returns the SQL error text for the current error code (empty if not availa

ble).

133

returns the number of columns for the current Select table.

134

returns the number of rows processed by the previous Insert, Delete, of
Update statement, returns 0 for most other statements.

135

returns the number of rows fetched from the Select table.

136

returns the name of the current cursor.

Functions

5

3

54

Sys(n) Description

137 returns the name of the current session.

138 returns the number of Result sets to come back from the server following a
Select. Returns 0 if no more results.

tan()

tan@ngle
Returns the Tangent of amglewhere theangleis in degrees (or radians if #RAD is true).

tan(45) ;returns 1

textsize()
textsizestring,fontname,pointsize,style,’'width’,’"depth’

Returns the width and depth in pixels of the specified text or stringstiihg parameter

can be a literal string or character variable with a maximum length of@&Bames the

name of the fontpointsizethe point size of the fonstyleis represented by an integer, that

is, 0 = Normal, 1 = Bold, 2 = Italic, 4 = Underline (or a combination of these: 3 would be
bold-italic, for example). Theidth anddepthparameters hold the returned values in pixels.
Thewidth anddepthparameters are integer variables to hold the width and depth values
returned; these must be in quotes. The function also returns a value of 0 to indicate the font
does not exist or an error occurred, otherwise 1 is returned indicating the text was found.

; Declare class vars TWIDTH (Integer), TDEPTH (Integer),
; MYTEXT (Character 255), FONTNAME (Character),
; FONTSIZE (Integer), and STYLE (Integer)
Calculate STYLE as 6 ;; Italic Underline
Calculate FONTNAME as "Arial"
Calculate FONTSIZE as 16
If textsize(MYTEXT,FONTNAME,FONTSIZE,STYLE, TWIDTH',TDEPTH")<>0
; do something depending on TWIDTH or TDEPTH
Else
; Font didn't exist or error occurred
End If

tim()

tim(numbef,timeforma}) converts the specifiedumberto a time determined by the
timeformatargument; #FT is used as the time formatting string if the second argument is not
specified. If the first argument is already a date/time, its format is changed to the format
given by the second argument.

Chapter 1—Functions

The #FT string defaults to 'H:N' and sm(numbe} takesnumberto be a number of
minutes. If you supply a format string such as 'M@mberwill be taken as a number of

seconds.
tim(1) ;; returns 00:01 when #FT is H:N (the default)
tim(950) ;; returns 15:50

tim(950,'H:N.S") ;; returns 00:15.50, that is 950 seconds

With a second argumertiin() is equivalent talat() with two arguments. The format string
determines how the conversion is carried out.

tot()

tot([listhame]fieldname¢

Returns the total of the stored valuedieitinamein a list specified bjisthname The
fieldnameargument must be a field stored in the list, not a constant or expression. If the
listhameargument is not specified the current list is used. This function does not work for
table based lists. fleldnameis not a numeric field, all values are converted to their
numeric equivalents before being accumulated, for example

tot(LIST2,COST)

; returns total of all COST field values stored in list LIST2

tot(COST)

; returns total of all COST field values stored in current list

tot(#LSEL)

; returns total number of selected lines in the current list

totc()

totc(Jlistname]expressioh

Returns the total of aexpressiorevaluated for a list specified bigthame If the listhame
argument is not specified the current list is used. This function does not work for table
based lists.

This is a more general version of tio&) function. Theexpressiornis totaled for the lines in
the specified list. For example, if listST1contains field NUMBER, the sum of the squares
of all the values of NUMBER in the list is:

totc(LIST1,NUMBER*NUMBER)
; hote that totc(LIST1,NUMBER) is the same as tot(LIST1,NUMBER)

Functions 55

56

trim()

trim(string[,leading=kTrue,trailing=kTrue,charactesspace_char])

Removes the specifiddadingand/ortrailing character from thstring. You specify the
character to be removed in tblearacterargument. If this is omitted the space character is
removed from the string by default.

trim(' ABCDE ") ;; returns 'ABCDE'
trim(*****ABCDE***** kTrue ,kFalse,™") ;; returns 'ABCDE*****'

truergb()

truergbgolor)

Converts the specifiecblor into its true RGB value and returns the result.

truergb(kRed) ;; returns RGB value for red
truergb(rgb(255,0,0)) ;; returns RGB value for red

updatenames|()
updatenamesleffield1] file[field2]...)
Returns a list of files and/or fields to be used in a SQL Update statement.

Theupdatenames(unction produces a "set" clause suitable for inclusion in a SQL Update
statement of the form

SET NAME1=@[NAME1], NAME2=@[NAMEZ2],....

If you do not want to update certain columns, you can eliminate some columns from the
update statement like this:

SQL: Update FTEL updatenames(FTEL,-FTNUM)

; sends: Update FTEL SET FTNAME = @[FTNAME]

For example, to update a range of fields from the FCLIENTS file use

SQL: Update Table updatenames(CNAME..CCITY) WHERE wherenames(CKEY)

And, to update all the columns in FCLIENTS except C_SEQ use

SQL: Update Table updatenames(FCLIENTS,-C_SEQ) WHERE
wherenames(CKEY)

Field name list

The general format of the field name list is to combine file and field names in a coma
separated list:

createnames(Filel,File2,field1,field3)

For all the fields in a file,

Chapter 1—Functions

Functions

(filename)

You can remove particular fields from the values clause by inserting a minus sign before the
field name. For example, to remove the sequence field FSEQ from the clause,

(Filel,-FSEQ)

Field names from a List

If you have a list variable with field names in the first column, you can include these in the
values clause using théstnamenotation, for example

Set current list LIST_NAMES

Define list {FileClass 1}

Build field names list {FileClass 1}

SQL: Create table TABLE createnames(*LIST_NAMES)

Qualified Field Names

If the Unique field names option is turned off, you can usél#jieldname/Q notation to
force OMNIS to qualify each field with the file name, that is, Filel.Fieldnamel,
Filel.Fieldname2, and so on.

(Filel /Q)

corresponds to the expression

(File1.FIELDNAME1,File1.FIELDNAME2,...)VALUES
(@[File1.FIELDNAME1],@[File1.FIELDNAMEZ],..)

upp()

uppstring)

Returns the upper case representationsifiag. Any non-alphabetic characters in the
string are ignored.

upp(‘Author’) ;; returns 'AUTHOR'
upp(‘oMnis’) ;; returns ‘OMNIS’
upp(mid('peripheral’),3,3) ;; returns 'RIP'

wherenames()

wherenames@omparisoffi, operator]field1],field2]...)
Returns a constraining Where clause to be used in a SQL statement.

wherenames(s used as a shortcut when creating Select, Update or Delete statements which
include the constraining Where clauses such as

Select * from Table WHERE Column = OMNIS_Value
; For example, WHERE KEY = [KEY]

57

58

wherenames(s most useful when there is a one-to-one correspondence between the name
of the remote table key and the OMNIS field name that defines the row. Thus the command

Perform SQL {Select * from Table Where wherenames('=",KEY) }

is expanded by OMNIS to
Select * from Table where KEY = @[KEY]

When you create methods which are called with arguments such as the Table name and
unique key, you can use square bracket notation to generalize the expression:

: Method 1

; Define parameter vars KEY and TABLE with Character type

; Call me with the name of the table and the key

SQL: Select * from [TABLE] WHERE wherenames('=', [KEY])

wherenames(akes three argumentscamparison(=, >=, <=, >, <, <> LIKE, NOT

LIKE,!=) which defaults to = when omitted, a logicgierator(AND, OR) defaulting to

AND, and &field name list. Both the comparison and the logical operator should be
enclosed in single quotes. The list of field names to be used in the Where clause can be
from an OMNIS list as described earlier. See the following examples:
wherenames('>="',PCODE)

: becomes

PCODE >= @[PCODE]

wherenames('<=',PCODE,PTOWN)
: becomes
PCODE <= @[PCODE] AND PTOWN <= @[PTOWN]

wherenames('>','OR',PCODE,PTOWN)

: becomes
PCODE > @[PCODE] OR PTOWN > @[PTOWN]

Chapter 1—Functions

FileOps External Functions
$changeworkingdir()

$changeworkingdigath)

Changes the current working directory to the directory nampdtim $changeworkingdir()

only switches between folders on the same drive, not between drives. The function returns
an error number, or zero if successful: see the FileOps function error codes at the end of this
section.

Switch sys(6)
Case ‘M’ ;; for MacOS

Do FileOps.$changeworkingdir("HD:Omnis:Examples') Returns
IVError

Default ;; for other platforms

Do FileOps.$changeworkingdir('c:\omnis\examples') Returns
IVError

End switch
OK message {Working directory is now: [FileOps.$getworkingdir()]}

$copyfile()

$copyfilefrom-path[,to-patH)

Copies the file specified iffom-pathto the new location ito-path You can use this

function to copy and rename the specified file to the same folder or a different location. The
file named into-pathshould not already exist. The function returns an error number, or zero
if successful: see the FileOps function error codes at the end of this section.

Do

FileOps.$copyfile('c:\omnis\test.txt','c:\omnis\examples\test.txt
") Returns IvError

; copies ‘test.txt’ to the ‘examples’ folder

Do
FileOps.$copyfile('c:\omnis\test.txt','c:\omnis\examples\test2.tx
t') Returns IvError

; copies and renames ‘test.txt’ to ‘test2.txt’ in the ‘examples’
folder

Do FileOps.$copyfile('c:\omnis\test.txt','c:\\omnis\test2.txt")
Returns IVError

; copies and renames ‘test.txt’ to ‘test2.txt’ in the same folder

FileOps External Functions 59

60

$createdir()
$createdinfath)

Creates the folder specifiedpath The folder named ipath must not already exist.
$createdir()does not create intervening folders, it only creates the last folder named in
path, therefore the intervening folders should already exist. The function returns an error

number, or zero if successful: see the FileOps function error codes at the end of this section.

Do FileOps.$createdir(‘c:\omnis\examples\extcomp\clock’) Returns
IVError

; creates the ‘clock’ folder assuming c:\omnis\examples\extcomp is a
valid path

$deletefile()
$deletefilepath)

Deletes the file or folder namedpath Files deleted witl$deletefile(Jare not moved into
the Recycled bin or Trash can, they are deleted irreversibly. You can delete a folder with
$deletefile() but only if it is empty. The function returns an error number, or zero if
successful: see the FileOps function error codes at the end of this section.
Do FileOps.$deletefile('c:\omnis\examples\extcomp\test2.txt')
Returns IvError
; deletes ‘test2.txt’ at 'c:\omnis\examples\extcomp’
Do FileOps.$changeworkingdir(‘c:\omnis') Returns IvError
Do FileOps.$deletefile(‘test3.txt") Returns IVError
; deletes ‘test3.txt’ at the current folder ‘c:\omnis’

Do FileOps.$deletefile(‘c:\omnis\examples\extcomp\clock') Returns
IVError

; deletes the ‘clock’ folder if empty

Chapter 1—Functions

$doesfileexist()
$doesfileexistgath)

Returns true if the file or folder namedgath exists. The function returns an error number,
or zero if successful: see the FileOps function error codes at the end of this section.
Do

FileOps.$doesfileexist('c:\omnis\examples\extcomp\clock\test2.txt
") Returns IvStatus

; IvStatus (Boolean) returns true if ‘test2.txt’ exists at
‘c:\omnis\examples\extcomp\clock’

Switch sys(6)
Case ‘M’ ;; for MacOS

Do FileOps.$changeworkingdir("HD:Omnis:Tutorial’) Returns
IVError

Default ;; for other platforms

Do FileOps.$changeworkingdir('c:\omnis\tutorial’) Returns
IVError

End switch
Do FileOps.$doesfileexist('mylib.Ibs") Returns IvStatus

; returns true if ‘mylib.Ibs’ exists at the current folder
‘c:\omnis\tutorial’

$filelist()

$filelist(include path,[what-info, filte]) Returndlist-name

Returns a list containing a directory listing of the files, folders, and/or volumes in the folder
specified inpath You specify what tincludein the file list by specifying any one or a
combination of the constants kFileOpslincludeFiles, kFileOpsincludeDirectories, and
kFileOpsIncludeVolumes (you + multiple constants). You can spetiéit-infois returned

by including any one or a combination of the kFileOpsinfo... constants, such as
kFileOpslInfoSize, kFileOpsinfoCreated, otherwise the file name only is returned in the first
column of the list. To return the long name under 32-bhit Windows you must specify
kFileOpsInfoFullName. The list returned $fflelist() can contain up to 11 columns always

in the following order, regardless of the info requested or the order you spedcifiyate

info constants.

FileOps External Functions 61

Col | Col name | what-info constant description

1 name kFileOpsinfoName name of the file

2 name83 kFileOpsinfoName83 DOS 8.3 name of the file

3 fullname kFileOpsInfoFullName 32-bit Windows long name of the file

4 readonly kFileOpsIinfoReadOnly file's read-only status

5 hidden kFileOpsinfoHidden file's hidden status

6 size kFileOpslInfoSize logical size of file

7 actualsize | kFileOpsinfoActualSize physical size of file on disk; same jas
logical size under Windows

created kFileOpsiInfoCreated date and time the file was created

9 modified kFileOpsIinfoModified date and time the file was modified

10 | creator kFileOpsinfoCreatorCode the file’s creator under MacOS, blank
under Windows

11 | type kFileOpsInfoTypeCode the file's type under MacOS, the file
extension under Windows

You can also apply filter which specifies the file type or extension of the files to be
included. For example, you can specify text files using “*.txt’ under Windows, or ‘TEXT’
under MacQOS. The function returns an error number, or zero if successful: see the FileOps
function error codes at the end of this section.
Do FileOps.$filelist(kFileOpsincludeFiles+

kFileOpslIncludeDirectories,'c:\omnis’) Returns IvList
; returns a list of the files and folders in the main OMNIS folder

Do FileOps.$filelist(kFileOpsIncludeFiles, ‘c:\omnis\external’,
kFileOpsinfoName+kFileOpsinfoCreated+kFileOpsinfoSize, *.dIl')
Returns IvList

; returns a list of DLLs in the OMNIS\EXTERNAL folder including the
name, size, creation date and time of each file

Do FileOps.$filelist(kFileOpsIncludeFiles, ‘c:\windows',
kFileOpsInfoSize+kFileOpsinfoFullName+kFileOpsinfoReadOnly+
kFileOpsInfoCreated) Returns IvList

; returns a list of files in the c:\windows folder
; including the fullname, read-only, size, creation date and time
; of each file

62 Chapter 1—Functions

$getfileinfo()

$getfileinfo(path,what-infd) Returndlist-name

Returns the file information for the file namedpath You can specifyhat-infois

returned by including any one or a combination of the kFileOpsinfo... constants, such as
kFileOpslInfoSize, kFileOpsinfoCreated, otherwise the file name only is returned in the first
column of the list. To return the long name under 32-bit Windows you must specify
kFileOpsInfoFullName. The list returned $getfileinfo()can contain up to 11 columns

always in the following order, regardless of the info requested or the order you specify the
what-infoconstants.

Col | Col name | what-info constant description

1 name kFileOpsinfoName name of the file

2 name83 kFileOpsinfoName83 DOS 8.3 name of the file

3 fullname kFileOpsInfoFullName 32-bit Windows long name of the file

4 readonly kFileOpsIinfoReadOnly file's read-only status

5 hidden kFileOpsinfoHidden file's hidden status

6 size kFileOpslInfoSize logical size of file

7 actualsize | kFileOpsInfoActualSize physical size of file on disk; same jas
logical size under Windows

8 created kFileOpsiInfoCreated date and time the file was created

9 modified kFileOpsIinfoModified date and time the file was modified

10 | creator kFileOpsinfoCreatorCode the file’s creator under MacOS, blank
under Windows

11 | type kFileOpsInfoTypeCode the file's type under MacOS, the file

extension under Windows

The function returns an error number, or zero if successful: see the FileOps function error
codes at the end of this section.
; declare IvFileList (List), lvPath, IvFileName, IvSize, IvCreated

all (Char)

Do sys(10) Returns IvPath ;; returns the name and path of the
current library

Do FileOps.$getfileinfo(lvPath,kFileOpsinfoName+
kFileOpsInfoCreated+kFileOpsiInfoSize) Returns IvFileList

; returns the name, size, creation date and time of the current
library

Do IvFileList.$redefine(lvFileName,lvSize,lvCreated)
Do Ist(IvFileList,1,lvSize) Returns IvSize
: returns the value in the Size column

FileOps External Functions 63

64

$getfilename()

$getfilenameggath[,prompt, filter, initial-directory)

Opens the standard Open file dialog for the current OS. You can specify the dialog title in
prompt and limit the file type by specifyingfdter. For example, you can specify text files
using “*.txt’ under Windows, or ‘TEXT’ under MacOS. You can also specifindial-
directoryfor the Open dialog. The name and full path of the file selected by the user is
returned in thgath parameter. Note the file is not opened as such, you must do something
with the file name and path returned. The function returns an error number, or zero if
successful: see the FileOps function error codes at the end of this section.

Do FileOps.$getfilename(lvPath,'Please locate the
OMNIS help file',"*.ohf','c:\omnis\help’) Returns IvError

; returns the name and full path of the file

; selected, e.g. ‘c:\omnis\help\omnis\omnis.ohf’

$getworkingdir()
$getworkingdir()
Returns the current working directory (no parameters required). The function returns an

error number, or zero if successful: see the FileOps function error codes at the end of this
section.

; declare IvWorkDir of Char type
Do FileOps.$changeworkingdir(sys(115)) Returns IVError
Do FileOps.$getworkingdir() Returns IvWorkDir ;; returns c:\omnis

$movefile()

$movefilefrom-path, to-path

Moves the file named ifrom-pathto the new location ito-path Use$copyfile()to copy a
file to a new location. The function returns an error number, or zero if succe see the FileOps
function error codes at the end of this section.

Do FileOps.$movefile(‘c:\omnis\examples\extcomp\extcomp.lbs',
‘c:\omnis\startup\extcomp.lbs’) Returns IvError
; moves the library ‘extcomp.lbs’ to the OMNIS\Startup folder

$putfilename()
$putfilenamegath [,prompt, filter, initial-directory)

Opens the Save as dialog for the current OS. You can specify the dialogprtieniot and
limit the file type by specifying élter. For example, you can specify text files using *.txt’
under Windows, or ‘TEXT’ under MacOS. You can also specifindial-directory for the

Chapter 1—Functions

Save dialog. The name and full path of the file entered by the user is retupatid Mote
the file is not saved as such, you must code a save method. The function returns an error
number, or zero if successful: see the FileOps function error codes at the end of this section.

Do FileOps.$putfilename(lvPath,'Save print file',*.rep’,
‘c:\omnis\examples') Returns IVError

; opens the Save dialog with the title 'Save print file'

; and returns the name and full path of file entered by the user

$rename()

$renamepldname, newnanme

Renames the file or folder namedaildinameto thenewnameThe function returns an error
number, or zero if successful: see the FileOps function error codes at the end of this section.
Do FileOps.$rename('c:\omnis\libs','c:\omnis\examples) Returns

IvError
; renames the ‘libs’ folder to ‘examples’

Do FileOps.$changeworkingdir('c:\omnis\datafile\odbc') Returns
IVError

Do FileOps.$rename(‘odbc.txt','readme.txt’) Returns IvError

; switches to the 'c:\omnis\datafile\odbc' folder and renames
‘odbc.txt’

$selectdirectory()

$selectdirectorydath[,prompt, initial-directory)

Opens the Select folder dialog for the current OS. You can specify the dialog title in

prompt and thenitial-directory. The name and full path of the folder selected by the user is
returned irpath The function returns an error number, or zero if successful: see the FileOps
function error codes at the end of this section.

; declare IvPath, IvWorkDir both (Char)
Do FileOps.$changeworkingdir(sys(115)) Returns IvError
Do FileOps.$getworkingdir() Returns IvWorkDir

Do FileOps.$selectdirectory(lvPath,'Select a folder',lvWorkDir)
Returns IVError

; switches the working dir to ‘c:\omnis’ and prompts the user to
select a folder

FileOps External Functions 65

66

$setfileinfo()

$setfileinfo(path, what-info, info-setting,.)

Sets file information for the file namedpath You specifywhat-infois to be changed

using one of the kFileOpslnfo... constants, although in practice you can change only the
read/write and hidden status of a file (kFileOpsinfoReadOnly or kFileOpsinfoHidden),
assuming you have permission. You specify kTrue or kFalse for the read-only or hidden
status in thénfo-settingparameter. You can supply a list of file info settings, as shown
below. The function returns an error number, or zero if successful: see the FileOps function
error codes at the end of this section.

Do FileOps.$setfileinfo('c:\omnis\meths.txt',

kFileOpsInfoReadOnly,kTrue,kFileOpsinfoHidden,kTrue) Returns
IVError

; sets the file ‘meths.txt’ to read-only and hidden

$splitpathname()

$splitpathnameyath,drive-name,directory-name,file-name,file-exterjsion

Splits the specifiegathinto drive-name, directory-name, file-nanamdfile-extensionThe
function returns an error number, or zero if successful: see the FileOps function error codes
at the end of this section.
; declare IvPath, IvDrive, IvDirName, IvFileName, IvFileExtn all

(Char) type

Do sys(10) Returns IvPath ;; returns the name and path of current
library

Do
FileOps.$splitpathname(lvPath,lvDrive,lvDirName,IvFileName,IvFile
Extn) Returns IvError

: under Windows, when [vPath="C:\OMNIS\EXAMPLES\EXTCOMP.LBS’
; IvDrive returns C:

: lvDirName returns \OMNIS\EXAMPLES\

; IvFileName returns EXTCOMP

: IvFileExtn returns .LBS

Do
FileOps.$splitpathname('c:\omnis',IvDrive,lvDirName,lvFileName,lv
FileExtn) Returns IvVError

; under Windows

; IvDrive returns C:

; IvDirName returns \

; IvFileName returns OMNIS
; IvFileExtn returns (Empty)

Chapter 1—Functions

FileOps External function Error Codes

The following errors are returned from the FileOps functions.

kFileOpsNoOperation 999| Operation not supported on this platform

kFileOpsUnknownError 998| Unknown error

kFileOpsOutOfMemory 12 Out of memory

kFileOpsParamError 1 Too few parameters passed

kFileOpsOK 0 No Error

kFileOpsDirFull -33 File/Directory full

kFileOpsDiskFull -34 Disk full

kFileOpsVolumeNotFound -35 Specified volume doesn't exist

kFileOpsDiskIOError -36 Disk I/O error

kFileOpsBadName -37 Bad file name or volume name (perhaps
zero-length)

kFileOpsFileNotOpen -38 File not open

kFileOpsEndOfFile -39 Logical end-of-file reached during read
operation

kFileOpsPositionBeforeStart -40| Attempt to position before the start of the
file

kFileOpsTooManyFilesOpen -42 Too many files open

kFileOpsFileNotFound -43 File not found

kFileOpsHardwareVolumelLock -44| Volume is locked by a hardware setting

kFileOpsFileLocked -45 File is locked

kFileOpsSoftwareVolumelLock -46| Volume is locked by a software flag

kFileOpsMoreFilesOpen -47 One or more files are open

kFileOpsAlreadyExists -48 | A file with the specified name already
exists

kFileOpsAlreadyWriteOpen -49 Only one access path a file can allow
writing

kFileOpsNoDefaultVolume -50 No default volume

kFileOpsVolumeNotOnline -53 | Volume not on-line

kFileOpsPermissionDenied -54 Permission denied.

kFileOpsReadOnlyFile -54 Read only file

kFileOpsVolumeAlreadyMounted -55 Specified volume is already mounted and

on-line

FileOps External Functions

67

kFileOpsBadDrive -56 No such drive number
kFileOpslinvalidFormat -57 | Volume lacks Macintosh-format directgry
kFileOpsExternalSystemError -58 External file system error
kFileOpsProblemDuringRename -59 Problem during rename
kFileOpsBadMasterBlock -60 Master directory block is bad; must re
initialize volume
kFileOpsCantOpenLockedFile -61 Cannot open a locked file
kFileOpsDirectoryNotFound -12Q0 Directory not found
kFileOpsTooManyDirOpen -121 Too many working directories open
kFileOpsCantMoveToOffspring -122 Attempted to move into offspring
kFileOpsNonHFSOperation -128 Attempt to do HFS operation on a nor}-
HFS volume
kFileOpslinternalSystemError -12¥ Internal file system error

FontOps External Functions

68

Sreplistfonts()
$replistfontsiist)

Populates the specifididt with the report fonts installed on your system, and indicates
whether or not they are truetype. The list must contain two columns, the first character type,
the second boolean. The function returns zero for success, less than zero for failure. Having
built the list you can search and manipulate the list using the standard list functions and
methods.

; declare Ivfonlist (List), Ivfont (Char), IvTrueType (Boolean)
Do Ivfonlist.$define(lvfont,lvTrueType)

Do FontOps.$replistfonts(lvfonlist)
; returns a list something like...

Arial True
Bookman Old Style True
Courier False
Garamond True
etc...

Chapter 1—Functions

; declare IVNumOfFonts, IvTrueFonts, IvNotTrueType all

; Number type, using Ivfonlist from above...

Do Ivfonlist.$linecount() Returns IvNumOfFonts ;; returns 64
Do tot(lvfonlist,IvTrueType) Returns IvTrueFonts ;; returns 52

Do totc(lvfonlist,IvTrueType=kFalse) Returns IvNotTrueType ;;
returns 12

$reptextheight()

$reptextheightont-naméfont-table-indeypoint-siz¢, font-style,extra-pointy

Returns the height in inches/cms (depending on $usecms preference) of the specified report
font. You specify the font using either tf@t-nameor font-table-indexWhen called with

a font table index, $reptextheight() uses the report font system table of the current library
which can contain up to 15 fonts numbered 1 to 15. You specifyoihésizeof the font,

and you can includefant-styleconstant and a number @ftra-points

Do FontOps.$reptextheight('Times',144) Returns IvHeight

; returns 2.24 ins / 5.69 cms

Do FontOps.$reptextheight('Times',144,,24) Returns IvHeight
; returns 2.57 ins / 6.54 cms

$reptextwidth()

$reptextwidthétring, font-namgont-table-indejypoint-siz¢, font-styld)

Returns the width in inches/cms (depending on $usecms preference) required to draw the
string using the specified report font. You specify the font using eithebtitenameor
font-table-indexWhen called with a font table index, $reptextwidth() uses the report font
system table of the current library which can contain up to 15 fonts numbered 1 to 15. You
can include dont-styleconstant, or combination of styles.

Do FontOps.$reptextwidth('Hello WWW','Arial',24) Returns IvWidth
:returns 1.83 ins / 4.66 cms

Do FontOps.$reptextwidth('Hello WWW','Arial',24,kBold+kltalic)
Returns IvWidth

s returns 1.85ins/4.71 cms

Do FontOps.$reptextwidth('Hello WWW',2,72,kBold+kltalic) Returns
IvWidth

; returns 5.40 ins / 13.72 cms ;; note Courier is at position 2 in
#WIRFONTS

FontOps External Functions 69

$winlistfonts()

Swinlistfonts(ist)

Populates the list with the window fonts installed on your system, and indicates whether or
not they are truetype. The list must contain two columns, the first character type, the second
boolean. The function returns zero for success, less than zero for failure. Having built the
list you can search and manipulate the list using the standard list functions and methods.

; declare Ivfonlist (List), Ivfont (Char), IvTrueType (Boolean)
Do Ivfonlist.$define(lvfont,lvTrueType)

Do FontOps.$winlistfonts(lvfonlist)

; returns a list something like...

Arial True
Bookman Old Style True
Chicago False
Courier False
Garamond True
etc...

; declare IvFirstFont, IvLastFont of Char type
Do Ist(Ivfonlist,1,lvfont) Returns IvFirstFont ;; returns Arial

Do Ist(Ivfonlist,Ivfonlist.$linecount,lvfont) Returns IvLastFont ;;
returns Wingdings

$wintextheight()

$wintextheightfont-naméfont-table-indeypoint-siz¢,font-style,extra-poin¥

Returns the height in screen units of the specified window font. You specify the font using
either thefont-nameor font-table-indexWhen called with a font table index,

$wintextheight() uses the window font system table of the current library which can contain
up to 15 fonts numbered 1 to 15. You specifygbit-sizeof the font, and you can include
afont-styleconstant and a number eftra-points

Do FontOps.$wintextheight('Courier',72) Returns IvHeight

: returns 96 under Windows

Do FontOps.$wintextheight('Courier',72,,24) Returns IvHeight
: returns 128 under Windows

Do FontOps.$wintextheight(2,36) Returns IvHeight

; returns 48 under Windows ;; note Courier is at position 2 in
#WIWFONTS

Chapter 1—Functions

$wintextwidth()

$wintextwidthetring, font-namgfont-table-indeypoint-siz¢, font-styld)

Returns the width in screen units required to displagttieg using the specified window

font. You specify the font using either tf@nt-nameor font-table-indexWhen called with

a font table index, $wintextwidth() uses the window font system table of the current library
which can contain up to 15 fonts numbered 1 to 15. You can incliae-atyleconstant,

or combination of styles.

Do FontOps.$wintextwidth('Hello WWW','Courier',36) Returns IvWidth
: returns 243

Do FontOps.$wintextwidth('Hello WWW','Courier',36,kBold+kltalic)
Returns IvWidth

: returns 276
Do FontOps.$wintextwidth('Hello WWW',5,36) Returns IvWidth
; returns 240 ;; note System font is at position 5 in #WIWFONTS

FontOps External Functions 71

Chapter 2—Hash
Variables

This chapter describes the hash variables available in OMNIS. They are arranged in
alphabetical order.

About the Hash Variables

A hash variablas an OMNIS variable with global scope that you can use to temporarily
store data. The name comes from the fact that all hash variables begin with the "#"character,
the hash sign.

To select a hash variable

® Press F9/Cmnd-9 to display tBatalog, and select thelash tab
®* In the left-hand list, click on the appropriate group of hash variables

® In the right-hand list, double-click on the hash variable you require

Hash Variables

72

#??77?

#2727 is displayed by OMNIS when a reference is made to a field which does not exist. This
can occur when you delete a field name from a file class or when a window class is copied
into your library that references non-existing fields (for example, the corresponding file
class has not been copied). This is a "special” variable with zero length, hesrweat

hold data.

#1, #2,..,#60

Numeric variables numbered from #1 to #60 for storing positive and negative values.
Initialized to zero, their values are retained when you close your library or open a new one.
You can reinitialize them in your library usif@iear range of fields #1 to #60

You can use the notatiom#Dx with numeric fields to limit the number of decimal places
displayed. The value ofn can be from 1 to 60 corresponding to the sixty numeric variables

Chapter 2—Hash Variables

Hash Variables

available. The value ofcan be in the range 0 to 15, that is, values are displayed with zero

to 14 decimal places. For example, #3D2 will display the number held in the variable #3 to
2 decimal places. The value of a numeric variable is always stored as a real number.
Changing the decimal places only affects the way the number is displayed and not its stored
value. All numeric variables are set to zero decimal places when OMNIS starts, and the
number of decimal places for a particular variable is unaffected by changing to a different
library from within OMNIS.

You can use the notation #nnF to display #nn as a floating decimal; again, this does not
affect how the value is stored.

When comparing hash variables with file class fields, you must used{f)dunction, for
examplef rnd(#2,2) = FIELD will ensure an exact comparison, assuming FIELD is a
Number 2 dp type.

#ALT

True if the Alt key (or Option key under MacOS) is held down.

#CLIST

Read-only string variable which stores the name of the current list. The eight built-in lists
are held as the strings "#L1" to "#L8".

#COMMAND

True if the Cmnd key (or Ctrl key under Windows) is held down.

#CT

Read-only numeric variable which stores the current tick count since the system was booted;
the tick count is incremented 60 times per second.

#CTRL

True if the Ctrl key (or Cmnd key under MacOS) is held down.

#D

Read-only string variable which is set to the operating system date when OMNIS starts, and
changed during the operation of OMNIS only if the system date is changed using the
Control Panel. #D is actually a Date and Time data type but is made to look like a Short
date using #FD. Thus, the calculataat(#D,#FDT)returns the full datandtime.

73

74

For example, you can place the date on a report using the following text object (the square
brackets will force the date to print).

Date: [#D]

The following example uses #D to initialize month and year library variables.

Calculate LV_CurrentMonth as dtm(#D)
Calculate LV_CurrentYear as dtcy(#D)

#ENTER

True if the Enter key is pressed when an evOK event is reported to a control method.

#ERRCODE

Numeric variable which reports the error number generated by a method. For example,
running theSet main filecommand without a valid file name causes an error with
#ERRCODE set to 108139. Warning error codes are between 1 and 99,999 while fatal
errors are greater than 100,000.

Warning error codes are also represented by constants; seentantchapter in this
manual.

#ERRTEXT

String variable which reports the error text generated by a method. For example, running the
Set main fil&command without a valid file name causes an error with #ERRTEXT set to
"Set main file command with no valid file name."

The following method attempts to start the session named IBESSION If it cannot be
found, #ERRCODE is set and the user is alerted.

Start session {[LV_SESSION]}
If #ERRCODE
OK message {Error: [fERRCODE]}//[#ERRTEXT]}
; says “Error: 8739”
; “The SQL DAM specified cannot be found”
; do prompt for valid session name
End If

#F

Numeric variable which stores the status of the OMNIS flag; it carubénumeric value
of 1) orfalse(numeric value of 0). There are several commands that test the value of the
flag, such a#f flag true, If flag false, Until flag true, While flag trueand so on.

Chapter 2—Hash Variables

Hash Variables

#FD

String variable used to specify the display format of a Short date field value. The default
value of #FD depends on the language version of OMNIS you are using. For example,
European versions of OMNIS set #FD to 'D m Y', but you can assign it a new value using
the following date formatting symbols.

Y Year (89) d Day (12th)

y Year (1989) W Day of week (5)

C Century (19) w Day of week (Friday)
M Month (06) V Short day of week (Fri)
m Month (JUN) E Day of year (1-366)

n Month (June) G Week of year (1-52)
D Day (12) F Week of month (1-6)

You can see the effect of different values of #FD in the following table, which shows the
display of a fixed date, JUN 12 97, for various values of #FD.

#FD Date display

mDCY JUN 12 1997
M/DIY 06/12/97
MDY 061297
D-m-y 12-JUN-1997

#FDP

Numeric variable which specifies the format used for display or string conversion of a
floating point number; it does not affect how the values are stored internally by OMNIS.
#FDP defaults to 12 for a newly selected library file.

If #FDP is positive, then floating numbers are displayed with #FDP digits in decimal format

if possible or otherwise in 'e' format. For example, if #FDP equals +2, then 45.456 is
displayed as 45, and 999 is displayed as 1.0e3. In the case of 999, there are too many whole
numbers to be accommodated by the decimal format, and the figure is rounded and
displayed in 'e' format. Note that 9.9 x2liflecomes 1.0 x 0

If #FDP is negative, then floating numbers are always displayed with eabs(iyFDP)
digits in 'e' format. For example, if #/DP equals -2, then 45.456 is displayed as 4.5e+01,
that is, 4.5x10.

75

76

#FDT

String variable used to specify the display format of a Long date data type, that is, a Date
and time field value.

The default value of #FDT depends on the language version of OMNIS you are using. For
example, European versions of OMNIS set #FDT to 'D m Y H:N:S', but you can assign it a
new value using the following date formatting symbols.

Y Year (89) H Hour (0..23)

y Year (1989) h Hour (1..12)

C Century (19) N Minutes

M Month (06) S Seconds

m Month (JUN) s Hundredths

n Month (June) A AM/PM

D Day (12) V Short day of week (Fri)
d Day (12th) E Day of year (1-366)
W Day of week (5) G Week of year (1-52)
w Day of week (Friday) F Week of month (1-6)

For example, you can use the following commands in a method to set the format of #FDT
temporarily.
; #FDT is curently ‘D mY H:N:S’
Begin reversible block
Calculate #FDT as'm D Y'
End reversible block
; do something with dates...
: when method ends #FDT is reverted

The Catalog (F9/Cmnd) contains a list of the codes as given above.

You can see the effect of different values of #FDT in the following table, which shows the
display of a fixed date JUN 12 97, at a fixed time 15:45.

#FDT Date and Time display
mD CY H:N.S.s JUN 12 1997 15:45.00.00
DmYH:NA 12 JUN 97 3:45 PM
M/D/Y H.N 06/12/97 15.45

D-m-19Y 12-JUN-1997

Chapter 2—Hash Variables

Hash Variables

You can create up to 30 date field subtypes with preset formatting strings using the
File>>Preferences>>Change Date Formatsienu item. The date types are stored in the
library format #DFORMS.

#FT

String variable which specifies the display format of a Short time field value. The default
value of #FT is 'H:N', but you can assign it a new value using the following date formatting
symbols.

H Hour (0..23)

h Hour (1..12)
N Minutes

S Seconds

S Hundredths
A AM/PM

You can see the effect of different values of #FT in the following table, which shows the
display of a fixed time, 15:45, for various values of #FT.

#FT Time display

H:N 15:45
hNA 345 PM
H:N.S.s 15:45.00.00

#L

Numeric variable which stores the line number of the current line in the current list. If there
is no current line or the current list is empty #L is set to zero. The value of #L is updated
when a different line in the list is made current. #L is unchanged by list commands such as
Merge lists, Sort listandAdd line to list A Calculate #L as..command is the normal way

to change #L within a method. In additi@earch listsearches the list and sets #L to the

first line number which matches the search condition and loads the values from the selected
line into the CRB. If you wish, you can set #L to a value greater than #LN or less than
0.Note #L is equivalent to the notation Listname.$line.

For example, you can implemenRapeatoop that steps thugh the contents of the list:
the loop repeats until #L, the current line, reaches the end of the list, #LN.

77

78

: Define and build the list
Set current list LISTNAME
Calculate #L as 1
Repeat
Load from list
; do something with each list line
Calculate #L as #L + 1
Until #L > #LN

In aFor each line in listoop, #L is automatically incremented.

#L1,...#L8

Global list variables that let you create list structures available to all libraires. To use one of
these lists, you must make it the current list using the com@eincurrent lisend define
the fields for the columns usim@gfine list

For example, the following method uses #L2 to set the columns for a graph.

Set current list #L.2

Define list {#S2}

Add line to list {'Sales'}

Add line to list {Expenses'}

Add line to list {'Projections'}

Set graph attribute ('W_Graph',1,'$a2d_labellist_column'#L2)

Note #L1 to #L8 retain their definitions and values between libraries. You can clear them
using theClear range of fields #L1 to #L&mmand.

#LM

Numeric variable which stores the maximum number of lines to be stored in a list. Each list
stores its own #LM value which defaults to 100,000,000. By changing the value of #LM,
you can limit the number of lines held in a list. The number of lines you can store is also
limited by the available memory. When lines are added to a list you can test value of the
flag; a flag false indicates that either #LM or your memory has been exceeded.

#LN

Numeric variable which stores the current number of lines in the current list. Each list stores
its own value of #LN. Its value is changed as lines are added to or deleted from the list. You
can specify its value witBet final line numberYou can use this command to truncate the

list or add blank lines to the end. You cannot give #LN a negative value or set it greater
than #LM. Note #LN is equivalent to the notation Listname.$linecount.

Chapter 2—Hash Variables

For example, you can use #LN to set the End value of a list For loop

: Define and build the list
Set current list LISTNAME
For each line in list from 1 to #LN step 1
Load from list
; do something with each list line
End For

#LSEL

Read/write boolean variable which stores the selection status of current line in the current
list. #L.SEL=1 if the current line (#L) of the current list (#CLIST) is selected. Its value is
changed by th&elect list line(s)Deselect list line(sfommands and by the user clicking on
the list field.

#MU

Read-only numeric variable which stores the current workstation number (#MU=0 when
OMNIS is running in single-user mode). When in multi-user mode, OMNIS automatically
assigns a number to each workstation. The numbers are not necessarily contiguous and ofter
jump in multiples of 255 depending on the serial numbers of the workstations currently
logged on. For data files on PC hard disks which are non-sharable , #MU is set equal to 0.
When a user quits using a data file, the #MU number is made available for a new user.

TheTest for only one useommand is used to check if anyone else is accessing a data file.

#NULL

Returns a NULL value. You can use it to assign a null value to field or variable. A null
value is not the same as zero (for numeric and Boolean data types) or "empty" (for non-
numeric or Boolean data types). When a field has a value of null, it is completely unknown
as to what that value is, and there is therefore no way to operate on that field value.

#OPTION

True if the Option key (or Alt key under Windows) is held down.

#P

Numeric variable which stores the current page number during the printing of a report
instance. #P will return the number of pages in a subtotal and/or totals report section.

You can place #P on a report either as a field or within square brackets in text strings, for
example, "Page [#P]".

Hash Variables 79

80

#PI

Read-only numeric variable which stores the value of pi.

#R

Numeric variable which stores the current number of records printed during the printing of a
report instance. You can place #R on a report either as a field or within square brackets in
text strings, for example, "Record number [#R]". The value of #R in a report subtotal
section is set to the number of records printed in that particular subtotal section.

#RAD

Local boolean variable which controls whether the angles for trigopnometric functions are in
degrees or radians; the default is degrees since #RAD is initialized to false. However, if you
set #RAD to true, angles are in radians.

#RATE

Numeric variable which stores the initial guess of interest rate with which an annuity is
calculated. #RATE defaults to 0.05 for a newly selected library file.

#RETURN

True if the Return key is pressed and an evOK event is reported to a control method
terminating enter data.

#S1,..,.#S5

Global string variables that let you store string values up to 10 million (10,000,000)
characters long. Initialized as "empty", their values are retained when you close your library
or open a new one. You can initialize them usbhepr range of fields #S1 to #S5

#SHIFT

True if the Shift key is held down.

#SUBFLD

String variable which stores the name of the report subtotal field which triggered that
subtotal. Thumam(#SUBFLDYeturns a string containing the name of the subtotal field and
[#SUBFLD] placed in the subtotal section returns the subtotal value.

Chapter 2—Hash Variables

Hash Variables

#T

Read-only string variable which is set to the operating system time, that is, the value of #T
is updated from the system clock each time it is used in a format. #T is actually a Date and
Time data type but is made to look like a Short time data type using #FT. Thus
dat(#T,#FDT)returns the full timend date.

#UL

Read-only numeric variable which stores the current user level in the password security
system. In a range 0 to 8, a value of O represents the master user level.

81

Chapter 3—Events

This chapter describes the standard event messages reported in OMNIS and their
parameters. In this chapter the event messages are arranged in groups according to the
object that generates or receives the event.

About the Event Codes

82

Almost all user actions in OMNIS generateearent When the event occurs ament

messagés sent to the object in which the event occurred. These messages are intercepted
by your event handling methods. A message may contain one oew@reparameters,

and first parameter always containseanent codeepresenting the event. All the event
parameters are prefixed with the letter “p”, and all event codes are prefixed with the letters
“ev”. For example, a standard mouse click on a window field generates a message with a
pEventCode event parameter containing an evClick.

An event message may contain a second or a third event parameter. These parameters tell
you more about the event. For example, a click on a list field generates a message with
pEventCode containing evClick, and a second event parameter pRow containing the number
of the row clicked on. You can use the event codes and parameters in your event handling
methods. For example

On evClick :; method behind a list field
IfpRow=1 ;; if row 1 was clicked on
: Do this...
End If
If pPRow =2 ;7 if row 2 was clicked on
; Do that...

Also you can test pEventCode in your event handling methods.

On evAfter,evBefore ;; method behind field
; Do this code for both event messages
If pEventCode = evAfter
; Do this for evAfter events only
End If
If pEventCode = evBefore
; Do this for evBefore events only
End If

Chapter 3—Events

To select an event code in an event handling method

®* Enter the On command in the method editor and click on the required event code from
the list provided in the method editor, e.g. On evClick

or to enter an event in your code, or multiple events
® Press F9/Cmnd-9 to display tBatalog, and select thEventstab

* In the left-hand list, click on the appropriate group of events

® In the right-hand list, double-click on the event code you require

To select an event parameter for the current event

®* Enter the On command in the method editor plus the required event code, e.g. On
evClick

®* Press F9/Cmnd-9 to display tBatalog, and select the'ariables tab

® In the left-hand list, click on thEvent parametersgroup of events

The right-hand list now contains event parameters relevant to the current event code. To
enter a parameter into your code

®* Double-click on the event parameter

About the Event Codes 83

Event Parameters

The following event parameters are available.

84

Event Parameter

Description

pCellData

the data in the grid cell

pChannelNumber

the DDE channel number

pClickedField a reference to the field clicked on
pClickedwWindow a reference to the window clicked on
pCommandNumber | internal number of the menu option selected
pContextMenu a reference to the menu instance
pDdeValue the new value received using DDE

pDdeltemName

the DDE data item name used to address the received

value

pDragField a reference to the dragged field

pDragType the field type of the dragged field
pDragValue the actual value of the data being dragged
pDropField a reference to the field being dropped on
pEventCode the type of event, contains an event constant
pHorzCell the column selected in a grid field

plsVertScroll

true if the scrolltip is for the vertical scroll bar

pKey

the letter key pressed

pLineNumber

the line number of a list field

pMenuLine line number of option selected in a custom menu
pNextCode the event code to follow an evAfter

pNodeltem a reference to the tree list node clicked on
pRow the number of the selected row in a grid
pScrollPos the new scroll position following a scroll
pScrollTip the string in the scrolltip

pSelectionCount

the number of selected objects in a modify report field

pSystemKey the system key pressed
pTabNumber the tab number selected for a tab pane
pVertCell the row selected in a grid field

Chapter 3—Events

Field Events

The following event messages are sent to the cuaegetfield ($ctarget).

Event Code

Generated when...

Event Parameterg

evAfter

the cursor is about to leave the current fie
a field oftens gets evAfter, but remains the
focus field and many more evAfter than
evBefore events are generated; the secon
event parameter is the reason the field is
about to loose the focus (e.qg.
evWindowClick, evMouseDown,
evCloseBox, evOk, evTab, evShiftTab), a
for evWindowClick, the third event
parameter is a reference to the field or
window being clicked. Discarding this ever
causes the current field to remain the targ
field (however, this may not prevent a
window or library from closing)

dhEventCode,
pClickedField,
pClickedWindow,

dpMenuLine,
pNextCode,
pCommandNumber
pRow

nd

—

bt

evBefore

the cursor is about to enter the current fig
Discarding this event has no effect since t
event has already ocurred

IdbEventCode,
n@Row

evClick

a click on buttons, lists, other controls or t
window background (but not entry fields);
generated when an evMouseDown occurs
no drag operation occurs and an evMouss
is still within the field’s boundary

n@EventCode,
pRow

Up

evDoubleClick

a double-click on lists, other controls and
window background; generated in respong
to an evMouseDouble

thEventCode,
epRow

evOpenContextMend

a context menu has been opened over t
field, also reported for windows; the secon
parameter is an item reference to the cont
menu instance

n@EventCode,
dpContextMenu,
exiClickedField

evSent

the contents of a field gets updated by a

DDE or AppleEvent message; the second
and third parameters are for DDE only ang
contain the new value received using DDE
and the DDE data item name used to add

pEventCode,

pDdeValue,

pDdeltemName,
,pChannelNumber

€SS

the received value

Field Events

85

Grid Events

86

The following event messages are generated when a grid field is changed in some way by

the user.

Event Code

Generated when...

Event Parameters

evCellChanged

the cell has changed; perhaps the user hag
tabbed. The second and third parameters gi
you the position of the cell, and the fourth
parameter contains the data in the cell

pEventCode,

v@HorzCell,

pVertCell

evCellChanging

the cell that is about to change. The secon

i pAdentCode,

third parameters give you the position of the| pHorzCell,
cell, and the fourth parameter contains the dat/ertCell,
in the cell pCellData
evExtend the complex grid has been expanded, that is pEventCode,
extra lines have been added pLineNumber,
pRow
evRowChange the row in the complex grid has changed pEventCode,
pLineNumber,
pRow
evScrollTip the grid field is being scrolled pEventCode,
plsVertScroll,
pScrollPos,
pScrollTip

Chapter 3—Events

Headed List Box Events

The following event messages are generated for headed list box fields only.

pressed return or clicked away frorf
the edit field; discarding this event
leaves the field in edit mode; the

second and third parameters are th
line and column numbers of the

selected cell; the fourth parameter
the new text entered, which you cal
transfer to the list

Event Code Generated when... Event Parameters

evHeadedListEditFinished a cell in a headed list box has bgepEventCode,
edited; the second and third pLineNumber,
parameters are the line and column pColumnNumber
numbers of the selected cell

evHeadedListEditFinishing| the user has entered a new value aiventCode,

npLineNumber,

pColumnNumber,
pNewText
e

is

=)

evHeadedListEditStarting

sent on the first click in the selec
cell which puts the cell into edit
mode; discarding this event prever
editing; the second and third

parameters are the line and column

numbers of the selected cell

tquEventCode,
pLineNumber,
tpColumnNumber

evHeaderClick

a header button has been clicked
the second parameter contains the

quEventCode,
pColumnNumber

column number

Headed List Box Events

87

Icon Array Events

88

The following event messages are generated for icon array fields only.

Event Code

Generated when...

evlconDeleteFinished

the delete has occurred, after all
selected lines in the list have been
deleted

pEventCode

eviconDeleteStarting

the delete is pressed; discarding thi
event prevents the delete occurring

spEventCode

evlconEditFinished

the user has finished editing; the se
parameter contains the line number o
the list that has been edited

cqrieventCode,
f pLineNumber

evilconEditFinishing

the user enters a new value by hittin
return or clicking away from the edit
field; discarding the event leaves the
field in edit mode; the second
parameter contains the line number o
the list being edited; the third is the
new text entered

gpEventCode,
pLineNumber,
pNewText

eviconEditStarting

the first click in the selected cell whi
puts the cell into edit mode; discardin
the event prevents editing; the secon
parameter contains the line number o

cipEventCode,
ppLineNumber
)
f

the list that is to be edited

Chapter 3—Events

Event Parameters

Key Events

The following event messages are generated when the user presses a key. Key events are
generated only if the $keyevents property is enabled. Discarding these events prevents the

key being handled by the field.

parameter holds a constant containing the

This event occurs before any processing of {
key has been carried out

system key being pressed (see the Keyboard
constants) or zero if a normal key is pressed.

Event Code Generated when... Event Parameters
evKey any key is pressed; the second event paranep&tventCode,

holds the letter of the key being pressed or Zepiey,

if a system key is pressed; the third event pSystemKey

he

evShiftTab the shift-tab keys is pressed

pEventCode

evTab the tab key is pressed

pEventCode

Modify Report Field Events

The following event messages are generated for modify report fields only.

Event Code Generated when...

Event Parameters

evSelectionChanged the user selects another object in th
field; the second parameter is the
number of objects selected

e pEventCode,
pSelectionCount

Key Events

89

Mouse Events

The following mouse event messages are sent to a field or window background. Mouse and
right-button mouse events are generated only if the $mouseevents and $rmouseevents
properties are enabled. Discarding any of these events (except evMouseDouble and
evMouseDown) has no effect since the event has already occurred.

90

5

Event Code Generated when... Event Parameter
evCanDrop a drag operation is started to test whether thepEventCode,
field or window containing the mouse can pDragType,
accept a drop. Discarding this event prevents pDragValue,
drop onto this field or window pDragField
evDrag the mouse is held down in a field and a drag| pEventCode,
operation is about to start. Discarding this evemDragType,
cancels the drag pDragValue
evDrop the mouse is released over the destination fieldEventCode,
or window at the end of a drag operation; the| pDragType,
second event parameter is a reference to the| pDragValue,
object being dropped pDragField
evMouseDouble the mouse is double-clicked in a field or pEventCode
window. Discarding this event ensures that ng
double-click is generated
evMouseDown the mouse is pressed and held down in a figipBventCode
window. Discarding this event ensures that ng
drag action happens and no click is generatef
(but evMouseUp is still reported)
evMouseEnter the mouse enters a field or leaves a field andpEventCode
enters the window background
evMouseleave the mouse leaves a field or enters a field frgnpEventCode
the window background
evMouseUp the mouse is released over the field or windpwEventCode
which had the evMouseDown
evRMouseDoublel the right-button is pressed pEventCode
evRMouseDown | the right-button is pressed pEventCode
evRMouseUp the right-button is released pEventCode
evWillDrop the mouse is released at the end of a drag | pEventCode,
operation. Discarding this event prevents the| pDragType,
evDrop message from being generated pDragValue,
pDropField

Chapter 3—Events

Scroll Events

The following event messages can occur for a field or window provided they have a vertical
or horizontal scroll bar as appropriate.

Event Code Generated when... Event Parameters
evHScrolled the field or window is scrolled horizontally pEventCode
evVScrolled the field or window is scrolled vertically pEventCode

Status Events

Tab Pane and Tab Strip Events

A tab pane or tab strip can have a number of tabs. The following event message is generated

Scroll Events

The following event messages are reported for fields only. They reflect the current status of
a field, and are generated only if the $statusevents property is enabled. Discarding any of

these events has no effect since they report the status of a field.

Event Code Generated when... Event Parameters

evDisabled a field is disabled either by notation or by OMNIS pEventCode

evEnabled a field is enabled either by notation or by OMNIS pEventCode

evHidden a field is hidden either by notation or by OMNIS pEventCode

evShown a field is made visible either by notation or by | pEventCode
OMNIS

when the user selects one of the tabs.

Event Code

Generated when...

Event Parameters

evTabSelected

a tab has been selected; the second event pEventCode,
parameter is the number of the tab selected] pTabNumber

91

Tree List Events

A tree list object can have a number expandable and collapsable nodes which the user clicks
on. The following event messages are generated when the user expands or collapses a node
or clicks on a node, or edits a node name.

Event Code Generated when... Event
Parameters

evTreeCollapse a node is about to be collapsed; theoEventCode,
second event parameter is a referengNodeltem
to the node

evTreeExpand a node is about to be expanded; th@EventCode,
second event parameter is a referengNodeltem
to the node

evTreeExpandCollapseFinishgd a node has expanded or collapspgEventCode
sent after an evTreeCollapse or
evTreeExpand message

evTreeNodelconClicked a node has been clicked; the secondpEventCode,
parameter is a reference to the nodepNodeltem

evTreeNodeNameFinished a node name change has finishefd ptieentCode,
second parameter is a reference to|tipdNodeltem,
node; the third parameter contains theNewText
new text

evTreeNodeNameFinishing a node name is about to change; thiepEventCode,
second parameter is a reference to [tfNodeltem,
node; the third parameter contains fheNewText
new text

92 Chapter 3—Events

Window Events

The following event messages are sent to the current top window ($cwind). Discarding the
majority of these events has no effect since the event has already ocurred. For example, you
can detect an evMinimized for a window, but discarding it has no effect since the user will

have already minimized the window.

Event Code

Generated when...

Event Parameters

evCancel

the user has clicked the Cancel buttor
equivalent keys; $ctarget gets evCance
then $cwind (evAfter is not reported wif
evCancel). Discarding this event preve
enter data being terminated

pEventCode

S5 —

nts

evClose

the top window is closed, sent to the
window just after $canclose message h
been sent (so evClose is an alternative
$canclose); $ctarget gets an evAfter (if
it's on the window being closed) then
$cwind gets evClose. Discarding this
event prevents the window from closing
but forcing OMNIS to quit closes
everything

pEventCode
as
to

evCloseBox

the user has clicked the close box of t
top window; $ctarget gets evAfter then
$cwind gets evCloseBox. Discarding th
event stops the window closing

neEventCode

is

evCustomMenu

the user has selected a line in a custg
menu; $ctarget gets evAfter then $cwin
gets evClick; the second event parame
is the line number of the option selecte
Discarding this event prevents the
method for the selected line from being
executed

npEventCode,
dpMenuLine
ter

.

evMaximized

the window is maximized

pEventCode

evMinimized

the window is minimized

pEventCode

evMoved

the window is moved

pEventCode

evOK

the user has clicked the OK button or |
pressed the equivalent key; $ctarget ge
evAfter then $cwind gets evOK.
Discarding this event prevents enter da
being terminated

gzEventCode
ts

ta

Window Events

93

94

Event Code

Generated when...

Event Parameters

evOpenContextMend

a context menu has been opened 0v¢
field, also reported for windows; the
second event parameter is an item
reference to the context menu instance

crpEeentCode,
pContextMenu

evResized

the window is resized

pEventCode

evRestored

the window is restored to its normal s

ze pEventCode

evStandardMenu

the user has selected a line in a stan
menu or clicks one of the standard
buttons (Next, Edit, etc.); $ctarget gets
evAfter then $cwind gets evClick; the
second event parameter is an internal
number representing the menu option
selected. Discarding this event prevent
the standard menu action from being
performed

HgnEiventCode,
pCommandNumber

l°2)

evToTop

the window has come to the top.
Discarding this event has no effect sing
the event has already occurred

pEventCode
e

evWindowClick

the mouse is clicked on another windo
$ctarget gets evAfter, then $cwind gets
evWindowClick, then the new window i
brought to the top and (if it keeps bring
to front clicks) may get an
evMouseDown; the second event
parameter is a reference to the window
clicked on. Discarding this event
prevents the clicked window from

WpEventCode,
pClickedWindow

5

coming to the top

Chapter 3—Events

Chapter 4—Methods

Window Events

Every object in OMNIS has certain characteristics that determine exactly how it looks and
behaves. These characteristics are defined by the oljjeapsrtiesandmethods.

Properties are things like color, size, type, and visibility, while methods are pieces of code
contained in the object that perform some action when you send the object the appropriate
message. You can manipulate the properties and methods of an object or OMNIS itself
using thenotation OMNIS’ own hierarchical programming language. Before using the
OMNIS notation you should read tReogramming Methodshapter in th©MNIS
Programmingmanual.

Object properties are not listed in this chapter since the vast majority of them are self-
explanatory. You can view the properties of any object using the Property Manager, and the
notation as a whole using the Notation Inspector. You can turn on Help Tips or short
descriptions for the properties or methods by Right-clicking in the Property Manager and
Notation Inspector. Using the same context menu in the Property Manager or Notation
Inspector you can show Runtime properties and Methods for the current object.

Graph objects, properties, and methods are described @MhdS Graphsnanual
available in PDF on the OMNIS CD.

$canomit() and $canassign()

Notation strings are often long, but you can shorten them by omitting certain intermediate
objects. The $canomit() method for the intermediate object returns true if you can leave the
property out of an expression. In practice however $canomit() is true for the following
objects only: $root, $extobjects, $constants, $clib, $hashvars, $libs, $tvars, $datas, $cvars,
$files, $lvars, $vals. Therefore in the following expression

Do $root.$clib.$windows.MyWindow.$closebox.$assign(kTrue)
you can omit $root and $clib leaving

Do $windows.MyWindow.$closebox.$assign(kTrue)

In addition, the $canassign() method tells you whether you can use the $assign() method to
assign a value to an object. For example

Do $cclass.$forecolor.$canassign() Returns #F

returns true if $cclass is a window class, which means you can assign a value to the
forecolor, otherwise for some other classes this example would return false.

95

Common

96

Notation

[notation.JOBJECTmethod

All objects have common properties, such as $name, and some objects have the following

methods.

Method Description

$assign() NTATION.PROPERTY.$assign(value) assigns the specified value to the
property; the value and syntax depends on the object you are assigning to

$att() NOTATION.OBJECT.$att(n) returns the nth attribute for the objeltgs not

include custom methods)

$canassign(

NTATION.PROPERTY.$canassign() returns true if the $assign() method
implemented for the property, that is, you can change the value of the
property; $canassign() is true for most properties, but depending on th
current context it may be false for certain properties

is

e

$canomit()

NDTATION.PROPERTY.$canomit() returns true if you can omit the proper
from the notation; the properties with $canomit set to true are: $root, §
$libs, $datas, $constants, $hashvars, $tvars, $cvars, $lvars, $vals, an
$files

y
clib,

$chain()

$chain(n) returns the nth object in the reference chain for a reference

variable

Chapter 4—Methods

$root

$root

Notation $rootmethod

The $root object is the object at the base of the OMNIS object tree. It has the following

methods.

Method Description

$redraw() $redraw(bSetcontents=kTrue,bRefresh=kFalse) redraws the contents
and/or refresheall window instances in the context of $root; note windpw
instances and window objects also contain the $redraw() method and
redraw the object depending on the current context

$exechelp() | $exechelp([cinstName], [cWindowTitle], [cHelpFolder],

[cDocumentName], [cTopic]) opens the OMNIS help system, where
clnstName specifies the optional instance name of the help window;

cWindowTitle specifies the optional window title; cHelpFolder specifieg a

help folder name, overriding the folder named in $helpfoldername;
cDocumentName specifies the name and partial path of the help topid
displayed, if empty help searches on the topic specified in cTopic; cTq

to be
pic

specifies the title or beginning of a topic title. If cDocumentName is empty
and a topic title is specified, help attempts to locate the topic. If no togic is

found, the help window enters the given text into the word search entry

field and displays any topics found. If both cDocumentName and cTopic

are empty, the contents list is displayed

97

Group

Notation [notation.]JANYGROUPMethod

A group is a special type of object that contains a number of related objects. Some groups
are static, while others change dynamically at runtime, such as the $iwindows group which
contains all the window instances currently open. The group methods perform some action
on the group as a whole, or return some information about the group or an individual object

in the group.

Method Description

$count() $count() returns the number of objects in a group, for example,
Do $components.$count() Returns lv_xcompnum returns the numbey of
external components currently available in your system

$makelist() $makelist(coll[,col2]...) lists the members of a group, for example,

Do $components.$makelist($ref.$name) Returns Iv_xcomplist buildg a
list of the external components currently available in your system, or|
Do $iwindows.$makelist($ref.$name) Returns Iv_winlist builds a list pf
window instances currently open in the order that they appear on the
screen

$appendlist() | $appendlist(list,coll[,col?]...) appends the members or contents of|a
group to the specified list

$insertlist() $insertlist(list,line,col1[,col2]...) inserts the members or contents of p
group into the specified list at the specified line

$sendall() $sendall(message[,condition]) sends a message to all objects in a group;
for example, $cwind.$objs.$sendall($ref.$visible.$assign(kFalse)) hifes

all the fields on the current window; $sendall() returns the number of
objects which received the message; the return value of the message sent
to an individual object is discarded

$first() $first() returns a reference to the first object in a group, for example,
Do $iwindows.$first() Returns Iv_topwin returns a reference to the tap
window

$next() $next(object) returns the next object in a group

$findname() $findname(object) returns a reference to the specified object in a gfoup

\d

$findident() $findident(ident) returns the object with the specified unique numeri
identifier from within a group. Not applicable for all groups

98 Chapter 4—Methods

Method

Description

$add()

$add(paraml[,param?2]...) inserts a new object into a group and returns

an item reference to the new object created; you can use $add() to g

reate

libraries, classes, window objects, list columns, and so on; its parameters

depend on the group and object being created; usually the Property

Manager indicates the parameters required, or you can use the notgtion

[Notation.]JANYGROUP.$add.$desc to return the parameters.

For example, you can create a new window class in the current librafy

using Do $clib.$windows.$add('MyWin') Returns iWinRef; this create

Sa

window class called MyWin and returns a reference to it in the variable

iWinRef. Having created the new class you can add objects to it usir

$add(), such as Do iWinRef.$objs.$add(kEntry,20,20,25,200) Returns
iObjRef; this creates an entry field and returns a reference to it in the

variable iObjRef; note you specify the size for window objects in pixq
and report object in inches or cms depending on the current units.
You can also create new objects in the current window instance usir
$cinst, such as Do $cinst.$objs.$add(objtype[,params...]). For exam
you can create an external component using

Do $cinst.$objs.$add(kComponent,'Omnisicn Library','Omnisicn

Control',IvTop,lvLeft,IvHeight,lvWidth) Returns IvSubRef; this creates

an OMNIS icon control with the size and position specified in IvTop,
IvLeft, IvHeight, IvWidth.

$remove()

g

S,

g
ple,

$remove(object) removes the object from a group (it does not delete the

object from the disk)

$addafter()

$addafter(object) inserts a new object after the specified object. Npt

applicable for all groups, e.g. doesn't work for $cols in a list

$addbefore()

$addbefore(object) inserts a new object before the specified object.

applicable to all groups, e.g. doesn’t work for $cols in a list

Group

99

Not

OMNIS Modes

Notation [$root.]$modedvethod

The OMNIS modes control the overall behavior or mode of your system. You can view the
OMNIS modes group in the Notation Inspector under $root. The $modes group contains the
following methods.

Method Description

$welcome() $welcome(library-mode) controls the opening and running of|the
Welcome library, a constant: kWelcomeNewLibrary,
kWelcomelastLibrary, kWelcomeToggleStop

$dotoolmethod() | $dotoolmethod(tool-constant,method-name[,parameters])
executes a public method within one of the OMNIS tools; tool
constant can be: kEnvToolAdhoc, KEnvToolCms,
kEnvToolMethods, kKEnvToolSql, kEnvToolVcs

OMNIS Preferences

The $root.$prefs group contains the following method(s).

Method Description

$serialize() | $serialize([bGenericLogo=kTrue,cTitle,iBitmaplD]) opens the OMNIS
serialization dialog; you can pass your own title and bitmap, otherwige if
bGenericLogo is kFalse (the default) the OMNIS logo is displayed, of if
kTrue a generic Serialize logo is displayed; if you pass a title it replages
the one in the dialog window title

100 Chapter 4—Methods

Printing Devices

The following methods are available for some printing devices only. $cando() returns true if
the device supports the method.

Method Description
$open() opens the device ready for printing or transmitting text or data
$close() closes the device if the device is open

$canclose() | returns true if the device can be closed; if the device was opened by
calling $open(), it usually returns true, but if the device was opened Via a
print job, and the job is still in progress it returns false

$sendtext() | $sendtext(cText, bNewLine, bFormFeed) sends the text in cText to|the
device. All normal character conversion takes place. If bNewLine is true,
the device will advance to a new line or an end of line character is sent. If
bFormFeed is true, a new page is started or a form feed character is| sent.
Data is sent in the same order as the parameters

$senddata() | $senddata(xData[,xDatal]...) sends cData in binary format to the device.
No character conversion takes place unless the data is of type kCharacter.
If you specify more than one parameter the data is sent in individual
packets

$flush() flushes the device. In the case of the File device, you can call $flushi) to
make sure all data is written to disk. $cando() returns true for all devices
that support either $senddata() or $sendtext()

$getparam()| $getparam(nParamNumber) returns the value of the specified parameter
for a custom device

$setparam()| $setparam(nParamNumber,Value[,nParamNumber,Value]...) sets the
value(s) of the specified parameter(s) for a custom device

Printing Devices 101

Window Class

Notation [$root.$libs.LIBRARYNAME.]$windows. WINDOWNAMEMethod

All classes that you can instantiate and those that support inheritance, such as window
classes, contain the following methods. For example, the $open() method opens the
specified window class.

Do $windows.WindowName.$open(‘InstanceName’,kWindowCenter) Returns

WinRef

; returns an item reference to the instance created

Method

Description

$makesubclass()

Classname.$makesubclass([cLibraryname.]cNewclassname) creptes a

new subclass of the class in the current or specified library

Sisa()

Class|instancename.$isa(rClass) returns true if the class or inistapce

a subclass dthe specified class

$open()

Classname.$open([cInstancename][,iLocation][,parameters]) creates
an instance of the specified window class and returns a reference to

the instance; you can specify the instance name, or $open(*') wil
assign a unique instance name in the form ClassName_Number,

otherwise the simple class name is used; you can send parametegrs to
the $construct() method of the instance, and for window classes you

can specify the initial location or position of the window instance

$openonce()

Classname.$openonce([cInstancename][,iLocation][,parameters]
creates an instance of the specified window class, but only if one
not already exist, excluding subwindows; in the case of a window
this method brings the window instance to the top if it already exi

does

3

5tS;

$openonce() returns a reference to the instance either newly created

or already open, just like the $open() method

102

Chapter 4—Methods

Menu Class

Notation [$root.$libs.LIBRARYNAME.]$menus.MENUNAMBMethod

All classes that you can instantiate and those that support inheritance, such as menu classes,
contain the following methods. For example, the $open() method opens or installes the
specified menu class.

Do $menus.MenuName.$open(‘InstanceName’) Returns WinRef
; returns an item reference to the instance created

Method Description

$makesubclass() | Classname.$makesubclass([cLibraryname.]JcNewclassname) creptes a
new subclass of the class in the current or specified library

$isa() Class|instancename.$isa(rClass) returns true if the class or inistapce
a subclass dthe specified class

$open() Classname.$open([cInstancename][,iPosition][,parameters]) cregtes
an instance of the specified menu class and returns a reference fo the
instance; you can specify the instance name, or $open(*') will assign
a unigue instance name in the form ClassName_Number, otherwise
the simple class name is used; you can send parameters to the
$construct() method of the instance, and for menu classes you can
specify the initial position of the menu instance on the menubar, The
default position is the right-most position on the main menu bar

$openonce() Classname.$openonce([cInstancename][,iLocation][,parameters]
creates an instance of the specified menu class, but only if one does

not already exist, excluding instances that are submenus; $openpnce()
returns a reference to the instance either newly created or already
open, just like the $open() method

Menu Class 103

Toolbar Class

Notation [$root.$libs.LIBRARYNAME.]$toolbars. TOOLBARNAMBMethod

All classes that you can instantiate and those that support inheritance, such as toolbar
classes, contain the following methods. For example, the $open() method opens or installs
the specified toolbar class.

Do $toolbars.ToolbarName.$open(‘InstanceName’) Returns WinRef
; returns an item reference to the instance created

Method Description

$makesubclass() | Classname.$makesubclass([cLibraryname.]JcNewclassname) creptes a
new subclass of the class in the current or specified library

$isa() Class|instancename.$isa(rClass) returns true if the class or inistapce
a subclass dthe specified class

$open() Classname.$open([cInstancename][,DockingArea][,parameters])
creates an instance of the specified toolbar class and returns a
reference to the instance; you can specify the instance name, or
$open(*") will assign a unique instance name in the form
ClassName_Number, otherwise the simple class name is used; yjou
can send parameters to the $construct() method of the instance, |and
for toolbar classes you can specify the initial docking area for the
toolbar instance, the default being the top toolbar

$openonce() Classname.$openonce([cinstancename][,DockingArea][,parameters])
creates an instance of the specified toolbar class, but only if one|does
not already exist, excluding window toolbars; $openonce() returns a
reference to the instance either newly created or already open, just
like the $open() method

104 Chapter 4—Methods

Report Class

Notation [$root.$libs.LIBRARYNAME.]$reports. REPORTNAMBethod

All classes that you can instantiate and those that support inheritance, such as report classes
contain the following methods. For example, the $open() method instantiates the specified

Report Class

report class.

Do $reports.ReportName.$open(‘InstanceName’) Returns WinRef
; returns an item reference to the instance created

Method

Description

$makesubclass()

Classname.$makesubclass([cLibraryname.]cNewclassname) creptes a

new subclass of the class in the current or specified library

Sisa()

Class|instancename.$isa(rClass) returns true if the class or inistapce

a subclass dthe specified class

$open()

Classname.$open([cInstancename][,parameters]) creates an ins
of the specified report class and returns a reference to the instan

ance
ce,

you can specify the instance name, or $open(*) will assign a unigue
instance name in the form ClassName_Number, otherwise the simple

class name is used; you can send parameters to the $construct(
method of the instance

$openonce()

Classname.$openonce([cinstancename][,parameters]) creates a
instance of the specified report class, but only if one does not alr
exist, and returns a reference to the instance either newly create
already open, just like the $open() method

105

-

pady
d or

Task Class

Notation [$root.$libs.LIBRARYNAME.]$tasks. TASKNAMBMethod

All classes that you can instantiate and those that support inheritance, such as task classes,
contain the following methods. For example, the $open() method opens the specified task

class.

Do $tasks.TaskName.$open(‘InstanceName’) Returns WinRef
; returns an item reference to the instance created

Method

Description

$makesubclass()

Classname.$makesubclass([cLibraryname.]cNewclassname) creptes a

new subclass of the class in the current or specified library

Sisa()

Class|instancename.$isa(rClass) returns true if the class or inistapce

a subclass dthe specified class

$open()

Classname.$open([cInstancename][,parameters]) creates an ins
of the specified task class and returns a reference to the instance
can specify the instance name, or $open(*") will assign a unique

ance
; you

instance name in the form ClassName_Number, otherwise the simple

class name is used; you can send parameters to the $construct(
method of the instance

$openonce()

Classname.$openonce([cInstancename][,parameters]) creates ap

instance of the specified task class, but only if one does not already
exist, and returns a reference to the instance either newly createf or

already open, just like the $open() method

Table Class

Classes that support inheritance, such as table classes, contain the following methods. Note
that table classes do not contain the $open() or $openonce() methods, rather a table instance
is created automatically when you create a list based on a schema, query, or table class.

106

Method

Description

$makesubclass()

Classname.$makesubclass([cLibraryname.]cNewclassname) [c

reates

a new subclass of the table class in the current or specified library

Sisa()

Class|instancename.$isa(rClass) returns true if the class or insfance

is a subclass of the specified table class

Chapter 4—Methods

Object Class

Object classeket you define your own structured data objects containing your own
variables and methods. All classes that you can instantiate and those that support
inheritance, such as object classes, contain the following methods.

Object Class

Method

Description

$makesubclass()

Classname.$makesubclass([cLibraryname.]JcNewclassname)
a new subclass of the class in the current or specified library

creates

ance

$isa() Class|instancename.$isa(rClass) returns true if the class or ins
is a subclass of the specified class
$new() $new(parml[,parm2]..) creates an object instance dynamically;

parameters are passed to the object instance's $construct() me

the
hod;

when the new instance is assigned any existing instances of thg class

are replaced; for example

Do
$clib.$objects.objectclass.$new(parml,parmz2,...)
Returns objectvar

for the object instance

where parameters parml and parm2 are the $construct() paranreters

107

List Variable

108

Notation [notation.]LISTNAME Method

A list variable contains multiple values of fields and variables. OMNIS lets you define and
build as many lists of data as memory allows. A list defined from a schema, query, or table
class has the properties and methods of a table instance.

A list variable with the smart list property enabled contains two listsidhmal list

containing the list data, and thistory listcontaining the change tracking and filtering
information. The history list has one row for each row in the normal list, together with a row
for each row that has been deleted. Defining a list by any mechanism, or adding columns to
a list, discards the history list, and turns off change tracking.

You can use the following methods against any type of OMNIS list. The history list
$savelist.. and $revertlist.. methods are only available for smart lists. Note also that list
variables have some group methods, such as $add() and $remove(); these are listed below
and are described in the context of manipulating lists.

In addition, row variables behave in exactly the same way as list variables, except that some
methods do not apply to row variables since they have only one line.

Method Description

$define() $define(varl[,var2]...) clears the current list definition and defines
the list with the specified variables or fields as columns; you can
use fields in a no-data file, but they must be quoted in the
parameter list

$definefromsqlclass() | $definefromsglclass(sqlclass[,cSchemaColl,cSchemaCol2,...
[,,constructor params]) defines a list or row variable from a query,
schema, or table class and instantiates a table instance; for lists
based on a schema class, or a table class referencing a schema
class, all columns are used to define the list unless you pass a list
of schema columns as a subset of those in the schema class;|the
constructor parameters are passed to the $construct() method of
the table instance (note the empty parameter before the
constructor params)

$copydefinition() $copydefinition(list or row variable[,constructor params) clears
the list and copies the definition but not the data from anotherlist
or row variable; if the source list has a file class the new list wjll
also have a file class; the parameters are passed to the $construct
method

$redefine() $redefine(varl[,var2]...) redefines the names and data types|of the
list columns, but does not change or delete existing data in thg list

Chapter 4—Methods

List Variable

Method

Description

$clear()

$clear() clears the list data; the list definition is unchanged

$search()

$search(calculation[,bFromStart=kTrue, bOnlySelected=kFalse,
bSelectMatches=kTrue, bDeselectNonMatches=kTrue]) searches

a list using the specified calculation; this method has the same

function as the Search list command. The search calculation

use $ref.colname or list_name.colname to refer to a list column.

With bSelectMatches or bDeselectNonMatches the first line

number whose selection state is changed is returned (or O if o

selection states are changed), otherwise the first line number
which matches the selection is returned (or 0 if no line is foun

an

>

).

This method does not change any CRB values, the current row is

changed if neither bSelectMatches or bDeselectNonMatches
used

$sort()

$sort(columnl,bDescending=kFalse[,column2,

bDescending=kFalse]...) sorts the list on the specified columnis

sort fields; you can specify up to 9 columns including the
bDescending flag for each (which defaults to kFalse meaning

are sorted ascending). The columns can be column names of]

calculations using $ref.colname or list_name.colname. For
calculated sorts, the calculation is evaluated for line 1 of the |
determine the comparison type (Character, Number or Date)

cols

ist to

$merge()

$merge(list or row,bByName,bSelectedOnly) merges the two
if you specify a row it is treated as a single row list. If you spe

ists;

Cify

bByName, columns are matched by name rather than by numper;

if you specify bOnlySelected only selected lines in the source
are merged

list

$savelistdeletes()

$savelistdeletes() removes all kRowDeleted rows from the
list, and also from the normal list if $rowpresent is kTrue

nistory

$savelistinserts()

$savelistinserts() changes all kRowlInserted rows to
kRowUnchanged, and sets the old contents of those rows to
current contents. It does not change $rowpresent

he

$savelistupdates()

$savelistupdates() changes all kRowUpdated rows to
kRowUnchanged and, for all rows, sets the old contents to th
current contents; this does not change $rowpresent

D

$savelistwork()

$savelistwork() executes the $savelist... methods

$revertlistdeletes()

$revertlistdeletes() changes all kRowDeleted rows to
kRowUnchanged or kRowUpdated (depending on whether th
contents have been changed); for these rows $rowpresent is
kTrue

a)

set to

109

110

Method

Description

$revertlistinserts()

$revertlistinserts() removes any inserted rows from both the
normal and history list

$revertlistupdates()

$revertlistupdates() changes all kRowUpdated rows to

kRowUnchanged and, for all rows, the current contents are s¢t to

the old contents; this does not change $rowpresent

$revertlistwork()

$revertlistwork() quick and easy way to execute the $revertlist...

methods

$includelines()

$includelines(row status) includes rows of a given status,
represented by the sum of the status values of the rows to be|
included. Thus 0 means no rows, kRowUnchanged +
kRowDeleted means unchanged and deleted rows, and kRov
means all rows, irrespective of status

—

All

Sfilter()

$filter(search-calculation) applies a filter to a smart list; this

method restricts the list to only those rows which match the search

calculation; for example, Do LIST.$filter (COL1 = ‘10") will onl
display lines where COL1 is 10

Sunfilter()

$unfilter(level) removes a filter or filters from a smart list

Srefilter()

$refilter() reapplies all current filters to a smart list

$remove()

$remove(rLine|iLineNumber|kListDeleteSelected|kListKeepSe|
ed) deletes the specified line or lines from the list; note you ca
specify a reference to a list line, a line number, or you can ren
all selected or non-selected lines; if you specify 0, the current
is removed (kTrue is returned if successful)

lect
1l
hove
line

$first()

$first(bSelectedOnly=kFalse, bBackwards=kFalse) sets the

current row of the list to the first row or first selected row and
returns a reference to that row; if there are no further rows theg
current row is set to zero

$next()

$next(list row or row number, bSelectedOnly=kFalse,
bBackwards=kFalse) sets the current row of the list to the nex
row or next selected row and returns a reference to that row;
there are no further rows the current row is set to zero and no
is returned. If you specify O for the list row it is taken as the
current row

thing

$add()

$add(collvalue[,col2value]...) inserts a row at the end of the
with the specified column values. If you use $add() without
parameters any columns which correspond to CRB fields are
loaded with the current CRB values

ist

$addbefore()

$addbefore(list row or row number,collvalue[,col2value]...)

Chapter 4—Methods

Method Description

inserts a row before the specified row with the specified column
values.. If you specify 0, $row is used

$addafter() $addafter(list row or row number,collvalue[,col2value]...) inserts
a row after the specified row with the specified column valuesj If
you specify 0, $row is used

List Column
Notation [notation.]JLISTNAME.$cols. COLNUMBERMethod

The columns of a list are contained in the $cols group. You can access a column using its
column number.

Method Description

$clear() clears the data for the column for every row in the list, the column
definition is left unchanged, for example, LIST.$cols.coll.$clefar()
clears coll

$removeduplicates()| $removeduplicates(bSortnow,bignorecase) removes lines with
duplicate values in the column. If bSortnow is true the list is
sorted on that column, otherwise you must sort the list using
$sort() before applying this method. If bignorecase is true the|case
of character values is ignored when making the comparison. The

number of rows removed is returned

$count() returns the number of rows for the column, including rows thgt
have empty or null values

$total() returns the total for a column containing numeric data

$average() returns the average for a column containing numeric data

$minimum() returns the minimum value in a column containing numeric dgta

$maximum() returns the maximum value in a column containing numeric dpta

List Variable 111

List Row

Method Description

$assigncols() | $assigncols(collvalue[,col2value]...) replaces the column values for the
row with the specified values; if you use $assigncols() the values of any
columns which correspond to CRB fields are loaded with the current
CRB values

$assignrow() | $assignrow(row, by name) assigns the column values from the row
specified by the first parameter into the row on a column by column
basis; if you specify ‘by name’ the columns are matched by name,
otherwise by column number

$clear() $clear() clears the value of all the columns for the row

$loadcols() $loadcols(variablel[,variable2]...) loads the column values for the row
into the specified variables; if you use $loadcols() the values of any
columns which correspond to CRB fields are loaded into the CRB figlds

112 Chapter 4—Methods

External Components

Notation [$root.]$components.LIBNAMBethod

You can access automation objects using the $cmd() method via the $components group. If
an error occurs, for example the construction of an automation object fails, #ERRCODE
and #ERRTEXT can be inspected to determine the error.

Method Description

$cmd() $cmd(parmi[,parm2]...) issues a component-specific command to the
component; it lets you interact with components such as the Automation
component, without needing a component object in a window or report
instance; not all components support this method.
For example, you can control the JavaBean component using $cmd() gnd
one or more parameters, such as
Do $components.JavaBean.$cmd("GetPaths", List)
populates the specified list with the Java Bean search paths.
Using the Automation component and the $cmd() method you can launch a
browser window, for example
Set reference iRef to

$components.Automation Library
Do iRef.$cmd("$createobject”,

"InternetExplorer.Application.1")

Returns pDISPapp
Do iRef.$cmd(pDISPapp,"Navigate()","www.MyWebSite")
Do iRef.$cmd(pDISPapp,"Visible") Returns #1
If #1=0

Do iRef.$cmd(pDISPapp,"Visible" ,kTrue)
End If
This method sets an item reference to the automation component, constructs
an instance of InternetExplorer and returns a unique descriptor to the new
object; the descriptor is a character string of 15 chars and a unique pointer to
an Automation dispatch interface, which you pass to other calls related|to
the object; the method then invokes the Navigate() method and gets the
current value of the Visible property; if the object is not visible, the method
sets the visible property to true

External Components 113

Method Lines

You can manipulate method lines using the following method(s).

Method Description

$modify() $modify([iLine=1]) opens the method editor at the specified line in the
method; the default is line 1; this method is not available in the runtime
version of OMNIS

Instance

Notation [notation.]INSTANCENAMEMethod

All class instances, except table instances, have the following methods.

Method Description

$canclose() $canclose(blsquit) is sent to an instance just before any action which may
cause it to be destructed; blsquit is passed as kTrue when the $cancloge()
message is sent as a result of a Quit OMNIS event

$close() $close(instancename) closes or destructs the instance (if it can be closed)
and returns true if the instance is closed. $close() calls $canclose() andl if it
returns true the instance is closed

114 Chapter 4—Methods

Report Instance

Report Instance

Notation [$root.]$ireports. REPORTINSMethod

Report instances have the following methods.

Method

Description

$openjobsetup()

$openjobsetup() opens the job setup dialog, and can be called

immediately after $open() for a report; if it returns kFalse (the user
has canceled), the report instance should be closed without printing

any data

$printrecord()

$printrecord() is sent to the report instance bipriné record
command. The default handler prints the record section

$printtotals()

$printtotals(section) is sent to the report instance when a suthtaI
break has been triggered or the report is about to be terminated;

section is the highest level subtotal to be printed (a constant such as

kSubtotal5 or kTotals), if section is not a subtotal or totals secti
only the subtotal header sections are printed. The default hand

prints the correct subtotal sections followed by the corresponding

subtotal header sections

$printsection()

$printsection(section) is sent when a section is printed; sectior
one of the constants (kRecord, kTotals, etc.) or a reference to 4
section field on the report instance. The default handler prints t
section positioned according to $sectionstart, $sectionend and
positioning mode for the section . For a subtotal or total section
current field values are temporarily reset to those which were

DN
er

is
|
ne

the
the

current when $printsection for a detail section was previously called

$accumulate()

$accumulate(kSection) accumulates the subtotals and totals;
sent to the report instance during the printing of a record sectio
and the current field values into the most rapidly changing subt
$accumulate(section) is sent from $printtotals(section) to
accumulate the current level subtotals into the next level of
subtotals; you can use $accumulate() instead of
$accumulate(kSection)

tis
n
ptals.

$checkbreak()

checks if a subtotal break is required by comparing the curren
values with those when it was last called; returns a constant:
kSubtotall to kSubtotal9 or kNone if no subtotal break is requir

t field

ed

$skipsection()

causes any further processing of the current section to be skip
you call this during $print() for a field, no further fields will be
printed for that section, so positioning sections count as new

ped; if

o

sections and are not skipped if the previous section was skippe

115

116

Method Description

$startpage() $startpage(page number) is sent to a report instance when another

header section to the page. Calls to $startpage() for a large nu

$endpage() $endpage(page number) is sent to a report instance just befo
page is ended (the next page is to be started or the page is abg

have been started

$ejectpage() $ejectpage(page number) is sent to a report instance just befq

default handler ejects the page; pages are ejected in order so
ejecting a page also ejects all earlier pages. Calling $ejectpage
number) will start and end all pages before they are ejected.
$ejectpage() without a parameter ejects all pages which have b
ended and not ejected

$endprint() $endprint() is sent to the report instance b¥tteeprintcommand
and in other circumstances when the report is terminated. The
default handler prints the final subtotals and totals sections and
ejects all the remaining pages

Report Instance Object
Notation [$root.]$ireports. REPORTINST.$objs.REPORTOBéthod

A field or object in a report instance has the following methods.

Method | Description

$print() | $print(position,value) is sent to the field or section when it is to be print
you specifyvaluethis data is printed, otherwise the normal field value is
printed (when the default processing calls $print() the value parameter
up): positionis the starting position for the field or section, if no position
specified the field is printed at $sectionend. When $print() is called for g
section the position has already taken account of the positioning mode

page is started. The default handler adds the page header sec{on to

of pages will result in large memory use. Starting a page always
ends the previous page (only one page is started and not ende)

page is ejected. You cannot add to a page once it is ejected; the

the page: for the first page, the default handler also adds the report

ber

ea
ut to

be ejected). The default handler adds the footer section to the page.
Calls to $endpage() for a large number of pages will result in lajge
memory use. $endpage() without a parameter ends all pages which

rea

(page

een

ed. If

s set
5

1
of the

section, $sectionstart and $sectionend

Chapter 4—Methods

Table Instance

Notation [notation.]SQLLISTMethod

A table instance is created when you create a list or row variable based on a schema, query,
or table class. The following methods let you populate and change a list based on a sq|l

class, and apply changes to the data on the server. Note that some of these methods execute
SQL in the context of the current OMNIS session.

Method Description

$select() $select([cText,...]) issues a SELECT statement to the server; it ¢an
take one or more arguments, either literals or variable values which
are concatenated into one text string and appended to the SELECT

$selectdisticnt() | $selectdistinct([cText,...]) issues a SELECT DISTINCT statemet to
the server; it can take one or more arguments, either literals or
variable values which are concatenated into one text string and
appended to the select statement

$fetch() $fetch(iFetchcap[,bAppend=kFalse]) fetches the next iFetchcap
number of rows from the server; if bAppend is kTrue the fetched
data is appended to the list, otherwise if kFalse or omitted the ligt is
cleared before the fetch; parameters do not apply for row variahles,
since the current data in the row is always replaced

$sqlerror() $sqlerror(iErrortype,iErrorcode,cErrortext) called when an error
occurs while executing $select(), $fetch(), $update(), $delete(),
$insert(), or $do... methods; performs default processing for the
error unless you override $sqglerror() with your own method to
handle SQL errors

$createnames() | $createnames() returns a text string suitable for using with a
CREATE TABLE statement

$selectnames() | $selectnames() returns a text string, containing a comma separted
list of column names, suitable for using with a SELECT statement

$insertnames() | $insertnames([cRowName]) returns a text string suitable for using
with an INSERT statement, in the form (coll,...,colN) VALUES
(@[cRowName.col1],...,@[cRowName.colN]) where coll...colN jare
the names of the columns in the row variable; if cRowName is
omitted $cinst is used in bind variables

Table Instance 117

Method Description

$updatenames() | $updatenames([cOldrowName][,cRowName]) returns text suitabple
for using with an UPDATE statement, in the form SET
coll=@[cRowName.col1], ...,coIN=@[cRowName.coIN] where
coll...colN are the names of the columns in the row variable; if
cRowName is omitted $cinst is used in bind variables

$wherenames() | $wherenames([cOperator][,cRowName]) returns text suitable fo
using as a WHERE clause, in the form WHERE
coll=@[cRowName.col1] AND ,..., AND
colN=@[cRowName.colN] where coll...colN are the names of the
columns in the row variable; if cRowName is omitted $cinst is used
in bind variables

—

$doinserts() $doinserts() inserts list rows with status kRowlInserted into the
server database

$doupdates() $doupdates([bDisableWhere=kFalse]) updates list rows with stgtus
kRowUpdated in the server database; when bDisableWhere is frue it
prevents $doupdates from appending a WHERE clause to the
UPDATE statement

$dodeletes() $dodeletes([bDisableWhere=kFalse]) deletes list rows with statiis
kRowDeleted from the server database; when bDisableWhere is true
it prevents $dodeletes from appending a WHERE clause to the
DELETE statement

$dowork() $dowork([bDisableWhere=kFalse]) executes the $dodeletes(),
$doupdates(), $doinserts() methods in that order; it passes the yalue
of bDisableWhere to the $dodeletes() and $doupdates() methods

$undoinserts() $undoinserts() removes any inserted rows from the list

$undoupdates() $undoupdates() restores any updated rows to their original vajue,
and resets their status to kRowUnchanged

$undodeletes() $undodeletes() restores any deleted rows to the list, and resefs their
status to kRowUnchanged

$undowork() $undowork() executes the three $undo... methods in the order |nsert,
update, delete, that is, the reverse order to the $dowork methog

$doinsert() $doinsert(wRow) inserts a row into the server database; it is called
by $doinserts() for each row to be inserted

$doupdate() $doupdate(wRow,wOldrow) updates a row in the server databage; it
is called by $doupdates() for each row to be updated

118 Chapter 4—Methods

alled

Method Description

$dodelete() $dodelete(wRow) deletes a row from the server database; it is @
by $dodeletes() for each row to be deleted

$insert() $insert() inserts a row into the server database

$update() $update(wOldrow],bDisableWhere=kFalse]) updates a row in the
server database; when bDisableWhere is true it prevents $upda
from appending a WHERE clause to the UPDATE statement. Ypu
would typically use this when $extraquerytext is not empty.
$update() appends $extraquerytext after the WHERE clause

$delete() $delete([bDisableWhere=kFalse]) deletes a row from the servel

database; when bDisableWhere is true it prevents $delete from
appending a WHERE clause to the DELETE statement. You wa
typically use this when $extraquerytext is not empty. $delete()
appends $extraquerytext after the WHERE clause

Window Instance

Window Instance

Notation

[$root.]$iwindows. WINDOWINSTMethod

uld

A window instance contains the methods of an instance together with the following.

Method Description

$bringtofront() | brings the window instance to the front, returns true if successful
$minimize() minimizes the window instance, returns true if successful
$maximize() maximizes the window instance, returns true if successful

$redraw() $redraw(bSetcontents=kTrue,bRefresh=kFalse) redraws the contents

and refreshes the window

119

120

Window Instance Object
Notation [$root.]$iwindows. WINDOWINST.$objs.OBIJINAMBethod

All window objects have the $redraw() method. Methods for specific field types are listed

separately.
Method Description
$redraw() $redraw(bSetcontents=kTrue,bRefreshWindow=kFalse) resets the
contents of the field and/or refreshes the window instance containing the
field
Methods for Tree Lists
Method Description
$getnodelist() $getnodelist(Listmode,rNodeRef, IListname) returns the list datp
under the current node or for the entire tree; Listmode can be
kRelationalList or kFlatList; rNoderef can be a reference to a ngde

or NULL to retrieve the entire tree, IListname is the name of a li$

variable to receive the list data

—

b

$setnodelist()

$setnodelist(Listmode,rNodeRef,IListname) lets you populate the

current node or whole tree with the data in IListname; Listmode
be kRelationalList or kFlatList; rNoderef can be a reference to a
node or NULL to populate the whole tree

can

$currentnode()

returns an item reference to the current node in the tree

$count()

returns the number of nodes under the current node, or all root
nodes in whole tree

$clearallnodes()

clears all nodes under the current node, or all the nodes in the
tree

entire

$findnodename()

$findnodename(rNodeRef,cName,bRecursive) returns a referg
a found node using the node $name property, or NULL if nothin
found: rNodeRef is the starting node, a NULL value searches th

whole tree; cName is the name to search for; if bRecursive is kT

any child nodes are also searched

ence to
g is

rue,

$findnodeident()

$findnodeident(rNodeRef,ildent,bRecursive) returns a referend
found node using the node $ident property, or NULL if nothing i
found: rNodeRef is the starting node, a NULL value searches th
whole tree; ildent is the ident value to search for; if bRecursive i
kTrue, any child nodes are also searched

$first()

returns a reference to the first root node

$add()

$add(cName[,ildent]) adds a new root node or node after the

specified ildent

Chapter 4—Method

S

Method Description

$remove() $remove(rltem) deletes the specified child node

$setcurrentnode(] $setcurrentnode(rNodeRef) sets the current node to the nodelin
rNodeRef

$nextnode() $nextnode(rltem,bRecursive) returns the next node in the tree fafter
the node in rltem, or the first root node if ritem is NULL; if
bRecursive is kTrue the method steps into any child nodes

$prevnode() $prevnode(ritem,bRecursive) returns the previous node in the free
before the node in ritem; if bRecursive is kTrue, the method steps
back into node parents

$expand() opens all child nodes under the current node, or all nodes in the
entire tree list

$collapse() closes all child nodes under the current node, or all nodes in the
entire tree list

$getvisiblenode()| $getvisiblenode(iVisLine) returns a reference to the node for &
visible line

$findname() $findname(cName) returns a reference to the node named in cName

$findident() $findident(ildent) returns a reference to the node specified by ildent

$edittext() lets the user edit the text for the current node

Methods for Icon Arrays

Method Description

$edittext() $edittext() lets the user edit the text for the current icon

Methods for Headed List Boxes

Method Description

$edittext() $edittext(iColumnNumber) lets the user edit the cell for the cyrrent

line of the specified column
$getcolumnalign() | $getcolumnalign(iColumnNumber) returns the alignment of the
specified column
$setcolumnalign() $setcolumnalign(iColumnNumber[,Alignment]) sets the alignment

of the specified column; you can specify Alignment as KLeft,

kRightJst, or kCenterJst, otherwise if it is omitted the method
the current value of $columnalignmode for the field

TSGS

Window Instance

12

1

Methods for Tab panes

Method Description

$showpane() $showpane(iPaneNumber,bShow=kTrue) shows the specified
pane; if bShow is kFalse the pane is hidden

$ispaneshown() $ispaneshown(iPaneNumber) returns true if the specified pane is
visible

$enablepane() $enablepane(iPaneNumber,bEnable=kTrue) enables the specified

pane; if bEnable is kFalse the pane is disabled or grayed out and
the user cannot select it

$ispaneenabled() $ispaneenabled(iPaneNumber) returns true if the specified Tane is

enabled

Methods for Screen Report Fields

Method Description

$redirect() $redirect(bPrompt=kTrue) redirects the current report by prompting for
a different print device, rather than the device specified in default
preferences

$print() prints the current report in the field

$printpage() prints the current page of the report in the field

$zoom() $zoom(bZoomOn=kTrue) sets the zoom mode when the screen report
field is in page preview mode

$clear() clears the field of the current report
Methods for Modify Report Fields
Method Description

$sortfields() opens the sort fields dialog for the current report
$pagesetup() | opens the page setup dialog for the current report

122 Chapter 4—Methods

Chapter 5—Commands

This chapter describes the OMNIS commands, including the fifty or so external commands.
In this chapter they are arranged in alphabetical order. The external commands are listed in
a separate section at the end of this chapter. Each entry includes a short description of the
command, its reversibility, its effect on the flag, and its parameters and syntax.

To learn how to use the commands you should readdhrgy OMNIS Studimanual Also
you should be familiar with the method editor and OMNIS debugger before using the
commands.

About the Commands

There are over 500 OMNIS commands that provide a powerful interpreted programming
language with which you can build client/server applications. With them you can monitor
events in the client user interface, control SQL objects and transaction management,
manipulate classes and data in your libraries and data files, and so on.

You can enter all the commands under all operating systems, but some commands only run
under a particular OS indicated by the appropriate OS icon.

External Commands

External commands add functionality to OMNIS. They are implemented as Dynamic Link
Libraries (DLLs) under Windows, or external code resources under MacOS. External
command packages are placed in the EXTERNAL folder and appearknttéraal

commands. group in the method editor. The external commands are described in the next
chapter in this manual.

About the Commands 123

Commands

Accept advise requests 3!
Reversible: YES Flag affected: NO

Parameters: O Accept

Syntax: Accept advise request&ccept)

DDE command, OMNIS as server. This command enables or disables responses to a
request Advise message from a client. WithAbeept check box selected, OMNIS will
respond to an Advise request message specifying a valid field name by repeatedly sending
the field value to the client at appropriate times. IfAkeept option is unchecked, all
conversations with Advises in force will be terminated unless the command is part of a
reversible block.

Accept advise requests (Accept) ;; Check the Accept option

Accept commands i’
Reversible: YES Flag affected: NO

Parameters: [Accept

Syntax: Accept commandgAccept)

DDE command, OMNIS as server. This command determines whether OMNIS will accept
commands from the client program. Whecept commands in force, OMNIS will

respond to a DDE EXECUTE message by attempting to execute a command string sent by
the client program. All conversations are terminated when you close your OMNIS library.

Accept advise requests (Accept)
Accept commands (Accept) ;; Check the Accept option

124 Chapter 5—Commands

Accept field requests A

Reversible: YES Flag affected: NO
Parameters: [Accept
Syntax: Accept field requestgAccept)

DDE command, OMNIS as server. This command enables or disables responses to a
request for field values issued by a client application. Withttept option selected,
OMNIS will respond to a Request message specifying a valid field name by sending the
field value to the client program. Values are taken from the current record buffer. Values
are only sent when OMNIS is in enter data mode or when no methods are running.

Accept advise requests (Accept)
Accept commands (Accept)

Accept field requests (Accept) ;; Check the Accept option

Accept field values i’
Reversible: YES Flag affected: NO

Parameters: [Accept

Syntax: Accept field values(P.ccept)

DDE command, OMNIS as server. This command determines whether OMNIS is able to
receive data from a client via a DDE POKE message. WitAd¢hept option selected,

OMNIS will respond to a Poke message specifying a valid field or variable name, by setting
the value of that field to the value transmitted by the client program. Values are stored in the
current record buffer and, if the relevant field is on the top window, that window is redrawn.

Field values are only accepted when OMNIS is in enter data mode, Prompted find, or when
no methods are running. All conversations are terminated when you close your OMNIS
library.

Accept advise requests (Accept)

Accept field values (Accept) ;; Check the Accept option

Commands 125

126

Add line to list

Reversible: NO Flag affected: YES

Parameters: Line number (default is end of list)
List of values

Syntax: Add line to list [[line-numbe} [(valuel,value3...)]}]

This command adds a new line to the current list using the current field values in the CRB
or values you specify in the list of values. Any conversions required between data types are
carried out automatically. The flag is cleared if the line cannot be added, either because the
maximum number of lines in the list or the memory limits have been exceeded.

You can specify the line number at which the new line is inserted, otherwise the line is
added to the end of the list. If the line number you specify in the command line is empty or
evaluates to zero, the new line is added to the end of the list.

You can specify a comma-separated list of values (enclosed in parentheses) to be added to
the list. For example

Add line to list {$line (‘abc',,VAR1+3)}

stores 'abc' into the first column of the current line of the current list, leaves the value of the
second column empty, and loads the result of VAR1+3 into the third column. If too few
values are specified, the other columns are left empty; if too many values are specified, the
extra values are ignored. When you supply a comma-separated list of values, the values in
the CRB are ignored.

The following example sets the current list to MYLIST, defines and builds the list and adds
the values in S3 and LVAR1 at line 4 (note the first column of line 4 is left empty).

Set current list MYLIST

Define list {CODE,NAME,CREDIT}

Build list from file on CLIENTS

Calculate S3 as 'New string'

Calculate LVAR1 as 23

Add line to list {4(,S3,LVAR1)}

OK message (Icon) {New value in list is [Ist(4,S3)]}

; Ist() defaults to current list when name not specified

You can us&\dd line to listto create fixed lists of string and numeric data. For example

Set current list DROPDATALIST
Define list { Name, Sales, Expenses }

Add line to list {(Fred',100,20)}
Add line to list {(Sam',81,15)}
Add line to list {(George',92,34)}
Add line to list {CNiles',45,15)}

Chapter 5—Commands

Commands

Alternatively, you can use the $add() method to add lines to your list. The following method
defines the list and adds three rows

Do LIST1.$define(Name,Sales,Expenses)
Do LIST1.$add('Henry',231,154)

Do LIST1.$add('Moses',342,132)

Do LIST1.$add('Cynthia’',423,231)

You can also use the $addbefore() and $addafter() methods to add lines at a specific
position in the list.

Advise on find/next/previous ;
Reversible: YES Flag affected: NO

Parameters: O Accept

Syntax: Advise on find/next/previougAccept)

DDE command, OMNIS as server. This command determines when OMNIS is permitted to
send requested Advise messages to the client program. When Advise requests have been
received from a client, th&et server modeommand determines when OMNIS is permitted

to send field values that have changed. In addition t8¢thaerver modeptions, the three
commandddvise on Find/next/previous, Advise on @K Advse on Redravet you

toggle individual options on or offAdvise on Find/next/previoulsts you control this

particular option without affecting the other two.

Advise on Find/next/previous (Accept) ;; Check the Accept option

Advise on OK i’
Reversible: YES Flag affected: NO

Parameters: [Accept

Syntax: Advise on OK [Accept)

DDE command, OMNIS as server. This command determines when OMNIS is permitted to
send requested Advise messages to the client program. When Petyissts have been
received from a client, th8et server modeommand determines when OMNIS is permitted

to send field values that have changed. In addition t&#¢hserver modeptions, the three
commandddvise on Find/next/previous, Advise on @KdAdvise on Redravet you

toggle individual options on or off. Thdvise on Okcommand lets you control this

particular option without affecting the other two.

Advise on OK (Accept) ;; Enables advise on OK
Advise on OK ; : Disables advise on OK

127

Advise on redraw A

Reversible: YES Flag affected: NO
Parameters: [Accept
Syntax: Advise on redraw(Accept)

DDE command, OMNIS as server. This command determines when OMNIS is permitted to
send requested Advise messages to the client program. When Advise requests have been
received from a client, th8et server modeommand determines when OMNIS is permitted

to send field values that have changed. In addition t&#¢hserver modeptions, the three
commandddvise on Find/next/previous, Advise on @KdAdvise on redraviet you

toggle individual options on or off. Thedvise on redravcommand lets you control this
particular option without affecting the other two.

Advise on redraw (Accept) ;; Enables advise on redraw
Advise on redraw :; Disable advise on redraw

AND selected and saved

Reversible: NO Flag affected: YES

Parameters: Line number (can be a calculation, default is current line)
O All lines

Syntax: AND selected and save@l lines)| [{line-number}

This command performs a logical AND of the Saved selection with the Current selection.
You can specify a particular line in the list by entering either a number or a calculation. The
All lines option performs the AND for all lines of the current list.

To allow sophisticated manipulation of data via lists, a list can store two selection states for
each line; the "Current" and the "Saved" selection. The Current and Saved selections have
nothing to do with saving data on the disk; they are no more than labels for two sets of
selections. The lists may be held in memory and never saved to disk: they will still have a
Current and Saved selection state for each line but they will be lost if not saved. When a list
is stored in the data file, both sets of selections are stored.

The list data structure contains the column definitions, the field values for each line of the
list, the current selected status and saved selected status for eddiSln®jne
LIST.$linecounandLIST.linemax

128 Chapter 5—Commands

Commands

The AND selected and savedmmand performs a logical AND on the saved and current
state, and puts the result into the Current selection. Hence, for a particular line, if both the
Current and Saved states are selected, the Current state remains selected, but if either or
both states are deselected, the resulting Current state will become deselected.

Saved State Current State Resulting Current State
Selected Selected Selected
Deselected Selected Deselected
Selected Deselected Deselected
Deselected Deselected Deselected

The following example selects all but the middle line of the list:

Set current list MYLIST
Define list {LVAR1}
Calculate LVAR1 as 1
Repeat
Add line to list
Calculate LVAR1 as LVAR1+1
Until LVAR1=6
Select list line(s) (All lines)
Save selection for line(s) (All lines)
Invert selection for line(s) {3}

AND selected and saved (All lines)

Redraw lists

Autocommit

Reversible: NO Flag affected: YES
Parameters: On or Off mode (On is the default)
Syntax: Autocommit(On|Off)

This command turns on or off the automatic commit or rollback; on being the default. It lets
you turn off the default behavior of OMNIS whereby statements betBegim SQL script
andEnd SQL scriptommands that are completed without error are automatically
committed at the neBegin SQL scriptReset sessioor Logoff from host After each

Execute SQL scripain error causes OMNIS to roll back the transaction. The default for a
session which has not issuedArtocommiis automatic commit on. SQL statements sent

to a remote database usigrform SQLlare committed at the neBegin SQL scriptReset
sessioror Logoff from host

WhenAutocommiis off, you can us€ommit current sessicendRollback current session
to commit or rollback uncommitted statements at any time; with automatic commit off,
OMNIS will only issue explicit commits and rollbacks when it encounters these commands.

129

130

(Under some circumstances, the external database may commit or rollback as a consequence
of some other action.) You can uSemmit current sessicemdRollback current session

with automatic commit switched on but there will not, usually, be anything to commit or
rollback.

In some situations you should uSet transaction modeastead ofAutocommit This is
described more fully in the server-specific programming section @hiIS Studio Data
Access Managananual.

Autocommit (Off)
Begin SQL script
SQL: Update TABLE set (column='value') where CODE='IDI'
End SQL script
Execute SQL script
If flag true
Commit current session
End If

Begin print job

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Begin print job

This command defines the beginning of an OMNIS print job. To create a print job, you use
the following sequence of commands.
Begin print job
; Print the various reports, using either
; Print report, or Prepare for print etc.
End print job

Only one print job can be started at any time: you cannoBeggh print jobcommands.

If printing is already in progresBegin print jobreturns an error and sets the flag to false. It
also returns an error if it cannot set up the printer, or open the printer document; again, it
sets the flag to false in this case.

Begin print jobsets the flag to true if it succeeds. It automatically sets the report destination
to the printer and closes the report destination selection window if it is open.

Each report is printed in the same way as if it were in an individual document. If you print
two reports in a job, then page numbering starts at 1 for each report.

You cannot change the page setup while a print job is in progress, although OMNIS does
not try to enforce this, as it will probably cause an OS error (and abnormal termination of
printing) if you do.

Chapter 5—Commands

Commands

Under MacOS, there is a spool file limit of 128 pages, imposed by the operating system. If a
job exceeds this limit then the job will be printed as multiple documents, and this may not
result in the desired interleaving.

TheBeginandEnd print jobcommands only apply to reports sent to a printer, via the
printer report destination.

Begin reversible block

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Begin reversible block

This command begins a reversible block of commandseférsiblecommands enclosed
within the commandBegin reversible block/End reversible blanle reversedhen the
method containing this block finishétowever, a reversible block in the $construct()
method of a window class reverselsen the window is closeehot when the method is
terminated as is normally the case. OMNIS always steps backwards through a reversible
block of commands, thus the first command is reversed last.

Reversible blocks let you create subroutines that restore the values of variables, the current
record buffer, and so on, to their previous state when the method terminates. Most
commands are reversible: those that are not usually involve an irreversible action such as
changing the data in an OMNIS data file or running another program.

A method can contain more than one block of reversible commands. In this case, commands
contained withirall the blocks are reversed when the method terminates.
; all the commands in the following example are reversed
; when the method containing the block is finished
Begin reversible block
Disable menu line {MMENU/5}
Set current list LVAR1
Build open window list (Clear list)
Calculate LVAR1 as 0
Open window instance WEDIT
End reversible block
: more commands...

When this block is reversed:

1. The window instance WEDIT is closed

2. LVARI1returns to its former value

3. MYLIST is restored to its former contents and definition
4

. The current list is set to the former value

131

132

5. Menu line 5 is enabled

Methods called from within a reversible block amd reversed. For example

: FirstMethod

Begin reversible block
A..
Do method SecondMethod
B...

mo o

End reversible block

; SecondMethod
M...
N...
O...
P...
In this example, commands A... to E... within the reversible block are reversed (if they are

commands that can be reversed), while commands M... to P... within the called method are
not reversed.

Further examples will show how reversible blocks are used. The following method hides
fields Entryl and Entry2 and installs the menu MCUSTOMERS.

Begin reversible block
Hide fields Entry1,Entry2
Install menu MCUSTOMERS
End reversible block
OK message (Icon) {MCUSTOMERS is now visible}

When this method ends, first MCUSTOMERS is removed, then the fields are shown.

In the following example, the current list is LIST1.

Begin reversible block
Set current list LIST2
Define list {AMOUNT,TOS}
Set main file {FACCOUNTS}
Build list from file on ACCNUM
Enter data

End reversible block

When this method terminates and the command block is reversed, the Main file is reset, the
former list definition is restored and the current list is restored to LIST1.

Chapter 5—Commands

Commands

Begin SQL script

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Begin SQL script

This command defines the start of a block of SQL statements and text to be stored in the
SQL buffer. The SQL text buffer is cleared when you execute this commanBn@HeQL

script command defines the end of the block. The lines are not checked by OMNIS in any
way and must be valid SQL in order for the server to be able to operate on them. When an
Execute SQL scripgommand is issued, the text in the buffer is sent to the remote server.
TheBegin SQL scripandEnd SQL scriptnarkers usually denote a transaction which

OMNIS will automatically commit if no errors occur.

The commandBegin SQL scriptExecute SQL script, Perform SQindReset cursor(ll
empty the SQL statement buffer for the current session.

; method to select all customers

Begin SQL script

SQL: Select * from CUSTOMERS

End SQL script

Execute SQL script

Begin text block

Reversible: NO Flag affected: NO
Parameters: O Keep current contents
Syntax: Begin text block (Keep current contents)

This command defines the start of a block of text to be stored in the global text buffer. The
Begin text bloclcommand clears the text buffer by default, and adds the text in subsequent
Text: commands to the text buffer. However, you can keep the current contents of the buffer
by checking th&eep current contentsoption, in which case text is appended to current

text in the buffer. You build the text block using Fext: command, which supports

leading and trailing spaces and can contain square bracket notatidind text block

command defines the end of the text block, and you can return the contents of the text buffer
using theGet text blockcommand.

; Declare var cTEXT of Character type
Begin text block

Text: If a train station is where the

Text: train stops, what is a work station?
End text block

Get text block cTEXT

133

134

Break to end of loop

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Break to end of loop

This command terminatesRepeat\While or For loop, passing control to the command
following the Until, End Whileor End Forcommand. Anf command is usually placed
before theBreak to end of loofo determine the condition under which a break occurs.

Open window instance WClient
Set main file {FCLIENT}
Find first on SEQ
While SEQ<201
Prepare for edit
Enter data
If flag false
Break to end of loop
End If
Update files
Next
End While
; Control breaks to here if Enter data is canceled

Chapter 5—Commands

Commands

Break to end of switch

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Break to end of Switch

This command causes OMNIS to jump out of the cul@asestatement (i.e. terminate the
Case before the end of Case is reached), and resume method execution EfterSivtch
command. You use it in conjunction with tBevitchandCasecommands.

Switch LVAR1

Case 16
OK message {Got a 16}
Break to end of switch
OK message {l never run}

Case 4
OK message {Got a 4}
Break to end of switch
OK message {l never run}

Default
OK message {didn’t get a 4 or 16}
End Switch
Breakpoint
Reversible: NO Flag affected: NO
Parameters: Message (text)
Syntax: Breakpoint {messag€}

This command places a breakpoint at a command line in a method where you want to stop
execution, to check your coding for example. You can include a message with the command
which is displayed in the debug window when the break occurs. The command does nothing
at runtime.

When OMNIS encounters a breakpoint the debugger is opened with the current method
loaded and thBreakpointcommand line highlighted. You can examine the value of fields
and variables by right button/Ctrl-clicking on the field or variable name.

Following a breakpoint you can continue method execution by clicking the Go button or by
using Step or Trace mode.

135

Open window instance WCONTROL
Calculate LVAR1 as sqr(MASS/2)
Breakpoint {Check MASS and LIMIT}
If LVARL >> LIMIT

Do method SetLimit
End If

Bring window instance to front

Reversible: NO Flag affected: NO
Parameters: Window instance name
Syntax: Bring window instance to fronvindow-instance-name

This command brings the specified window instance to the front. If the window is already in
front, the command does nothing. If the specified window instance does not exist (that is,
the window is not open) this command will cause an error.
Test for window open {winst1}
If flag true
Bring window instance to front winstl
Else
Open window instance Mywin/winstl
End If

Build export format list

Reversible: YES Flag affected: YES
Parameters: O Clear list
Syntax: Build export format list (Clear list)]

This command builds a list containing the name of each export format. The list is built in
the current list for which you must define a single column to contain the export format.

TheClear list option clears the current list and redefines it to include only the S4 field.
With this option, the command becomes reversible.

136 Chapter 5—Commands

Set current list EXPORTLIST
Build export format list (Clear list)
; Defines the list as containing S4

Build externals list

Reversible: YES Flag affected: YES
Parameters: O Clear list
Syntax: Build externals list(Clear list)

This command builds a list of the externals inEd&'ERNAL folder. The list of
extensions is placed in the current list for which you must define the following columns

Col 1 Col 2 Col 3 Col 4

(Character) (Character) (Number) (Character)
Windows File name Routine name Routine index File extension
MacOS File name Routine name Routine ID Routine type

TheClear listoption clears the current list. The command becomes reversible with this
option.

The following method builds a list of extensions.

: declare Local vars NAME, ROUTINE, IND, TYPE

; declare Local var EXTERNALLIST of List type

Set current list EXTERNALLIST

Define list (NAME,ROUTINE,IND,TYPE)

Build externals list

When an external routine is called, the internal list of routines is always searched before the

current resource path. If a full pathname for aditel a routine name is specified, only that
path is searched.

Commands 137

138

Build field names list

Reversible: YES Flag affected: YES

Parameters: O Clear list
O Full names
File name

Syntax: Build field names list([Clear lis{[,Full name$)] {file-name}

This command builds a list of field names for the specified file class in the current list. You
must specify the following columns in the current list.

Column 1 Column 2 Column 3

(Character) (Character) (Character)

Field name Field type and Description; for
length index fields only

When you use th€lear list option you get column 1 only defined as #S5. With this option
the command becomes reversible. The flag is cleared if the vall8Taflinemaxprevents
a complete list from being built.

TheFull namesoption creates a list in which the fields are prefixed with the file class
name, for example, PO_DATE becomes FPORDERS.PO_DATE.

Set current list FIELDLIST
Build field names list (Clear list) {FILENAME}
; Clear list option defines the list as containing #S5

or you can do it like this
Do $files.filename.$makelist($ref.$name)

Chapter 5—Commands

Commands

Build file list

Reversible: YES Flag affected: YES
Parameters: O Clear list
Syntax: Build file list [(Clear list)]

This command builds a list containing the name of each file class in the current library. The
list is built in the current list for which you must specify the following columns.

Column 1 Column 2
(Character) (Character)
File name Description for file (if you

have entered one)

When you use th€lear list option you get column 1 only defined as #S5. With this option
the command becomes reversible, that is, the original contents of the list are restored. The
flag is cleared if the number of lines in the list excdd&3 .$linemax

Set current list FILELIST
Build file list (Clear list)
; Clear list option defines the list column as #S5

or you can do it like this
Do $files.$makelist($ref.$name)

Build indexes

Reversible: NO Flag affected: YES
Parameters: File name
Syntax: Build indexedfile-name}

This command rebuilds all the indexes for the specified file which have been dropped with
theDrop indexesommandDrop indexesleletes all the indexes for the specified file apart
from the sequence number ind8ild indexeshecks that all the indexes defined in the

file class actually exist in the data file and builds those which are not there. This command
does not build any indexes which already exist even if they are in a damaged state.

If the specified file name does not include a data file name as part of the notation, the
default data file for that file is assumed. If the file is closed or memory-only, the command
does not execute and returns flag false.

If you are not running in single user mode, this command automatically tests that only one
user is using the data file (the command fails with the flag false if this is not true), and
further users are prevented from logging onto the data until the command completes.

139

If a working message with a count is open while the command is executing, the count will
be incremented at regular intervals. The command may take a long time to execute, and it is
not possible to cancel execution even if a working message with cancel box is open.

The flag is set if at least one index is successfully rebuilt. Note that the command is not
reversible.
Do not flush data
Drop indexes {Pictures}
Repeat
Working message {Building indexes...}
Build indexes {Pictures}
Until flag true

Build installed menu list

Reversible: YES Flag affected: YES
Parameters: O Clear list
Syntax: Build installed menu list(Clear list)]

This command builds a list containing the name of all menu instances on the main OMNIS
menu bar, starting from the left. All the standard OMNIS menus suEheasndEdit are
ignored. The list is built in the current list for which you must define the following columns:

Column 1 Column 2

(Character) (Character)

Menu instance Description for menu class (if one
name has been entered)

When you use th€lear list option you get column 1 only defined as #S5 with a 15
character column width. With this option, the command becomes reversible.

Menu instances from libraries other than the current library are prefixed with their library
names. The flag is cleared if the command fails due to a shortage of memory.

Set current list MENULIST
Build installed menu list (Clear list)
; clear list option defines list as #S5

or you can do it like this

Do $imenus.$makelist($ref. $name,$ref.$desc)

140 Chapter 5—Commands

Build list columns list

Reversible: YES Flag affected: YES

Parameters: List or row name (default is the current list)
O Clear list

Syntax: Build list columns list list-namé@ [(Clear list)]

This command builds a list containing the column names and data types of the current or
specified list. This information is placed in the current list. If the current list contains one
column, it contains the column names only. The current list column headings are ignored,
but to obtain all the available information, you define the list with two columns as follows:

Col1 Col 2
(Character) (Character)

List Column List Column data
name type

TheClear list option clears and defines the current list to contain one column, #S5, so the
column data types are not returned. With this option, the command becomes reversible.

The flag is cleared if the value bIST.$linemaxprevents a complete list from being built.
The following method and the list of data it loads into the list illustrate the typical values
produced:

Set current list COLSLIST

Define list {PO_DATE,PO_NUMBER,PO_BATCHED,SU_CONTACT,IT_UNITPRICE}
Set current list LIST1

Define list {CVAR2,CVARS}

Build list columns list COLSLIST

: Here are the values for LIST1:

#S2 #S3

PO_DATE Short date 2000..2099
PO_NUMBER Character 15

PO BATCHED Boolean
SU_CONTACT Character 30
IT_UNITPRICE Number 2 dp

or you can do it like this
Do LIST.$cols.$makelist($ref.$name, $ref.$coltype)

Commands 141

Build list from file

Reversible: NO Flag affected: YES

Parameters: Field name (must be indexed)
O Exact match
O Use search
O Use sort

Syntax: Build list from file onfield-name[([Exact match
[,Use search[,Use sorf)]

This command builds a list of data from the main file using a specified index field. The
records are selected and corresponding field values added to the list in the order of the
specified index field. You must set the main file before using the command.

If the Exact match option is specified, only records matching the current value of the

specified field are added to the list. Similarly, if thee searchcheck box is selected, only
records matching the current search class are added. In both cases, an error occurs if neither
a field nor a search class is specified.

When large files are involved, that is, those that may require more than the maximum
number of available lines (the valueldST.$linemak you can use the flag false condition
to detect when an incomplete list is built.

Building a list using this command does not affect the current record buffer and does not
clear ‘Prepare for update’ mode.

TheUse sortoption lets you use the database records in sorted order without first having to
load them into a list. You usget sort fieldo specify a sort field after whidBuild list from

file (Use sortcreates a sorted table of records in memory before loading them into the list.
The main advantage of this method is that the sort fields do not have to be read into the list
at all. The Sort field order overrides the index field order but if the sort field is non-indexed,
the index is used as the order in which to gather up records before sorting. Multi-level sorts
are possible by using repeatget sort fielcommands to accumulate the required sorting
order. Since sort levels are cumulative you should first clear any existing on&ewith

sort fields

The following method compiles a list of all records where CODE equals the current value of
CODE in the CRB.

Set current list LIST1
Build list from file on CODE (Exact match)

The following method compiles a list of all records sorted in order of descending
PO_NETTOTAL values and within each value, in increasing PO_NUMBER order.

142 Chapter 5—Commands

Commands

Set current list LIST1

Set main file {FPORDERS}

Define list {PO_DATE, PO_NETTOTAL}

Clear sort fields

Set sort field PO_NETTOTAL (Descending)

Set sort field PO_NUMBER

Build list from file on PO_SEQ (Use sort)
; Note PO_NUMBER is not in the list

Build list from select table

Reversible: NO Flag affected: NO

Parameters: Cursor name (default is the current)
O Add CRB fields
O Clear list
List name (default is the current)

Syntax: Build list [list-nam@ from select table [for cursaursor-namg
[([Add CRB fields[,Clear lisf)]

This command copies the select table for the current or specified cursor into the current or
specified list. Each row in the select table corresponds to one line in the OMNIS list. A
Define listcommand should have already been executed to ensure that suitable list field
types correspond to the correct table colurBusld list from select tablappends lines to

the current or specified list. You can &€ T.$linemanto limit the size of the resulting list.

A Build list from select tableccurring after a sequenceFtch next roncommands stores
only the part of the table which has not already been fetched.

The flag is not a reliable indicator of whether the list build was successful, although it is
cleared if an error occurred. Otherwsses(138)should be used to check if there are more
rows to fetch.

Picture and Binary field types are not supporte®ond list from select table

The Add CRB fields option adds values taken from the current record buffer to the list.
You can use this option for columns with no available SQL data but this slows down the
command by about 20%.

TheClear list option clears the current list before building the new list otherwise the
command appends the data to the current list.

; declare class variable CLIST with List type

Set current list FLIST

Define list (COL1,COL2,COL3,COL4)

Describe database (Tables)

Build list from select table (Clear list)

143

144

For potentially large tables, setting the maximum number of lines in the list allows users to
control the retrieval of the rows, for example
Calculate LIST.$linemax as 0
Clear list
Repeat
Calculate LIST.$linemax as LIST.$linemax + 50
Build list from select table
If sys(138)
Yes/No message {Load next 507}
End If
Until not(sys(138))
Alternatively, you can do it like this

Do TableBasedList.$select()
Do TableBasedList.$fetch(nRows)

Build list of event recipients ‘-
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Build list of event recipients

This command builds a list of Apple event recipients. The list is built in the current list for
which the columns must have been defined. The columns are

Column 1 Column 2
(Character) (Character)

Recipienttag Application name

At any one time, you may have multiple recipieBtsild list of event recipientgses the
current list to build a list of recipient tags and application names that are currently known to
OMNIS; one recipient tag per row of the list.
Begin reversible block
Set current list LIST1
End reversible block
Define list {S2,S3}
Build list of event recipients
Redraw lists

Chapter 5—Commands

Build menu list

Reversible: YES Flag affected: YES
Parameters: O Clear list
Syntax: Build menu list {Clear list)

This command builds a list containing the name of each menu class in the current library.
The list is built in the current list for which the columns must have been defined. The
columns are

Column 1 Column 2

(Character) (Character)

Menu class Description for menu (if one has

name been entered)
TheClear list option clears the current list and redefines it to include only the #S5 field.
With this option, the command becomes reversible but you get column 1 only.

Set current list MENULIST
Build menu list (Clear list)
; defines the list as containing #S5

or you can do it like this

Do $menus.$makelist($ref.$name)

Build open window list

Reversible: YES Flag affected: YES
Parameters: O Clear list
Syntax: Build open window list(Clear list)]

This command builds a list containing the name of each window instance, starting with the
topmost window instance. The window instance names are stored in the first column of the
list. You can also return the position and size coordinates of each window instance in the
second to fifth columns. The list is built in the current list for which you must define the
following columns:

Col 1 Col 2 Col 3 Col 4 Col 5
(Character) (Long Int) (Long Int) (LongInt) (Long Int)
Window instance /left ltop [right /bottom
name window window window window
coord coord coord coord

If you use theClear list option, the list will contain one column only defined as #S5, so the
window coordinates are not returned. Also, with@hear list option selected, the

Commands 145

146

command is reversible, that is, the list definition and contents are restored when the method
terminates.

Set current list WINSLIST
Build open window list (Clear list) ;; list uses #S5

or you can do it like this
Do $iwindows.$makelist($ref.$name)

Build report list

Reversible: YES Flag affected: YES
Parameters: O Clear list
Syntax: Build report list [Clear list)

This command builds a list containing the name of each report class in the current library.
The list is built in the current list for which the columns must have been defined. The
columns are

Column 1 Column 2

(Character) (Character)

Report class Description for report (if one has
name been entered)

You get column 1 only when you use @Bkear list option.

TheClear list option clears the current list and redefines it to include only the #S5 field.
With this option the command becomes reversible.

Set current list REPLIST
Build report list (Clear list) ;; list use #S5

or you can do it like this
Do $clib.$reports.$makelist($ref.$name)

Chapter 5—Commands

Build search list

Reversible: YES Flag affected: YES
Parameters: O Clear list
Syntax: Build search list(Clear list)]

This command builds a list containing the name of each search class in the current library.
The list is built in the current list for which the columns must have been defined. The
columns are

Column 1 Column 2

(Character) (Character)

Search class Description for search (if
name one has been entered)

You get column 1 only when you use @Bkear list option.

TheClear list option clears the current list and redefines it to include only the #S5 field.
With theClear list option, the command is reversible. The flag is cleared if the value of
LIST.$linemaxprevents a complete list from being built.

This example displays the names of the search classes.

Set current list SEARCHLIST
Build search list (Clear list) ;; list uses #S5

or you can do it like this
Do $clib.$searches.$makelist($ref.$name)

Commands 147

148

Build window list

Reversible: YES Flag affected: YES
Parameters: O Clear list
Syntax: Build window list [[Clear list)]

This command builds a list containing the name of each window class in the current library.
The list is built in the current list for which you must define the following columns

Column 1 Column 2

(Character) (Character)

Window class Description for window (if one
name has been entered)

You get column 1 only when you use @Bkear list option, but the command becomes
reversible.

TheClear list option clears the current list and redefines it to include only the #S5 field.
With theClear list option, the command becomes reversible.

Set current list WINDOWLIST
Build window list (Clear list) ;; list uses #S5

or you can do it like this
Do $clib.$windows.$makelist($ref.$name)

Calculate

Reversible: YES Flag affected: NO

Parameters: Field name
Calculation (leave blank for null values)

Syntax: Calculatefield-nameas falculation]
This command assigns a new value to a data field or variable. The form of the command is
"Calculate X as Y", where X is a valid data field or variable name and Y is either a valid

data field or variable name, value, calculation, or notation. \Wiadculateis executed the
state of the flag is unchanged, unless #F is recalculated by this command.

You can useCalculatein a reversible block. The data field returns to its initial value when
the method containing the block of reversible commands finishes.

WARNING TheCalculatecommand does not redraw a calculated field so if your field is
on a window you must use tieedrawcommand or the $redraw() method after the
Calculatecommand to reflect the change.

The following examples show how you can useCGh&ulatecommand.

Chapter 5—Commands

Commands

Calculate LVARL1 as LVAR2

; sets field LVAR 1 equal to the contents of LVAR 2
Calculate PRICE as 100.50

; sets PRICE equal to 100.50

Calculate PRICE as COST*(1+MARKUP/100)

; calculates the value of PRICE from the current

; values of COST and MARKUP

You can also use notation in the field or calculation, for example
Calculate $cwind.$objs.Field1.$top as 9999

; recalculates the position of Field 1

Calculate $clib.$prefs.$mouseevents as kFalse

; turns off mouse events

You can operate on variables with thalculatecommand, for example
; Declare local variable L_FILES of List type

Set current list L_FILES

Calculate L_FILES as $libs.LIBNAME.$files.$makelist($ref.$name)

; builds a list of files in the library

Note that certain operations executed via the notation are better performed ufing the
command, rather thabalculate for example

Do $iwindows.winl.$bringtofront()
; brings the window instance to the front, but is simpler than
Calculate #F as $iwindows.winl.$bringtofront()

Operator Precedence

Mathematical expressions are evaluated using the operator precedence so that in the
absence of brackets, * and / operations are evaluated before + and -. The full ordering from
highest to lowest precedence is:

unary minus

*and /

+and -

> < >=, <=, <>, =

& and |

For example, if you execute the command
Calculate LVARL1 as 10-2*3

the calculation part is evaluated as

10-(2*3) which equals 4

149

150

Call external routine

Reversible: NO Flag affected: YES

Parameters: Routine name or library name/routine name
Parameters list
Return field

Syntax: Call external routineliprary name]routine-name
[(parameter],parameter?...)] returnsreturn-field

This command calls an external routine with mode ext_call and returns a value from the
external in the specifiegbturn-field The return value is placed in the specified field by the
external code using the predefined field reference Ref_returnval with the functions
SetFldVal or SetFldNval. The flag is set if the external routine is found and the call is made
but this does not necessarily mean that the external code has executed correctly. The flag is
cleared if the routine is not found. Note that the routine cannot use the flag to pass
information back to the method.

You can pass parameters to the external code by enclosing a comma-separated list of fields
and calculations. If you pass a field hame, for exan@ddl,external routine Maths1
(Num1,Num2)the external can directly alter the field value. Enclosing the field in brackets,
for example Call external routine Maths1 ((Num1),(NumZ)pnverts the field to a value

and protects the field from alteration.

In the routine itself, the parameters are read using the usual GetFldVal or GetFldNval with
the predefined references Ref_parml, Ref parm2, and so on, Ref_parmcnt gives the
number of parameters passed. If the field name is passed as a parameter, you can use
SetFldVal or SetFldNval with Ref_parm1, and so on, to change the field's value.

Call external routine Mathslib/sgroot (Num1) returns Num2
Cancel advises =
Reversible: NO Flag affected: NO

Parameters: Field name
O All channels

Syntax: Cancel advisedigld-namé [(All channels)

DDE command, OMNIS as client. This command cancels one orReayeest advises

from the current channel. If you omit the field name, all Request advises to the current
channel are canceled. If you specify a field name, all Request advises to the current channel
which refer to that field name are canceled.

The command is addressed to the current channel only, and if the current channel is not
open, an error occurs. No error occurs, however, if there arReqoest adviseommands
to cancel.

Chapter 5—Commands

If you use theéAll channels option, all channels are canceled. There is no need to use a
Cancel advisesommand before @lose DDE channetommand.

When OMNIS issues BRequest advisde a DDE server, OMNIS is in effect saying "Hey,
tell me if this value changes and send me an update'Efiee datacommand must be
running to allow the incoming data to get through.

Yes/No message {Do you want updates?}

If flag false
Cancel advises (All channels) ;; clears all advises
Quit method

Else
Request advises C_COMPANY {C_COMPANY}
Request advises C_ADDRESS {C_ADDRESS}

End If

Prepare for insert

Enter data

Update files if flag set

Cancel event recipient ‘.
Reversible: NO Flag affected: YES

Parameters: Recipient tag

Syntax: Cancel event recipiefitecipient-tag}

This command cancels the specified Apple event recipient.

Set event recipient {Microsoft Excel}
; do something...
Yes/No message {Do you want to keep Excel?}
If flag false
Cancel event recipient {Microsoft Excel}
Else
; continue...

Commands 151

152

Cancel prepare for update

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Cancel prepare for update

This command cancels the Prepare for update mode and releases any semaphores which
may have been set. You use Brepare for edit/insertommand to prepare OMNIS for

editing or insertion of records. It is usually followedWydate fileswhich is the usual way

of terminating the Prepare farstate but you can also terminate this state @éhcel

prepare for updatelt must be followed by commands which preventgpalate files

command from being encountered.

When you execute Rrepare for..command in multi-user mode, semaphores are used to
implement record lockingCancel prepare for updateeutralizes the effect ofRrepare
for... command and releases all semaphores.

You can use this command within a timer method to implement a timed record release.

Set timer method 600 sec {Timer method}
Prepare for edit

Enter data

Update files if flag set

Clear timer method

; Timer method
Yes/No message {Time's up, cancel edit?}
If flag true
Cancel prepare for update
Queue cancel
End If

Chapter 5—Commands

Cancel publisher ‘_

Reversible: NO Flag affected: YES
Parameters: File or field list
Syntax: Cancel publisher{file field 1] file|field2]...}]

This command cancels the publication of the fields specified. The field list can take a file
name (for all fields in a file) or a range of fields, which includes a range of fields in the
order listed in the Field names window. If no list is given, all publications for the library are
canceled. There are no errors if the list includes unpublished fields.

The flag is set if the command cancels the publication for one or more fields.

Publish field CNAME {HD80:Public:Sales-Name}
Publish field CTOTAL {HD80:Public:Sales-Total}
Find first on CNAME

Publish now {CNAME,CTOTAL}

Cancel publisher {CNAME,CTOTAL}

Cancel subscriber ‘-

Reversible: NO Flag affected: YES
Parameters: File or field list
Syntax: Cancel subscribeffjle field1] file[field2]...}]

This command cancels the subscription of the fields specified. The field list can take a file
name (for all fields in a file) or a range of fields, which includes a range of fields in the
order listed in the Field names window. If no list of field names is given, all subscriptions
for the library are canceled. There are no errors if the list includes nonsubscribed fields.

The flag is set if the command cancels the subscription for one or more fields.

Subscribe field CNAME {Freds Mac: Public:Sales-Name}
Subscribe field CTOTAL {Freds Mac: Public:Sales-Total}
Enter data

Subscribe now {CNAME,CTOTAL}

Cancel subscriber {CNAME,CTOTAL}

Commands 153

154

Case

Reversible: NO Flag affected: NO
Parameters: Constant value, field name or expression
Syntax: Caseexpression

The Case statement is part dwaitchconstruct that chooses one of an alternative set of
options. The options in a Switch construct are defined by the subs&asstbmmands.

The Casecommand takes either a constant, field name, single calculation, or a comma-
separated series of calculations. You must enclose string literals in quotes. Date values must
match the date format #FDT.

; a value between 1 and 4 is passed to Group
; declare parameter Group (Short integer (0 to 255))
Switch Group
Case 1 ;; North
Set search as calculation {Div="N'}
Case 2 ;; East
Set search as calculation {Div="E'}
Case 3 ;; South
Set search as calculation {Div='S'}
Case 4 ;; West
Set search as calculation {Div="W'}
End Switch
; now use search on a list perhaps

You can add multiple conditions in a comma-separated list to one Case statement (see
below). UseDefaultto specify commands that should run if the value is not one of those
specified in the Case statements. For example

Switch CVAR1

Case 'A’
: do this, if CVAR1 is A
Case 'B','C','D'
;or do this, if CVAR1is B, C or D
Default
; otherwise do this, if CVARL1 is none of the above
End Switch

Chapter 5—Commands

Commands

Change user password

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Change user password

This command opens the Password dialog in which the user can change passwords. The
menus are redrawn and lists and variable values (apartfthinare unaffected.

If the current user is the master user, passwords can be changed. In addition, the command
gives the user the choice of using another password to re-enter the current library at a
different user level, thus gaining access to different areas of the library. If a user re-enters at
a different level, the value of #UL will change (within the range 0-8) to reflect that new

user level.

Test for menu installed {Options}
If flag false

Yes/No message {You must install the Options menu to continue
with this operation. You must re-enter as master user. Re-enter?}

If flag true
Change user password
End If
Quit all methods
End If

Check data

Reversible: NO Flag affected: YES

Parameters: [Perform repairs
O Check data file structure
O Check records
O Check indexes
File or list of file names (the default is all files)

Syntax: Check data([Perform repair}{, Check data file structute
[,Check recordl§, Check indexd}] [{filel[,file2]...}]

This command checks the data for the specified file or list of files, and works only when one
user is logged onto the data file. If you omit a file name or list of fileghe files with slots

in the current data file are checked. If the specified file name does not include a data file
name as part of the notation, the default data file for that file is assumed. If the file is closed
or memory-only, the command does not execute and returns with the flag false.

There areCheck data file structure, Check records andCheck indexescheckbox
options. If none of these is specified, the command does nothing; i€belk data file
structure is specified, the list of files is ignored.R&rform repairs is specified, any

155

156

repairs required are automatically carried out, otherwise the results of the check are added
to the check data log. The check data log is not opened by this command but is updated if
already open.

If you are not running in single user mode, this command automatically checks that only one
user is using the data file (the command fails with flag false if this is not true), and further
users are prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will
be incremented at regular intervals. The command may take a long time to execute and it is
not possible to cancel execution even if a working message with cancel box is open.

The command sets the flag if it completes successfully and clears the flag otherwise. It is
not reversible.

Check data (Check records) {MYDATA.ACCOUNT}
If flag true
Yes/No message {View log}
If flag true
Open check data log
End If
Else

OK message (Icon,Sound bell) {The check data file command could
not be carried out//Please make sure that only one user
is logged onto the data file}

End If

Chapter 5—Commands

Check menu line

Reversible: YES Flag affected: NO
Parameters: Menu instance name
Menu line number

Syntax: Check menu linenenu-instance-naminenu-line-number

This command places a check mark on the specified line of a menu instance to show that the
option has been selected. You specify the menu instance name and the number of the menu
line you want to check.

You can remove the check mark witlncheck menu lindf you use this command in a
reversible block, the check mark is removed when the method terminates. Nothing happens
if the menu instance is not installed on the menu bar.

The following method tests whether a line in the menu instance is checked and either checks
or unchecks it accordingly.

Install menu mBookings/MINST1
Test for menu line checked MINST1/3

If flag true

Uncheck menu line MINST1/3
Else

Check menu line MINST1/3
End If

Clear all files

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Clear all files

This command clears the current record buffer of all file variables for all open libraries and
all open data files, including any memory-only files. However, it does not clear the hash
variables. Window instances are not automatically redrawn so you must folloRédvgw

if you want the screen to reflect the current state of the buffer.

Clear all files
Redraw winvoices
; clears CRB fields from flnvoices, fCustomers, fStock

Commands 157

158

Clear check data log

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Clear check data log

This command clears the check data log, which stores all the results of a check data
operation. To clear the log, there is no need for the log to be open.

Check data (Check records) {MYDATA.ACCOUNT}
If flag true
Yes/No message {View log}
If flag true
Open check data log
; After looking at the data log
Yes/No message {Clear the log?}
If flag true
Clear check data log
End If
End If
Else

OK message {Check data file could not be carried out//Please
ensure that only one user is logged onto the data file}

End If

Clear class variables

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Clear class variables

This command clears any class variables used within the class and clears the memory used
for the class variable€lear class variabless placed in a method within the class where
you want to clear variables.

A class variable is initialized to empty or its initial value the first time it is referenced. It
remains allocated until the class variables for its class are cleared. The class variables for all
classes are cleared when the library file is closed.

; declare class variables with initial values

; transfer values to instance variables

Clear class variables ;; all variables for class are now clear
Redraw (Refresh now) {Entry1,Entry2,Entry3}

Chapter 5—Commands

Commands

Clear data

Reversible: NO Flag affected: YES
Parameters: Field name

O Redraw field

O All windows

Syntax: Clear datafjeld-namé [([Redraw field[,All window§)]

This command clears the data from the specified field or current selection. The data is lost
and is not placed on the clipboard. If you do not specify a field, the current field's data is
cleared (assuming there is a selection).

In the case of a null selection when the cursor is merely flashing in a field and no characters
are selectedClear datawill literally clear "nothing".

The following method is placed behind the TO_PRICE field and checks if the value is over
5000; if it is, the value entered into the field is cleared and the cursor remains in the field.

On evAfter
If TO_PRICE > 5000
Yes/No message {Is this price correct?}
If flag false
Clear data TO_PRICE (Redraw field)
Queue set current field {ePrice}
Quit event handler (Discard event)

End If
Clear DDE channel item names i’
Reversible: YES Flag affected: NO
Parameters: None
Syntax: Clear DDE channel item names

DDE command, OMNIS as client. This command clears all server data item names selected
for use with a print-to-channel report. You use this command when exporting data via a
DDE channel to another Windows application. The channel item names become the item
names into which the server places the fields printed in the OMNIS report.

Clear DDE channel item nametears all the item names set up véist DDE channel item
name

159

160

Set DDE channel number {2}
Open DDE channel {EXCEL|SHEET1}
Send to DDE channel
Set report name RDDEXPORT
Clear DDE channel item names
Send command {[[TakeControl]}
; Double first [['s so OMNIS accepts text
If flag true
Set DDE channel item name {R1,C1}
Set DDE channel item name {R2,C1}

Set DDE channel item name {R50,C1}
Print report

End If

Clear find table

Reversible: NO Flag affected: NO
Parameters: None

Syntax: Clear find table

This command clears the find table for the current main file and releases the memory it
used.

When aFind or NextPreviouscommand is encountered, OMNIS uses the Index, Search

and Sort field parameters to create a table of records (similar to a SQL Select table). This
may simply be an existing index in which case no further processing takes place or, if there
is a search and/or sort condition, a file may be scanned and a selection of records sorted in
memory. If aNextor Previousreturns an unexpected record or no record, this is probably
because there is still a find table in existence from another Find operation.

For a large file, a substantial amount of RAM may be used.

Set main file {FCLIENT}

Set sort field TOWN

Set sort field COUNTRY

Find first on CCODE (Use sort)
Do method ProcessTable
Clear find table

Chapter 5—Commands

Commands

Clear line in list

Reversible: NO Flag affected: YES

Parameters: Line number (can be a calculation, default
is current line)

Syntax: Clear line in list {line-number}

This command clears the values stored in the specified line of the current list. You can
specify the line number in a calculation, otherwise the currentliss ($ling is used. The
flag is cleared if the list is empty or if the line is beyond the current end of the list.

This method deletes the current line from the list if CREDIT value is zero:

Set current list LIST2
For each line in list from 1 to LIST2.$linecount step 1
If Ist(CREDIT)=0
Clear line in list
End If
End For
Redraw lists

or you can do it like this

Do LIST.rownumber.$clear()

161

162

Clear list

Reversible: YES Flag affected: NO
Parameters: O All lists
Syntax: Clear list [All lists)]

This command clears all the lines in the current list and frees the memory they occupy. It
does not alter the definition of the list. If you Wear listas part of a reversible block, the

list lines will be reloaded when the method containing the reversible block finishes. The list
is only reloaded if it occupies 50,000 bytes of storage or less.

TheAll Lists option only clears the hash variable lists #L1 to #L8: all other lists including
task, class, instance and local variable listsnateleared by this command.

The following method builds a list of data formats depending on the type of graph selected
by the user. Before the method is built the list is cleared usingléae listcommand; this
ensures the list is initialized and completely empty of data.

Set current list Listl

Clear list

Add line to list (1,'Bloggs’,pSal)
or you can do it like this

Do LIST.$clear()

Clear main & connected

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Clear main & connected

This command clears the memory of current records from the main file and any files
connected to the main file. The windows are not automatically redrawn so you must follow
it with a Redraw window-nameommand if you want the screen to reflect the current state
of the bulffer.

You can use&lear main & connectetb release locked records to other users.

In the following example, the memory is cleared after Insert is canceled.

Prepare for insert

Enter data

If flag false
Clear main & connected
Quit method

End If

Chapter 5—Commands

Clear main file

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Clear main file

This command clears the main file record from the current record buffer. The command
does not clear the values taken from the other files.

The Clear main filecommand does not redraw the window so remember to include an
explicit Redraw window-nameommand if you want the screen to reflect the contents of the
buffer.

The Prepare for update mode is unaffected.

Clear main file
Redraw DataEntryWin

Clear method stack

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Clear method stack

This command cancels all currently executing methods and clears the method stack. A
Clear method stacht the beginning of a method terminates all the methods in the chain
which called the current method but without quitting the current method. $control() methods
are not cleared.

As each method calls another, a return point is stored so that control can pass to the
command followind®o methodor Do code methods the called method terminates. When
the current method terminates, control returns to the method which was running before it
was called.

The Clear method stackommand clears all the return points and is used if the method
commences a completely new operation. This command followedloyt anethods the
same aQuit all methods

WARNING It is unwise to clear the method stack if local variables have been passed as
fieldname parameters and you continue executing the current method. This will break alll
local variables on the stack.

Commands 163

164

; Calling method

Calculate CVAR1 as 1

Do method Message

; the following message never gets displayed
Do CVAR1+1

OK message {CVAR1=[CVAR1]}

; Message

Clear method stack

Do CVAR1+1

; This message prints CVAR1=2
OK message {CVAR1=[CVAR1]}
Quit method

Clear range of fields

Reversible: YES Flag affected: NO

Parameters: First data name
Final data name

Syntax: Clear range of fieldfirst-data-nameto final-data-name
This command clears the specified range of fields from the current record buffer.
When used in a reversible block, the fields cleared are restored when the method terminates.

; declare local vars Charl, Char2, Char3 of Character type
Call procedure (Charl,Char2,Char3) {Initialize}
Clear range of fields Charl to Char3

Clear search class

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Clear search class

This command clears the current search class so you can print a report using all records.
This also frees the memory required by the search class.

If you useClear search clasi a reversible block, the search class reverts to its former
setting when the method terminates.

Chapter 5—Commands

Commands

Set report name REPORTL1
Set search name SITEMS_0OS
Yes/No message {Do you want to use the search?}
If flag false
Clear search class
End If
Print report (Use search)

Clear selected files

Reversible: YES Flag affected: NO
Parameters: List of files
Syntax: Clear selected filedfjle1][,file2]...}]

This command clears the current record buffer of records from the specified files. The
command is particularly useful in a multi-user system where it may be necessary to remove
only certain files so that they are not locked.

In the method editor, a list of files is displayed. You can Ctrl/Cmnd-click on the file names
to select multiple names. If no file name or file list is specified, the command does nothing.

Clear selected files {flnvoices, fCustomers}
Redraw window instance winvoices ;; clear the window

Clear sort fields

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Clear sort fields

This command removes the sort fields that are currently active. This enables the data to be
printed without any sorting taking place. Alternatively, the command removes the current
sort fields so you can specify new sort levels > sort field

If you useClear sort fieldsn a reversible block, the original sort values are restored when
the method terminates.

Clear sort fields

Set sort field TITLE (Upper case)
Send to screen

Print report

165

166

Clear timer method

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Clear timer method

This command clears or cancels the current timer method. Usually a timer method remains
in operation until the library is closed or an error occurs. In a reversible block, the current
timer method is restored when the method terminates.

; Set Timer

Set timer method (60 sec) MENU/Timer

OK message {Now play the minute waltz!}

; Timer

OK message {Timer method triggered once only}
Clear timer method

Close all designs

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Close all designs

This command closes all the design windows currently open, including all Browser and
instances of the method editor.

Close all windows

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Close all windows

This command closes all open window instances in all open libraries, and automatically
cancels any working message. Tlese all windowgommand does not close private
instances which do not belong to the current task.
Update files
Yes/No message {Have you deleted all for now?}
If flag true
Close all windows
End If

or you can do it like this
Do $iwindows.$sendall($close)

Chapter 5—Commands

Close check data log

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Close check data log

This command closes the check data log if it is open. The command is not reversible and the
flag is not affected.

; Check Data
Check data (Check records) {MYDATA.ACCOUNT}
If flag true
Yes/No message {View log?}
If flag true
Open check data log (Do not wait for user)
End If
; leaves log window open
Else

OK message {The check data file command could not be carried out,
please make sure that only one user is logged onto the data file}

End If
; Close Log
Close check data log

Commands 167

168

Close client import file

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Close client import file

This command closes the current client import file. After finishing with the current import
file, be sure to close it using this command. If the file is already closed, nothing will happen.
If it is open, OMNIS will ensure that all current data is flushed to the file and the file is
closed. Youmustclose the import file before you import the data into an OMNIS data file.

; Get file from VAX
Set client import file name {xprimportFile}
Open client import file
Perform SQL {select * from customers}
Retrieve rows to file
Close client import file
If flag true
OK message {Comms with VAX successful}
Else
OK message {Comms with VAX unsuccessful}
Quit method
End If
; next, you import the fields from the file using a While loop with
; Import field from file. Not a good way of downloading, but the
; file could be imported by another program such as a spreadsheet.

Close cursor

Reversible: NO Flag affected: YES
Parameters: Cursor name
Syntax: Close cursor{tursor-name}

This command closes the named cursozutsor-names not given the current cursor is
closed. If there is only one remaining cursor in the session this command quits the session.
Itis the same as

Set current cursor {SQL_1}
Quit cursor(s) (Current)

Chapter 5—Commands

Commands

Close data file

Reversible: NO Flag affected: YES
Parameters: Internal name (of open data file)
Syntax: Close data file{internal-name}

This command closes the open data file with the specified internal name, or closes all the
open data files if no name is specified. It sets the flag if at least one data file is closed. It
clears the flag and does nothing (that is, does not generate a runtime error) if the specified
internal name does not correspond to an open data file.

If #UL > 4
Close data file {Datal}
Open data file {Data2}
Set main file {fPictures}

Close DDE channel L

Reversible: NO Flag affected: NO
Parameters: O All channels
Syntax: Close DDE channelAll channels)

DDE command, OMNIS as client. This command closes the current channel. If you use the
All channels option, all open DDE channels are closed. No error occurs if the current
channel is not open.

Set DDE channel number {2}
Open DDE channel {OMNIS|COUNTRY?}
If flag false
OK message {Country library not running}
Else
Do method TransferData
Close DDE channel
OK message {Update finished}
End If

169

170

Close design

Reversible: NO Flag affected: YES
Parameters: Class name
Syntax: Close desigiclass-name}

This command closes the specified design window. Trying to close a class which is not
open simply clears the flag.

Close design {MYMENU}

Close import file

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Close import file

This command closes the current import file. You should use it once the data has been read
in.

Set import file name {Data}

Prepare for import from file {Delimited (commas)}
Import data {list1}

End import

Close import file

Close library

Reversible: NO Flag affected: YES
Parameters: Internal name (default is all libraries)
Syntax: Close library {internal-name}

This command closes the open library file with the specified internal name, or closes all the
open library files if no name is specified. It sets the flag if at least one library file is closed.
It clears the flag and does nothing if the specified internal name does not correspond to an
open library.

Note that the internal name for a library defaults to its physical file name from which the
path and DOS extension has been removed Offen librarycommand also lets you
specify the internal name (see the example below).

Chapter 5—Commands

Commands

Closing a library closes all windows, reports, and menus belonging to that library which are
open or installed. It also disposes of the CRBs for the file classes and class variables
belonging to that library, closes all lookup files opened by that library, and if there is a
running method from that library on the stack, clears the method stack. If the method stack
is cleared, the command following the current executing command will not execute, and it is
not possible to test the flag value returned from the command.

Open library MYLIB.LBR

Open library YOURLIB.LBR/ALIAS
Close library MYLIB

Close library ALIAS

Close lookup file

Reversible: NO Flag affected: YES
Parameters: Lookup name
Syntax: Close lookup file flookup-name}

This command closes the lookup file which matches the reference name given in the
parameters. Each lookup file is given a reference label when it is opened. For example,
"City" in:

Open lookup file {City/LOOKUP.DF1/FCITIES}

OK message {The city you require is [lookup(‘City',S1)]}

Close lookup file {City}

If the reference label given in ti@pen lookup fileommand is omitted, you can omit the
lookup name in th€lose lookup fileommand. If the specified lookup file is closed, the
flag is set; if the lookup file doesn't exist, the flag is cleared.

Close other windows

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Close other windows

This command closes all but the top window instance. As window instances are not
automatically closed in OMNIS, you can use this command to close all window instances
except the top window instance. TGwse other windowsommand does not close private
instances which do not belong to the current task.

If sys(51) ;; more than 1 window open?
Close other windows ;v close the others
End If

171

Close port

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Close port

This command closes the current port. You should use it after the data has been transferred.

Set port name {1 (Modem port)}
Set port parameters {1200,n,7,2}
Repeat

Import field from port into CVAR1
Until CVAR1="start data'
Do method ImportData
Close port

Close print or export file

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Close print or export file

This command closes the current print or export file. You use it after the data has been
written to the file. If the file is left open, subsequent data printed to the file is added to the
end of the earlier data.

Send to file

Set print file name {MyText}
Set report name MyReport
Print report

Close print or export file

Close task instance

Reversible: NO Flag affected: NO
Parameters: Task instance name
Syntax: Close task instandask-instance-name

This command closes the specified task instance. Alternatively you can use the $close()
method to close a task instance.

172 Chapter 5—Commands

Commands

Close top window

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Close top window

This command closes the top window instance. As window instances are not automatically
closed in OMNIS, you can use this command to close the top window. No error occurs if
there is no window open. This command clears the flag and does nothing if the top window
is a private instance not belonging to the current task.

If sys(50) = wCustomerEntry ;; check the top window
Close top window

End If

or do it like this

Do $topwind.$close()

Close window

Reversible: NO Flag affected: YES

Parameters: Window instance name

Syntax: Close windowwvindow-instance-name

This command closes the specified window insta@tese windowclears the flag and does

nothing if the window is a private instance belonging to the current task. Alternatively you
can use the $close() method to close a window instance.

Open window instance WEXPORT/winst1
Do method ExportData
Close window winstl

or you can do it like this
Do $iwindows.WINDOWINST.$close()

173

174

Close working message

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Close working message

This command closes the current working message. No error occurs if there is no working
message displayed. Working messages close themselves when methods stop running and
control returns to the user.

Once a working message is displayed, a call to another method leaves the message on the
window. The message is not cleared automatically until the first method ends.

Working message {[LVAR1]} ;; show the message

Do method PrintReport ;1 Working message still there
Close working message ;1 Working message gone
; Comment

Reversible: NO Flag affected: NO
Parameters: Message (comment text)

Syntax: ; [comment-text

This command adds a comment to a method. When entering a method, you can select the
Commentommand from the command list by typing a semicolon. OMNIS prefixes
comments in your code with a semicolon ";". Also, you can add “in-line” comments to all
commands at the bottom of the method editor screen. These are prefixed by two semicolons
";". Comments have no effect in your code, but do slow down method execution. Therefore
you should avoid placing comments inside for and repeat loops, or any code that is called
repeatedly.

You can turn lines of code into comments by selecting them and usi@gitimraent
Selected Linesmenu item in the debugger. Alternatively, you can press Ctrl/Cmnd-;
(semicolon) to comment selected lines of code, or Ctrl/Cmnd-' (apostrophe) to uncomment
code. Code will uncomment only if it has valid syntax, otherwise it will remain commented
out. When you uncomment existing comments that also contain in-line comments, the in-
line comments will be lost.
) here are some comments
; variable delay set by LVAR2
; adjust Until calculation to suit computer speed if required
Calculate LVAR1 as 1
Repeat ;; this is an in-line comment

Calculate LVAR1 as LVAR1+1
Until LVAR1 >= LVAR2*10

Chapter 5—Commands

Commit current session

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Commit current session

This command commits any changes made to the server tables follovingarte SQL

script, that is, it issues an explicit instruction to make permanent any changes made to the
server. It allows a finer control of transaction management than the defittommit

action. WithAutocommit (On)OMNIS will commit all uncommitted statements after a
successfuExecute SQL scrigt the nexBegin SQL scriptLogoff from hosbr Reset
sessiorand rollback all unsuccessful statements after an unsuccessfuite SQL script

You can us€Commit current sessioonly whenAutocommiis off.

Autocommit (Off)
: must be off for Commit to work
Begin SQL script
SQL: Delete Elements where ATNO > 50
End SQL script
Execute SQL script
If flag true

Commit current session
Else

Rollback current session
End If

Autocommitvaits for the nexBegin SQL scripbefore committing. Some servers close
cursors on committing and dispose of the select table by waiting for thBegirt SQL
script

Context help

Reversible: NO Flag affected: YES

Parameters: Command mode
Help file name
Context id

Syntax: Context held command-modé(‘help-file-name[,contexiid])]}

This command provides context help to the user. You specify a command mode option, and
depending on the mode you can specify the help file name and context id. The command
mode options are constants listed in the Catalog.

kHelpContextMode
initiates context help mode, showing a ‘?’ cursor.

Commands 175

176

kHelpContext ("helpfile name’, context id)
opens a general help window for the topic specified.

kHelpContextPopup (helpfile name’, context id)
opens a popup help window for the topic specified.

kHelpContents ('helpfile name’)
opens the help file at the contents page.

kHelpQuit (helpfile name’)
closes window mode help.

Some options do not work on all platforms.

To implement context help for an object or area, you set the help id as a decimal value in
the $helpid property of a class or object, including windows, menus, and toolbars. You can
make your custom help file which must be placed in the Help folder and the name entered in
the library preference property $clib.$prefs.$helpfilename.

When the user clicks on an object with the help cursor or presses the F1/Help key, OMNIS
looks for the help id. If it finds none for a window object, menu line, or toolbar control, it
then looks in the next higher containing object.

Context help {kHelpContext (‘MyHelp.hlp’,56789)}

; shows help topic 56789 from MyHelp.hlp in a general help window

Context help {kHelpContextPopup (‘MyHelp.hlp’,56789)}

; shows help topic 56789 from MyHelp.hlp in a popup help window

Context help {kHelpContextMode} ;; shows ? cursor and awaits click:

; when user clicks, shows a popup window with topic $cobj.$helpid

; from $clib.$prefs.$helpfilename located in the Help folder

Chapter 5—Commands

Commands

Copy list definition

Reversible: NO Flag affected: YES
Parameters: List or row name

O Clear list
Syntax: Copy list definitionlist-name[(Clear list)]

This command redefines the column headings of the current list by copying the columns and
data structure from the specified list. If the current list contains data and you do not clear
the list, no change is made to the internal structure of the list; in this case, columns are
neither added nor removed, merely renamed and the command is sirRiéafetiine list

When the current list is empty or tBéear list option chosen, the command is the
equivalent to 'Define the list so that it matches the specified list'.

Set current list LIST1

Define list {Field1Date, Field2Num, Field3Char}
Add line to list

Set current list LIST2

Define list {Field4Date, Field5Num, Field6Char}

Add line to list
; Now change list LIST2 definition to that of LIST1
Copy list definition LIST1 (Clear list)

or you can do it like this
Do LIST.$copydefinition(other LIST)

Copy to clipboard

Reversible: NO Flag affected: YES
Parameters: Field name
Syntax: Copy to clipboardffeld-namé

This command copies the contents of the specified field or current selection and places it on
the clipboard. In the case of a null selection when the cursor is merely flashing in a field and
no characters are selected, @@y to clipboarccommand will literally copy "nothing".

; copies one field to another then clears the first field
Copy to clipboard C_NAME

Paste from clipboard C_COMPANY (Redraw field)
Clear data C_NAME (Redraw field)

177

Create data file

Reversible: NO Flag affected: YES
Parameters: [Do not close other data

Data file name

Internal name (of new data file)

Syntax: Create data file(Do not close other dath)
{data-file-name[/internal-namé}

This command creates and opens a new and empty, single segment data file, which becomes
the "current" data file. You can specify the path name of the file to be created and the
internal name for the open data file.

TheDo not close other dateoption lets you have multiple open data files. If you uncheck
this option ,all open data files are closed even if the command fails.

If the disk file with the specified path name cannot be created (and opened), the flag is
cleared. Otherwise, the flag is set if the data file is successfully created and opened.

WARNING If the file and path name is the same as an existing data file, all segments for
that data file are deleted before the new file is created. If the data file was open, it is closed
and deleted; a new and empty data file is then reopened.
Yes/No message {Do you wish to add a new company}
If flag true

Do method InsertCompany

Create data file (Do not close other data)[CoCode].df1/[CoCode]

Open data file (Do not close other data)[CoCode].df1/[CoCode]
End If

or do it like this

Do $datas.$add(path,create,name)

178 Chapter 5—Commands

Create library

Reversible: NO Flag affected: YES

Parameters: O Do not close others
Library file name
Internal name

Syntax: Create library (Do not close other¥)library-name/internal-namé}

This command creates and opens a new library file. You specify the file name (and
pathname if you wish) and internal name of the library. The internal name is an alias that
you supply and use in your methods to refer to that library file.

If no internal name is specified, the default internal name is the disk name of the file with
the path name and suffix removed. For example, under Windows the internal name for
'CAMYFILES\TESTLIB.LBR' is TESTLIB. Similarly, under MacOS the internal name for
'hd:myfiles:testlib.lbr' is 'testlib'.

A Do not close othersption can also be specified so that you can open multiple libraries.
If the disk file with the specified path name cannot be created (and opened), the flag is
cleared and no libraries are closed. Otherwise, if the option is not specified, all other open
libraries are closed (s€#Hose libraryfor the consequences of closing a library).

WARNING If the path name is the same as an existing library, the existing library is
overwritten. If the existing library is open, it is closed and deleted and a new, empty library
is opened.
Switch sys(6)="M’
Case kTrue
Create library {HD200:OMNIS:MyLib/MyAlias}
Default
Create library {C:\OMNIS\MYLIB.LBR/MyAlias}
End Switch
;or do it like this
Do $libs.$add(path,create,name)

Commands 179

180

Cut to clipboard

Reversible: NO Flag affected: YES

Parameters: Field name
O Redraw field
O All windows

Syntax: Cut to clipboardfield-namé [([Redraw field[,All window§)]
This command cuts the contents of the specified field or current selection and places it on

the clipboard. In the case of a null selection when the cursor is merely flashing in a field and
no characters are selectéit to clipboardwill literally cut "nothing".

Cut to clipboard FIELD1 (Redraw field)
Paste from clipboard FIELD2 (Redraw field)

Declare cursor

Reversible: NO Flag affected: YES
Parameters: Cursor name

SQL script
Syntax: Declare cursocursor-namefor sql-script

This command defines a cursor for the current session and lets you send a SQL statement.
TheDeclare cursorcommand takes a hemrsor-nameand aSQL-scriptfor that cursor

that is to be executed for the current session. This command opens a session for the named
cursor if one does not exist.

Declare cursor EMP_CURSOR for SELECT * FROM EMP FOR UPDATE

Open cursor { EMP_CURSOR }

This command is the same as:

Set current cursor

Begin SQL script

SQL: SELECT * from EMP FOR UPDATE
End SQL script

Chapter 5—Commands

Default

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Default

This command marks the block of commands to be run when there is no matching case in a
Switchstatement. When &witch—Caseonstruct is used, thi2efaultcommand marks the
start of a block of commands that are executed if none of the precemegtatements are

executed.

Switch cTEXT
Case 'Fred'
OK message {Fred}
Break to end of switch
OK message {l never execute}
Case 'Jim'
OK message {Got Jim}
Break to end of switch
OK message {l never execute}
Default
OK message {Neither Fred nor Jim}
End Switch

Commands 181

Define list

Reversible: YES Flag affected: NO
Parameters: List of variables, file class field names, or file class name
Syntax: Define list{variablgfield1[,variablelfield]...}

This command defines the variables or file class field names to be used as the column
definitions for the current list; it should follo8et current listThe variables or fields used

in the definition also describe the data type and length for each column of data held. This
command clears the definition and data in the current list. When reversed, the contents and
definition of the current list are restored to their former values. Duplicate names are ignored
in your list of variables or fields.

; declare variable LIST1 of List type

Set current list LIST1

Define list {Field1,Field2,Field3}

; defines columns Fieldl, Field2, Field3 for the current list

Define list {Field1,Field2,Field3,Field1}

; same as above, ignores duplicate reference to Field1l

Define list {FileName}

; includes all the fields in the file class

Alternatively you can use the $define() method to define a list; in this case you don't need
to set the current list before executing this method

Do LIST1.$define(varl,var2,var3)
: defines columns varl, var2, var3 for LIST1

Do LIST1.$definefromtable(tablename)
; defines a list from a table class

Fixed Length Columns

Normally the length of a column is set by the type or length of the variable or field defined
for the column, therefore the column length for a default Character variable would be 10
million. However, when you define the list you can truncate the data stored in a column
using the notation VariableName/N. For example, to use the first 10 characters of the
variable CVARL1 in column 1 use

Definelist ~ {CVAR1/10,CVAR2,CVAR3}

182 Chapter 5—Commands

Define list from SQL class

Reversible: YES Flag affected: NO

Parameters: Table name
Parameters list

Syntax: Define list from SQL classqgl-class-name
[(parameter],parameter?...)]

This command defines the column names and data types for the current list based on the
specified schema, query, or table class. You can use it to redefine the format of the current
list, but usually it should follow &et current listommand. When reversed, the contents

and definition of the list are restored to their former values.

Set current list cList
Define list from SQL class {MySchema}

or do it this way
Do LIST.$definefromsglclass(MySchema)

Delete

Reversible: NO Flag affected: YES
Parameters: None

Syntax: Delete

This command deletes the current record in the main file without prompting the user to
confirm the command, so you should use it with caution. The flag is set if the record is
deleted, or cleared if there is no main file record. The flag is also clearedif thet wait
for semaphoresoption is on and the record is locked.

The following example deletes records selected by a search class.

Set main file {f_clients}
Set search name S_no_money
Find first on SURNAME (Exact match)
Repeat
Delete
Next
Until flag false

Commands 183

184

This example checks the semaphore and tells the user if the record is locked:

Do not wait for semaphores

Delete
If flag false
OK message (Sound bell) {Record in use and can't be delete d}
End If
Delete class
Reversible: NO Flag affected: YES
Parameters: Class name
Syntax: Delete clasgclass-name}

This command deletes the specified library class. It is not possible to delete a file class, an
installed menu or an open window. It is also not possible to delete a class if one of its
methods is currently executing, that is, if it is somewhere on the method stack. Deleting a
class does not reduce the library file size. It does, however, create free library file blocks so
that creation of another class may be possible without further increase in library size. Errors,
such as attempting to delete a name that does not exist, simply clear the flag and display an
error message.

Delete class {S_User}

Chapter 5—Commands

Commands

Delete client import file

Reversible: NO Flag affected: NO
Parameters: Client import file name
Syntax: Delete client import filgfile-name}

This command deletes the current import file that was namedeitblient import file

name It removes the file if possible but does not warn you if the file is open or if it doesn't
exist. You are responsible for deciding if the client import file name set previously is the
correct one.

Set client import file name {xprimportFile}

Open client import file

Begin SQL script

SQL: select cust_name, cust_city, credit_line from customer
End SQL script

Execute SQL script

Retrieve rows to file

Close client import file

Do method UseModem

If flag true

Delete client import file {xprimportFile}
End If
Delete data
Reversible: NO Flag affected: YES
Parameters: File class name (that is, slot name)
Syntax: Delete datdfile-name}

This command deletes all the data and indexes for a specified file in a data file. The data
and indexes for a file class are called a "slot". You can delete a slot only if and when one
user is logged onto the data file.

If a specified file name does not include a data file name as part of the notation, the default
data file for that file is assumed. If the file is closed or memory-only, the command does not
execute and returns flag false. If you are not running in single user mode, the command
automatically tests that only one user is using the data file (the command fails with the flag
false if this is not true), and further users are prevented from logging onto the data until the
command completes.

If a working message with a count is open while the command is executing, the count will
be incremented at regular intervals. The command may take a long time to execute, and it is
not possible to cancel execution even if a working message with cancel box is open. The

185

command sets the flag if it completes successfully and clears the flag otherwise. It is not
reversible.

Delete data {MYDATA.FILE1}
If flag true
OK message {Data for FILE1 deleted}
Else
OK message {Data could not be deleted; too many users}
End If

or do it like this
Do $datas.DATAFILE.$slots. SLOTNAME.$delete()

Delete line in list

Reversible: NO Flag affected: YES

Parameters: Line number (can be a calculation, default
is current line)

Syntax: Delete line in list{line-number}

This command deletes the specified line of the current list by moving all the lines below the
specified line up one line. If the line number is not specified or if it evaluates to 0, the
current lineLIST.$lineis deleted. The line in a list selected by the user can determine the
value of LIST.$line and is the line deleted if no parameters are specified. LIST.$line is
unchanged by the command unless it was the final line and that line is deleted; in this case
LIST.$line is set to the new final line number. The command never releases any of the
memory used by the list.

The flag is cleared if the list is empty or if the line is beyond the current end of the list;
otherwise, the flag is set.

This example deletes the first five lines of the currentlMAR1is used as a counter; each
time through thedop, the first line is deleted and all the following lines move up one line
Calculate LVAR1 as 5 ;; LVARL1 is the loop counter
Calculate LIST.$line as 1
Repeat
Delete line in list :: deletes line number LIST.$line
Do LVAR1-1
Until LVAR1=0
; LIST.$line is still equal to 1

or do it like this

Do LIST.$remove(row number)

186 Chapter 5—Commands

Delete selected lines

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Delete selected lines

This command deletes all the selected lines from the current list. This is carried out in
memory and has no effect on the lists stored in the data file urifeepare for
Edit/Updatecommand is performedlIST.$lineis unaffected unless it is left at a value
beyond the end of the list, in which case it is séil 8T.$linecountThe following example
results in a list of one line, with a value of 3 stored in it:

Set current list LIST1
Define list {LVAR1}
Calculate LVAR1 as 1
Repeat
Add line to list
; Adds lines to end of list
Calculate LVAR1 as LVAR1+1
Until LVAR1=6
Select list line(s) (All lines) ;; selects all the lines
Invert selection for line(s) {3}
Delete selected lines ;; deletes all but line 3
Redraw lists

Delete with confirmation

Reversible: NO Flag affected: YES
Parameters: Message (text)
Syntax: Delete with confirmation{messagd}

This command displays a message asking the user to confirm or cancel the deletion and, if
confirmation is granted, deletes the current record in the main file. An error is reported if
there is no main file.

If a message is not specified, OMNIS uses a default message. The message can contain
square-bracket notation which is evaluated when the command is executed. If the current
record is deleted, the flag is set, otherwise it is cleared. Doheot wait for semaphores
option is on, the flag is cleared if the record is locked.

Commands 187

188

This example allows selected records in the main file to be deleted:

Set main file {f_clients}

Set search name S_no_money

Open window instance W_show_balance

Find first on SURNAME (Use search)

While flag true
Redraw W_show_balance
Delete with confirmation {Delete [SURNAME]'s record?}
Next (Use search)

End While

Describe cursors

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Describe cursors

This command creates a select table that lists all the available cursors within the current
session. There is one row for each open cursor. The resulting list has one column only:

Column 1
Cursor name

You can read the select table into a list uBogd list from select tableVhen you create a
session with multiple cursors, you can build a list of the cursors as follows:

; declare class variable CLIST of List type

; declare class variable COL of Character type
Set current list CLIST

Define list {COL}

Describe cursors

Build list from select table

Chapter 5—Commands

Commands

Describe database

Reversible: NO Flag affected: YES
Parameters: Tables or Views option
Syntax: Describe databag@ablegViews)

This command creates a select table for either Tables or Views available to the current
session.

Tables

When theTablesoption is specified, thBescribe databaseommand creates a select table
with one row for each Table available to the current session.

Column 1
Table name

A data dictionary query is sent to the server and you can read the select table into a list
usingBuild list from select tableThis example builds a select table of available Tables and
reads it into the current list:

; declare class variable TLIST of List type
Set current list TLIST

Define list {#S5}

Describe database (Tables)

Build list from select table

Views

When theViews option is specifiedDescribe databasereates a select table with one row
for each View available to the current session.

Column 1
View name

This example builds a list of available views and creates special file classes within OMNIS
so that server data can be mapped to them:

Set current list LVIEWS ;; LVIEWS contains a column called VIEWNAME
Describe database (Views)
Build list from select table
For each line in list from 1 to $linecount step 1
Describe server table (Columns) {[Ist(VIEWNAME)]}
Make schema from server table {[Ist(VIEWNAME)]}
End For

189

190

Describe results

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Describe results

This command creates a list which describes the columns in the select table. The data
returned byDescribe resultss placed automatically into the current list.

When processing a select table, you carDesEribe resultsit any point to create a list

which describes the columns in the select table. This is done without disturbing the select
table and no fetches are done. Also, no calBuitd list from select tabler Fetch next row

are required.

The information returned Hyescribe resultés as follows:

Col Column description

Column name

OMNIS data type for each column in the select table

Defined or maximum data length (for Character columns only)
Number of dp (for numeric columns); empty for floating numbers
5 NULL or NOTNULL (for SQL Server only.)

A WODN PR

This example builds a simple select table and Dsssribe result$o make a list of
columns and their types:

Set current list LIST_RESULTS

Define list {COL1..COL7}

Begin SQL script

SQL: Select Name, Town, Tel from Clients

SQL: Where Town = 'London’

End SQL script

Execute SQL script

Describe results

Chapter 5—Commands

Commands

Describe server table

Reversible: NO Flag affected: YES

Parameters: Columns or Indexes option
Server table name

Syntax: Describe server tabl€olumngindexes) {server-table-name}

This command creates a select table which describes the Columns or Indexes for the
specified remote server table.

Columns

When you specify th€olumns option, theDescribe server tableommand creates a select
table with one row for each Column of the specified remote server table. The information
about the Columns of a remote server table is listed as follows:

Col Description

Column name

Standard SQL data type for each column

Column length (for Char columns)

Number of decimal places (for numeric cols only), empty for floating Nos.

NULL or NOTNULL; where available

Empty; reserved for index info

7 Description for the column; where available

O 00 WODN B

You can obtain this information by issuing a query to the server data dictionary and
converting the base data types to OMNIS data types.

; declare class variable CLIST of List type

; declare class vars COL1, COL2, COL3 of Character type

Set current list CLIST

Define list {COL1,COL2,COL3}

Describe server table (Columns) { MyTable }

Build list from select table

OK message {There are [CLIST.$linecount] columns in the table}

You can make a schema class based on the select table createDéxsctitee server table
(Columns)command using thiglake schema from server taldemmand, as follows

Describe server table (Columns) {TableName}
Make schema class from server table {SchemaName}

191

192

Indexes

When you specify thindexesoption, theDescribe server tableommand creates a select
table that lists the unique indexes for the specified remote server table.

Col Description
1 Unique indexed column name
2 Name of the index used for the column (in column 1 of the list)

3 Numeric position of the column within a composite index
(defaults to 1 for non-composite indexes)

You can obtain a list of non-unique indexes by adding the /N switch to the command, for
example

Describe server table (Indexes) {MyTable/N}

You can obtain a list of all indexes by adding the /A switch to the command. The default
switch /U lists the unique indexes, and can be left in or out of the command. This command
lets you write general purpose data handling methods, for example

; declare class variable KEY_LIST of List type
; declare class variable KEY_NAME of Character type
; declare parameter variable TABLE of Character type
; Pass name of table to this method
Set current list KEY_LIST
Define list {KEY_NAME}
Describe server table (Indexes) {[TABLE]}
Build list from select table
Begin SQL script
SQL: Delete from CUSTOMERS where wherenames("KEY_LIST)
End SQL script
Execute SQL script
If flag false
OK message {Can't delete row for [TABLE]}
Else
OK message {Row deleted}
End If
; Assumes that you have set up a specification
; for the record to delete in the OMNIS field

Chapter 5—Commands

Commands

Describe sessions

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Describe sessions

This command creates a select table that lists all the available sessions. There is one row for
each open session, that is, one row per cursor/session combination. You can read the select
table into a list usin@uild list from select tableThe columns in the select table are:

Column 1 Column 2 Column 3
Cursor name Session name Remote database

When you create multiple sessions, you can build a list of them as follows:

; declare class variable CLIST of List type

; declare class vars COL1, COL2, COL3 of Character type
Set current list CLIST

Define list {COL1,COL2,COL3}

Describe sessions

Build list from select table

193

194

Deselect list line(s)

Reversible: NO Flag affected: YES

Parameters: Line number (can be a calculation, default is
current line)
O All lines

Syntax: Deselect list line(s)(All lines)] [{line-number}

This command deselects the specified list line. The specified line of the current list is
deselected and is shown without highlight on a window list field when redrawn. You can
specify the line number as a calculation. Riidines option deselects all lines of the
current list. When a list is saved in the data file, the line selection state is stored. The
following example selects all but the middle line of the list:
Set current list LIST1
Define list {LVAR1}
Calculate LVAR1 as 1
Repeat
Add line to list
Calculate LVAR1 as LVAR1+1
Until LVAR1=6
Select list line(s) (All lines)
Deselect list line(s) {LIST1.$linecount/2} ;; rounds to 3
; Or we could use Deselect list line(s) 3
Redraw lists

or do it like this
Do LIST.$selected.$assign(kfalse)

Disable all menus and toolbars

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Disable all menus and toolbars

This command disables all built-in OMNIS menus currently installed on the menu bar,
exceptEdit, and all toolbars including floating toolbars. OMNIS also disables any menus
and toolbars installed after tbesablecommand is executed. The menu lines and toolbar
controls are grayed out and cannot be selected. The Apple, Help, and Application menus
under MacOS are unaffected.

WARNING You should us®isable all menus and toolbars a reversible block.
Otherwise, if you disable all menus using this command @pditsall methodsommand is

Chapter 5—Commands

executed or an error occurs, the computer may have to be switched off and the program
restarted to reinstate the menus.
You can reverse this command with #eable all menus and toolbacemmand.
Begin reversible block
Disable all menus and toolbars
End reversible block
; do something with standard menus disabled
; menus are enabled when method ends

or do it like this

Do $imenus.$sendall($disable)

Disable automatic publications ‘.
Reversible: YES Flag affected: YES

Parameters: None

Syntax: Disable automatic publications

This command turns off the automatic publication of all published fields. It affects only
those fields which have been published automatically, that is, whose publisher options have
been set up. The command can be reversed by Eealgle automatic publicatiorend if

used within a reversible block, tBésable automatic publicationrsommand is reversed,
restoring the automatic publications to their former state when the method terminates.

When a library is launched, automatic publications are enabled. The command clears the
flag and does nothing if System 7 is not running. If System 7 is running, the command sets
the flag.

Publish field CNAME {HD80:Public:Sales-Name}

Publish field CTOTAL {HD80:Public:Sales-Total}
Set publisher options (Publish on save) {CNAME,CTOTAL}

Disable automatic publications
Prepare for edit

Enter data

Update files if flag set

Enable automatic publications

Commands 195

196

Disable automatic subscriptions ‘_

Reversible: YES Flag affected: YES
Parameters: None
Syntax: Disable automatic subscriptions

This command turns off the automatic update of all subscribed fields. It affects only those
fields which have been subscribed automatically, that is, whose subscriber options have
been set up. The command can be reversed by Hsialgle automatic subscriptiorsd if

used within a reversible block, tBésable automatic subscriptiom®mmand is reversed,
restoring the automatic publications to their former state, when the method terminates. The
command clears the flag and does nothing if System 7 is not running. If System 7 is running,
the command sets the flag.

When a library is launched, automatic subscriptions are enabled.

Subscribe field CNAME {HD80:Public:Sales-Name}
Subscribe field CTOTAL {HD80:Public:Sales-Total}
Set subscriber options (Subscribe automatically) {CNAME,CTOTAL}

Disable automatic subscriptions
Prepare for edit

Enter data

Update files if flag set

Enable automatic subscriptions

Disable cancel test at loops

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Disable cancel test at loops

This command prevents OMNIS from quitting a loop when the user presses Ctrl-Break
under Windows or Cmnd-period under MacOS. Normally, whBeeabr While

command is executed, OMNIS tests for a break command. Also, periodic Cancel tests are
performed during lengthy commands such as searcheBualddists You useDisable

cancel test at loop® turn off the test when updating files, for example.

Cancel keys and clicks on a Cancel pushbutton are ignored even if a working message with
a Cancel box is included in the method but you canfusceledto include an explicit

check for Cancel within the loop. The command is reversedBaittile cancel test at

loops whenever a new library is selected, or if placed in a reversible block.

Chapter 5—Commands

Commands

: This deletes all records where code = 'ABC'
Calculate CODE as '‘ABC'
Find on CODE
Disable cancel test at loops
While flag true
Working message (Repeat count)
Delete
Next on CODE (Exact match)
End While

Disable enter & escape keys

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Disable enter & escape keys

This command disables the Enter and Escape keys or Cmnd-period under MacOS, that is, it
disables the keyboard equivalents of the OK and Cancel pushbuttons. You can use it during
enter data mode to prevent the user from prematurely updating records by hitting the Enter
key, to attempt to start a new line, for example. The option will remain set until either it is
reversed with aEnablecommand, a new library is selected, or it is reversed as part of a
reversible block.

Before using this command in a method that initiateSreier datacommand, ensure that
the user has some way of ending data entry, that is, by installing an OK and a Cancel
pushbutton, or by using a $control() method that detects the end of data entry.
Begin reversible block
Disable enter & escape keys
End reversible block
Set main file {FCLIENTS}
Prepare for edit
Enter data
Update files if flag set

Disable fields

Reversible: YES Flag affected: NO
Parameters: Field name or list of field names
Syntax: Disable fielddfield1[,field2,..]}

This command disables the specified field or list of fields, making them inactive during
Enter dataandPrompted find Thus the data entry cursor skips a disabled entry field when
in data entry mode, find, and so on, and disabled pushbuttons cannot be clicked. If an entry

197

198

field with scroll bar is disabled, you can tab to it but not change the data. You can reverse
Disable fieldsor enable a display field usiignable fields
Begin reversible block
Disable fields {Entry1,Entry2}
End reversible block
Do method CheckCredit
: method ends and fields are enabled

or to disable all the fields on the current window
Do $cwind.$objs.$sendall($ref.$enabled.$assign(kFalse))

Disable menu line

Reversible: YES Flag affected: NO

Parameters: Menu instance name
Menu line number

Syntax: Disable menu linenenu-instance-name/menu-line-number

This command disables the specified line of a menu instance, that is, the menu line becomes
grayed out and cannot be selected. You specifynénau-instance-namand the number of

the menu line you want to disable. You can disable a complete menu instance by disabling
line zero, that is the menu title.

You can reversBisable menu linevith theEnable menu lineommand or, you can use it
in a reversible block. Nothing happens if the specified menu instance is not installed on the
menu bar.
Install menu STARTUP/minstl
Begin reversible block

Test for menu installed {minst1}

If flag true

Disable menu line minst1/1

End If

Do method ProcessData
End reversible block
; now menu line is enabled

or do it like this
Do $menus.MENU.$obj.LINE.$enabled(kfalse)

Chapter 5—Commands

Commands

Disable receiving of Apple events ‘_

Reversible: YES Flag affected: NO
Parameters: [Disable compulsory events
Syntax: Disable receiving of Apple event@isable compulsory evenis)

This command prevents OMNIS libraries from being sent Apple events. When you launch
an OMNIS library, receiving of Apple events is disabled by default: you use this command
to reverse th&nable receiving of Apple everdsmmand. All Apple events are disabled
except the four compulsory even®pen applicationQuit application Open documents
andPrint documents)unless you check tHgisable compulsory eventsption.

Whenreceived byOMNIS, the compulsory events do the following:
U Open applicatiodaunches OMNIS,

O Quit applicationquits OMNIS,

O Open documerbads a library or report,

O Print documenbpens a library, and prompts the user for a report to print.

Disable receiving of Apple events
Prepare for edit

Enter data

Update files if flag set

199

Disable relational finds

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Disable relational finds

This command reverses the actiorEofable relational findsThe default situation is
reinstated, that is, the main file and its connected parent files are joined using the OMNIS
connection.

Set main file {INVOICES}
Enable relational finds {CUSTOMERS, INVOICES}
Set search as calculation {C_CODE = INVC_CODE}
Set sort field INVNUMBER
Find first (Use search, use sort)
While flag true

; process invoices

Next
End While
Disable relational finds
Do
Reversible: NO Flag affected: NO
Parameters: Calculation
Return field
Syntax: Do calculation [returnsreturn-field

This command executes the specifiadtulation,which is typically some notation that
operates on a particular object or part of your library. It returns a value if you specify a
return-field, which can be a variable of any type.

Do $clib.$windows.winl.$open('winl' ,kWindowMaximize)

; opens a window instance maximized

Do $winds.winst1.$bringtofront()

; brings a window instance to the front

Do $topwind.$objs.EntryField1.$redraw()

; redraws EntryField1 on the top window

Do $winds.$sendall($ref.$objs.EntryField1.$redraw())

; redraws EntryField1 on all window instances

The optional return field can be used to check whether the operation succeeded.

You also uséo to assign a property
Do $cobj.textcolor.$assign(kRed) Returns myFlag

200 Chapter 5—Commands

or to return an operation on a variable

Do iNum+5 Returns iNum
Do $clib.$windows.$makelist($ref.$name) Returns cWindowList

Note that where the return field is an item reference, the command sets the reference but
does not assign to it: you must do this v@@lculateor Do Itemref.$assign(value).

Do code method

Reversible: NO Flag affected: NO

Parameters: Code class name
Method name
Parameters list
Return field

Syntax: Do code methodode-class-namenethod-name
[(parameter],parameter?...)] [returnsreturn-field|

This command runs the specified code class method, and accepts a value back from the
called method. The specifiedethod-namenust be in the code classde-class-namélhe
command accepts a value back from the called method if you speeityfield The

return field can be a variable of any type.

When a code class method is executed using this command, control is passed to the called
method but the value of $cinst is unchanged, therefore the code in the code class method
can refer to $cinst. When the code class method has executed, control passes back to the
original executing method. The current task is not affected by execution moving to the code
class.

For example, the following method is placed behind a toolbar button and runs a general
purpose method Printinvoice in a code class called PrintMethods.

On evClick ;; toolbar button method
Do code method PrintMethods/PrintInvoice

You could use the same code class method from a menu, such as

; line method for menu class
Do code method PrintMethods/PrintInvoice

Commands 201

Passing Parameters

You can include a list of parameters with e code methodommand which are passed

to the called method. For example, the following command calls the method named
EndOfMonth in the CINVOICE code class, and passes the current values in InvDate,
InvTotal, and the result of the calculation InvNet*15/100. The values are received by the
parameter variables in the order they appear in the variable pane of the called method. If the
called method has fewer parameters than values passed to it, the extra values are ignored.

Do code method CINVOICE/EndOfMonth (InvDate,InvTotal,InvNet*15/100)
; EndOfMMonth method
: Declare Parameter vars P1, P2, and P3 to receive values

Note that where the return field is an item reference, the command sets the reference but
does not assign to it: you must do this v@@lculateor Do Itemref.$assign(value).

Do default

Reversible: NO Flag affected: YES
Parameters: Return field

Syntax: Do default [returnseturn-field]

This command is used within the code for a custom attribute, and performs the default
behavior for the built-in attribute with the same name as a custom attBloudefaultsets
the flag if some built-in processing for the attribute exists.

For example, you could define a custom attribute, called $horzscroll.$assign, that assigns a
horizontal scroll bar. If the window is over 20 pixels wide the default behavior for
$horzscroll.$assign is called, that is, a scroll bar is added, otherwise a scroll bar is not
allowed.

; $horzscroll.$assign
; Declare parameter Switchon of type Boolean
If Switchon & $cinst.$width < 20

Quit method :; window too narrow for a scroll bar
Else

Do default ;; assign a horz scroll bar
End If

Note that where the return field is an item reference, the command sets the reference but
does not assign to it: you must do this v@ilculateor Do Itemref.$assign(value).

202 Chapter 5—Commands

Commands

Do inherited

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Do inherited

This command runs the superclass method with the same name as the currently executing
method in the current subclass. For example, you caDaiggheritedin the $construct()

method of a subclass to execute the $construct() method of its superclass. Similarly you can
run the $destruct() method in a superclass from a subclass.

; $construct method
Do inherited ;; do superclass construct

Do ;; make your own settings
$destruct
Do ;; reverse your own settings

Do inherited ;; do superclass destruct

The flag is set if a method with the name of the current method is found in one of the
superclasses.

Normally a method in the current class takes precedence, but the inherited version of the
method can be executed using the Do inherited command. Alternatively you can use the
$inherited property with a method name

; $init method
Do inherited :; this is the same as Do $inherited.$init

203

Do method

Reversible: NO Flag affected: NO

Parameters: Method name
Parameters list
Return field
Syntax: Do methodmethod-nam¢g(parameter], parameter?...)]
[returnsreturn-field]

This command runs the specified method in the current class, and accepts a value back from
the called method. If you use tb® methodcommand in a field or line method, OMNIS
searches for the specified method in the field or line methods for the class, and then
searches in the class methods. If the specified method is not found there is an error.

The command accepts a value back from the recipient or receiving method if you specify a
return-field, which can be a variable of any type. Note that where the return field is an item
reference, the command sets the reference but does not assign to it: you must do this with
Calculateor Do Itemref.$assign(value).

When another method is executed using this command, control is passed to the called
method. When the called method has executed, control passes back to the original
executing method. Note that you should Deecode method you want to run a method in
a code class, that is, a method outside the current class.

Do method ProcessData

: OMNIS calls the method named ‘ProcessData’, then returns

; here and continues execution in this method

You can use the notation for the called method, for example
Do method $cclass.$methods.//ProcessData//

You can use $cinst, $cfield, and $ctask to specify a method in the current instance, field, or
task. For example

Do method $cinst.methodname
Do method $cfield.methodname
Do method $ctask.methodname

204 Chapter 5—Commands

Commands

Passing Parameters

You can include a list of parameters widb methodwvhich are passed to the called method.
For example, the following command calls the method named EndOfMonth and passes the
current values in INV_DATE, INV_TOTAL, and INV_NET*15/100. The parameters are
taken in the order they appear in the parameter list and placed in the parameter variables in
the called method.

Do method EndOfMonth (INV_DATE,INV_TOTAL,INV_NET*15/100)

; EndOfMMonth

; Declare Parameter vars P1 and P2

; now do something with these values...

; note that in this case the third parameter is ignored

Passing by Reference

You can pass a reference to a field by using the special parameter variable type Field
reference. This means that the called method can make changes to the field passed to it. For
example

Do method SetParameters (NUMBERL1)

; SetParameters method

; Declare parameter var P1 with type Field reference
Calculate P1 as 25

; NUMBERL1 and P1 are now changed to 25

Recursion

OMNIS allows a method to call itself, but will eventually run out of memory. For example

; Loop method
; command lines
Do method Loop

205

206

Do not flush data

Reversible: YES Flag affected: YES
Parameters: None
Syntax: Do not flush data

This command causes all data file operations to be carried out without writing the changed
data to disk at eadbpdate filesor Delete The command is designed to speed up data file
operations when the user is prepared to take the extra risk of data loss.

The command operates best when there is a single user logged into the data file. It is
unlikely to cause speed increase if the data is on a network volume (that is, shared by
several users).

If you useTest for only one usext the beginning of the method, further users are prevented
from opening the data file until the method terminates.

The command sets the flag if the state of the 'Do not flush data’' mode is changed. When
placed in a reversible block, the command restores the previous state of the ‘Do not flush'
flag upon the termination of the method.

; fast import via window
Test for only one user
If flag true
Do not flush data
Drop indexes
End If
Open window instance W_IMPORT
Set current list List1
Prompt for import file
Prepare for import from file {Delimited(tabs)}
Import data {List1}
End import
Close import file
For each line in list from 1 to $linecount
Prepare for insert ;; transfer list to file
Load from list
Update files
End For
Flush data now ;; writes the data immediately to disk
Rebuild indexes
Flush data ;; Changes mode back to 'Flush data'

Chapter 5—Commands

Do not wait for semaphores

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Do not wait for semaphores

This command causedl commands which set semaphores to return with a flag clear if the
semaphore is not available.

If Do not wait for semaphorés run first in a method, it will ensure that any subsequent
commands that lock records, suctPaspare for... Updatecommands, do not wait for
records to be released. It causes the command to return a flag false and control to return
immediately to the method, if a record is locked.

Semaphores

Semaphores are internal flags or indicators set in the data file to show other users that the
record has been required elsewhere for editing. Semaphores are only set when running in

multi-user mode, that is, the data file is located on a networked server, a Mac volume or on
a DOS machine on which SHARE has been run.

The commands which set semaphoresPaepare for editPrepare for insertUpdate files
andDelete and also, if prepare for update mode is on and the file acted upon is Read/Write,
Single file fingd Load connected recordSet read/write filesall types ofFind, Next and

Previous Update filescommands lock the whole data file while indexes are re-sorted.

TheEdit/Insertcommands always wait for a semaphore, as do automatic find entry fields.

Do not wait for semaphores
Prepare for edit
If flag true
Set read-only files {FLOOKUP}
Single file find on LO_CODE (Exact match)
If flag false
OK message {Can't find record [LO_CODE]}
Cancel prepare for update
Quit method kFalse
End If
Repeat
Working message (Cancel) {Locking record [LO_CODE]}
Set read/write files {FLOOKUP}
Until flag true
Repeat
Update files
Until flag true
End If

Commands 207

208

This method illustrates how any command which causes a change in record locking
requirements can fail (returning flag false). If, when in ‘Prepare for’ mo8mgle file find

cannot lock the new record, it returns a flag false. This could mean either that the record
could not be found, or that it was in use by another workstation. For this reason, it was made
read-only before th8ingle file findand then changed to read/write. Note also thatate

files can fail if the file cannot be locked while the indexes are re-sorted, that is:

Repeat

Update files
Until flag true

Do redirect
Reversible: NO Flag affected: YES
Parameters: Notation for the object
Return field
Syntax: Do redirectnotation[returnsreturn-field|

This command redirects execution from a custom attribute to any other method. You specify
the notation (or a calculation which evaluates to a reference to an object) for the recipient.
The recipient of the attribute being processed is $crecipient. The flag is set if the recipient
exists and handles the attribute with a built-in or custom attribute. For example

$methodl
Do $cwind.$setup ;; the call to $setup in current instance ..

$setup ;; for current instance
Do redirect $cwind.$objs.1005 ;.. is diverted ..

$setup ;; for object 1005 ;.. to here

Drop indexes

Reversible: NO Flag affected: YES
Parameters: File class name
Syntax: Drop indexedfile-name}

This command deletes all the indexes for the specified file apart from the record sequence
number index. This enables intensive operations such as data import to proceed without the
overhead of updating all the indexes. You canBigtd indexeso rebuild the indexes

which were dropped.

If the specified file name does not include a data file name as part of the notation, the
default data file for that file is assumed. If the file is closed or memory-only, the command
does not execute and returns with the flag false.

Chapter 5—Commands

Commands

If you are running on a shareable volume, OMNIS automatically tests that only one user is
logged onto the data file (the command fails with flag false if this is not true) and further
users are prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will
be incremented at regular intervals. The command may take a long time to execute, and it is
not possible to cancel execution even if a working message with cancel box is open.

The command is not reversible: it sets the flag if it completes successfully and clears it
otherwise, for example if there is more than one user logged onto the data file.

; Fast import via a window

Do not flush data

Drop indexes MFILE

Open window instance WIMPORT/winst1

Do method ImportData

Close window instance winstl

Duplicate class

Reversible: NO Flag affected: YES
Parameters: Class nhame/New name
Syntax: Duplicate clasgclass-name/new-name}

This command creates a new library class by duplicating an existing one. The name for the
new class is specified in addition to the class you want to duplicate. Errors, such as
attempting to use a name that is already in use, simply clear the flag and display an error
message.

Typical uses of this command are to allow users to make changes to reports and searches.

Duplicate class {S_Area/S_USER}
If flag true

Modify class {S_USER}

Set search name S_USER

Print report (Use search)
End If

209

210

Else

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Else

This command is used after Hrcommand to mark the beginning of some commands that
are carried out if the condition in the precedihgommand is false.

In the example below, the value of SEX is tested against the condition specifiedfin the
statement. If the condition fails, control branches to theHisst Ifstatement in the method.
If the condition again fails, control branches to Bt command.

If SEX="M'
OK Message SEX {Record is MALE}
Else If SEX="F'
OK Message SEX {Record is FEMALE}
Else
OK Message SEX (Sound bell) {Unknown for this record}
End If
:is the same as...
Switch SEX
Case ‘M’
OK Message SEX {Record is MALE}
Case 'F'
OK Message SEX {Record is FEMALE}
Default
OK Message SEX (Sound bell) {Unknown for this record}
End Switch

Else If calculation

Reversible: NO Flag affected: NO

Parameters: Calculation

Syntax: Else Ifcalculation

This command is used after Hrtommand to mark the beginning of some commands that

are carried out if the condition in the precedihgommand is false, or the calculation in the
Else Ifcommand is true.

In the example below, the value of SEX is tested against the condition specifiedfin the
statement. If the condition fails, control branches to theHisst Ifstatement in the method.
If the condition fails again, control branches to Bt command.

Chapter 5—Commands

Commands

If SEX="M'
OK Message {Record is MALE}
Else If SEX=F
OK Message {Record is FEMALE}
Else
OK Message {Sex unknown for this record}
End If

Else If flag false

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Else If flag false

This command is used after Hrstatement and provides a marker before a series of
commands that have to be carried out if the flag is false.
Open window instance WCHOOSE
Enter data
If VALUE >= 100
Print record

Else If flag false :» User canceled in Enter data mode
Close window WCHOQOSE
End If

Else If flag true

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Else If flag true

This command follows ali statement and provides a marker before a series of commands
that have to be carried out if the flag is true and if the value does not meet the condition
specified in théf statement.
; you use the Yes/No message to set or clear the flag
Yes/No message {Set flag with Yes or No}
If flag false
OK message {flag is 0}
Else If flag true
OK message {flag is 1}
End If

211

212

Enable all menus and toolbars

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Enable all menus and toolbars

This command enables all menus and toolbars. It reverses the adiisaloe all menus
and toolbars This command will not enable a menu which has been disabled by disabling
line zero. This menu can only be enabled by enabling line zerdwithle menu line

User-defined windows with the propedpablemenubarandtoolbarsturned off use a call
to Disable all menus and toolbats prevent menu bar access.

Disable all menus and toolbars

Prepare for edit

Enter data

Update files if flag true

Enable all menus and toolbars

or do it like this

Do $imenus.$sendall($ref.$enable)
Do $itoolbars.$sendall($ref.$enable)

Chapter 5—Commands

Commands

Enable automatic publications ‘_

Reversible: YES Flag affected: YES
Parameters: None
Syntax: Enable automatic publications

This command turns on the automatic publication of all published fields. It affects only
those fields which have been published automatically, that is, whose publisher options have
been set up a@ublish on save The command can be reversed by uiiggable automatic
publicationsand if used within a reversible block, theable automatic publications

command is reversed, restoring the automatic publications to their former state when the
method terminates.

When a library is launched, automatic publications are enabled. If System 7 is not running,
the command clears the flag and does nothing.

Publish field CNAME {HD80:Public:Sales-Name}
Publish field CTOTAL {HD80:Public:Sales-Total}
Set publish options (Publish on save) {CNAME,CTOTAL}

Enable automatic publications
Prepare for edit

Enter data

Update files if flag set

Disable automatic publications

213

214

Enable automatic subscriptions ‘_

Reversible: YES Flag affected: YES
Parameters: None
Syntax: Enable automatic subscriptions

This command turns on the automatic update of all subscribed fields. It affects only those
fields which have been subscribed automatically. The command can be reversed by using
Disable automatic subscriptiorad if used within a reversible block, tEaable automatic
subscriptioncommand is reversed, restoring the automatic publications to their former
state when the method terminates.

When a library is launched, automatic subscriptions are enabled. If System 7 is not running,
the command clears the flag and does nothing.

Subscribe field CNAME {HD80:Public:Sales-Name}
Subscribe field CTOTAL {HD80:Public:Sales-Total}
Set subscriber options (Subscribe automatically) {CNAME,CTOTAL}

Enable automatic subscriptions
Prepare for edit

Enter data

Update files if flag set

Disable automatic subscriptions

Chapter 5—Commands

Enable cancel test at loops

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Enable cancel test at loops

This command causes OMNIS to test for the break key at the end of each loop in the
method. It reverses thgisable cancel test at loogommand. Unless OMNIS has executed
aDisable cancel test at loopthis test is carried out automatically. The break key is when
the user presses Ctrl-Break under Windows or Cmnd-period under MacOS.

; this method deletes all records where code ='ABC":
Calculate CODE as 'ABC'
Find on CODE
Disable cancel test at loops
While flag true
Working message (Repeat count)
Delete
Next on CODE (Exact match)
End While
Enable cancel test at loops

Enable enter & escape keys

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Enable enter & escape keys

This command enables the Enter and the Escape keys (or Cmnd-period under MacOS). It
reverses the action of tidsable enter & escape kegemmand.

In some libraries where the user may accidentally press Enter and terminate enter data
mode, it is useful to disable the Enter key.

Commands 215

216

Enable fields

Reversible: YES Flag affected: NO
Parameters: Field name or list of field names
Syntax: Enable field{field1[,field2,..]}

This command enables the specified field or list of fields. You can use it to reverse the
Disable fieldscommand, or turn Display fields into Entry fields temporarily.

Begin reversible block
Enable fields {Entry1,Entry2}
End reversible block
Prepare for insert
Enter data
Update files if flag set
; method ends and fields are now disabled

or to enable all the fields on the current window
Do $cwind.$objs.$sendall($ref.$enabled.$assign(kTrue))

Enable menu line

Reversible: YES Flag affected: NO

Parameters: Menu instance name
Menu line number

Syntax: Enable menu linenenu-instance-naménenu-line-number

This command enables the specified line of a menu instance. It reverBesathie menu
line command. However, you cannot enable a line using this command if you have no
access to it, or if there is no current record. You specifyntreu-instance-namend the
number of the menu line you want to enable. The command clears the flag if the menu
instance is not installed or if the line cannot be enabled.

Install menu STARTUP/minstl
Test for menu installed {minst1}
If flag true
Enable menu line minst1/3 ;; enables menu line 3
End If

or do it like this
Do $imenus.MENU.$objs.LINE.$enable.$assign(kTrue)

Chapter 5—Commands

Enable receiving of Apple events ‘_

Reversible: YES Flag affected: YES
Parameters: None
Syntax: Enable receiving of Apple events

This command enables the receiving of Apple events. When you launch an OMNIS library,
receiving of Apple events is disabled by default, apart from the compulsory events. You can
disable the compulsory events using Bisable receiving of Apple everdsmmand with
theDisable compulsory event®ption checked.

The Apple events OMNIS receives may have been created by itself, another OMNIS
library, or by another System 7 application. A library in whictable receiving of Apple
eventshas been executed is able to receive the full range of Apple events implemented
under OMNIS.

Whenreceived byOMNIS, the compulsory events do the following:

O Open applicatiodaunches OMNIS,

O Quit applicationquits OMNIS,

U Open documerbads a library or report,

O Print documenbpens a library, and prompts the user for a report to print.

When enabled, OMNIS accepts events from the Core event suite, the Database event suite,
and the Finder event suite. The Core events received inSkntk data, Get da@ndDo

script, see theésend core evembmmand. The Database events are described wigetia
database everdommand. The Finder events are described witlsémel Finder event

command.

Include the following line in your STARTUP menu if you want to enable Apple Events:

Yes/no message {Do you want to accept Apple Events?}
If flag true

Enable receiving of Apple events
End if

Commands 217

Enable relational finds

Reversible: YES Flag affected: NO
Parameters: [0 Use connections
List of files
Syntax: Enable relational findq[Use connection§filel,file2[,file3]...}

This command causes all find tables to be built relationally, ignoring the main file. The file
list is a list of files to be joined and,flse connectionss checked, all connections between
the joined files are made when building the table. In effect, the connections provide the
relational joins, that is, "sequence number = sequence number”. So if there are three files:
F1, F2 and F3, with F1 (child file) connected to F2 (parent file) and F2 connected to F3:

Enable relational finds (Use connections) {F1,F2,F3}
Print report

will result in a child/parent/grandparent report. If you provide no other search conditions,
you would generate the SQL where clause for this report from the internal OMNIS
connections which would look like this: "...where F1.connection_number =
F2.sequence_number and F2.connection_number = F3.sequence_ number". When you use
key fields to join records, you use a search to set up the "Where" condition, for example:

Set search as calculation {(F1.city=F2.city) & (F1.date>=#D)}

Enable relational finds {F1,F2}
Build list from file (Use search)

This will generate a list containing fields from records from F1 and F2 which have the same
values in the "city" fields and with F1.date greater than today's date (and ignoring the
connection between F1 and F2 as well as the main file).

When relational finds are enabled, the index field specified for find and build list commands
is ignored. It is necessary to use a sort to determine the order of the table.

TheDisable relational findcommand causes a reversion to the default situation where the
main file and its connected parent files are joined using the connectioriEnabie

relational findsandDisable relational findsommands are both reversible and do not affect
the flag.

218 Chapter 5—Commands

Enclose exported text in quotes

Reversible: NO Flag affected: NO
Parameters: O Enable
Syntax: Enclose exported text in quotéEpable]

This command specifies that all text exported in tab-delimited and comma-delimited format
is enclosed in quotes; to enable this option you must run the command with the Enable
option checked. This command sets the $exportedquotes library preference which is
enabled (set to kTrue) by default. Exported literals that are already quoted will be further
enclosed in quotes, for example, "hello" becomes "hello™". You can turn off this option by
executing the command with the check box unchecked, or using the notation.

Set report name R_EXPORT1

Send to file

Prompt for print file

Enclose exported text in quotes (Enable)
Print report

or to disable the option with the notation
Do $clib.$prefs.$exportedquotes.$assign(kFalse) ;; turns it off

End export

Reversible: NO Flag affected: NO
Parameters: None

Syntax: End export

This command ends the export of data from an OMNIS list or row variable.

Set print or export file name {Export.txt}
Prepare for export to file {Delimited (commas)}
Export data LIST1

End export

Commands 219

220

End For

Reversible: NO Flag affected: NO
Parameters: None
Syntax: End For

This command ends a For loop. The two For Idépsfield valueandFor each line in list
perform looping type operations. TEad Forcommand terminates both these commands.

For LVARL from 1 to 10 step 2

; do something

End For

For each line in list from 1 to LIST.$linecount step 2
; do something

End For

End If

Reversible: NO Flag affected: NO
Parameters: None

Syntax: End If

This command terminates #nstatement once OMNIS has executed the commands inside
thelf statement; it also marks the end of the commands to be executed as pdft.dElge

If block. Once the commands associated withfth&lse Ifblock have been executed,
control passes to the next command dited If. For everyif command, you should have a
correspondindend Ifcommand.

Calculate Count as Count + 1
If Count = 25
OK message {Halfway through now}
Else If Count =50
Calculate Count as 1
End If

Chapter 5—Commands

Commands

End import

Reversible: NO Flag affected: NO
Parameters: None
Syntax: End import

This command ends the import of data without closing the port, DDE channel, or file
through which data is being imported.

Prompt for import file

Prepare for import from file {Delimited (commas)}
Import data {list1}

End import

Close import file

End print

Reversible: NO Flag affected: YES
Parameters: Report instance name

Syntax: End print freport-instance-namé}

This command terminates the specified report and prints the totals section. If you omit the
report instance name tld printcommand terminates the most recently started report
instance. The flag is cleared if no report instances exist.

End printcancels the Prepare for print mode. You must include it aReegare for print
command even if a totals section is not required.

You can print running totals of fields in the Record section by including the same fields in
the Totals section of the report. Provided you choose the Totaled property for the field in
the Record section, OMNIS automatically maintains a running total.

Set main file {f_client}
Set report name r_letters
Send to screen
Prepare for print
While flag true
Print record
Next
End While
End print

or do it like this
Do $ireports.REPORT.$endprint()

221

End print job

Reversible: NO Flag affected: YES
Parameters: None
Syntax: End print job

This command terminates a print job initiated vBgin print joband sends it to the
printer.

End print jobclears the flag and returns an error if a job has not been started. It sets the flag
if it succeeds: in this case, the document is now available for the operating system to print.

Once a print job is started, any attempt to set the report destination fails, that is, you cannot
select a new destination until you have issueHrahprint job

IssuingEnd print jobimmediately afteBegin print jobmay result in an empty document
being printed.

OMNIS automatically issueSnd print jobat shutdown; it does not do this at any other
time.

End reversible block

Reversible: NO Flag affected: NO
Parameters: None
Syntax: End reversible block

This command defines the end of a reversible block of commandgvalisiblecommands
enclosed within the commanBggin reversible block/End reversible blaale reversed
when the method containing this block finisitéswever, a reversible block in the
$construct() method of a window class revershen the window is closeehot when the
method is terminated as is normally the case.

SegBegin reversible bloctor more information on reversible blocks.

222 Chapter 5—Commands

End SQL script

Reversible: NO Flag affected: NO
Parameters: None
Syntax: End SQL script

This command defines the end of a block of SQL statements and text which are placed in
the SQL buffer before being sent with teecute SQL scrigtommand. The marker for the
start of the block is thBegin SQL scriptommand. WheAutocommiis on, the statements
between th&egin SQL scripandEnd SQL scriptommands are committed or rolled back
automatically.

ThePerform SQLcommand is an alternative to tBegin—-End—Execute SQL script
sequence, and allows SQL statements to be executed while bypassing the SQL buffer.
Begin SQL script

Describe server table (Columns)

Build list from select table

SQL: Insert table_name Col1, Col2 values

SQL: ([Ist(1,Col1)], [Ist(1,Col2)])

End SQL script

Execute SQL script

; If flag is true, there were no errors and the transaction is

; committed at the next Begin SQL script

End text block

Reversible: NO Flag affected: NO
Parameters: None
Syntax: End text block

This command marks the end of a block of text which is placed in the global text buffer.
You build up the text block using tiBegin text bloclandText: commands. Following an
End text blockyou can return the contents of the text buffer usingsetetext block
command.

; Declare var cTEXT of Character type
Begin text block

Text: To be, or not to be,

Text: those are the parameters.

End text block

Get text block cTEXT

Commands 223

End Switch

Reversible: NO Flag affected: NO
Parameters: None
Syntax: End Switch

This command terminatesSavitchstatement and defines the point where method execution
continues after eadbasestatement.

For example, the following method selects the correct graph window depending on the
graph type selected in ti&aphType parameter.
; Graph Options
; Declare Parameter GraphType (Short integer (0 to 255))
Switch GraphType
Case kGraphPie
Do method GraphPieWindow/Open Window
; calls method and jumps to End switch
Case kGraphBars,kGraphArea,kGraphLines
Do method Graph2DWindow/Open Window
; calls method and jumps to End switch
Case kGraph3D
Do method Graph3DWindow/Open Window
; calls method and ends switch

End Switch

End While

Reversible: NO Flag affected: NO
Parameters: None

Syntax: End While

This command marks the end ofile loop. When the condition specified at the start of
the loop is not fulfilled (testing the flag or calculation) the command aftériiéNhile
command is executed. Each loop that begins witthde command must terminate with an
End Whilecommand, otherwise an error occurs.

Calculate Count as 1

Repeat ;; Repeat loop
Calculate Count as Count+1

Until Count >= 3

OK message {Count=[Count]} ;; prints ‘Count=3’

224 Chapter 5—Commands

Calculate Count as 1

While Count <=3 ;; While loop
Calculate Count as Count+1

End While

OK message {Count=[Count]} ;; prints ‘Count=4’

Enter data

Reversible: NO Flag affected: YES
Parameters: Termination condition

Syntax: Enter dataqonditior

This command puts OMNIS into enter data mode which allows data to be entered via the
current window. An error is generated if there is no open window. It initiates an internal
control loop which does the following:

1. Places the cursor in the first entry field,
2. lets the user enter data from the keyboard,

3. Detects the use of Tab, Shift-Tab and other cursor movements such as click and moves
the cursor to the appropriate field,

4. Waits for an OK, setting flag true before allowing control to pass to the command
following Enter datain the method,

5. Detects a Cancel which aborts data entry with a false flag.

Open window instance W1
Enter data
If flag true
OK message {User has pressed Return}
Else
OK message {User has canceled}
End If

By default, theEnter datacommand waits for an evOK or evCancel event. When these

events are triggered enter data mode is terminated (assuming the window is not in modeless
enter data mode). However you can include a termination conditiofewiéin dataand, in

this case, the command waits until the expression becomes true. For example

Calculate instvar as 0
Enter data until instvar>0

causes enter data mode to continue until the variable becomes greater than zero. In this case
the evOK or evCancel events do not cause the enter data to terminate, but they are reported
to the window's $event() method in the usual way.

Commands 225

Execute SQL script

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Execute SQL script

This command executes the contents of the SQL buffer, that is, the SQL statement or
transaction contained within the previously speciBegjiin SQL scripandEnd SQL script
commands.

After the evaluation of the square bracket notation and indirect square bracket notation, the
content of the SQL buffer is sent to the remote database as a series of SQL statements.

Syntax errors in commands generate errors and return a false flag. Non-fatal errors during a
command do not prevent further commands from executing. This means that it is important
to test the flag after axecute SQL scripThe functiorsys(131yeturns the error code
reported by the server asgls(132)eturns the error text supplied by the server.
Begin SQL script
SQL: Create table TABLE1 createnames(filel)
End SQL script
Execute SQL script
If flag false
OK Message {Create failed: [sys(132)]}
Reset cursor(s)
Quit all methods
End If

The default action for a session is to commit all uncommitted statements after a successful
Execute SQL scrignd to rollback all uncommitted statements after an unsuccessful
Execute SQL scrigt the nexBegin SQL scriptReset cursor()r Logoff from hostThe
Autocommit (Offtommand allows the automatic commit and rollback to be disabled so that
you can us€ommit current sessicandRollback current sessiocommands to control
transaction management.

The commandBegin SQL script, Execute SQL script, Perform S@ldReset cursor(sll
empty the SQL statement buffer for the current session.

226 Chapter 5—Commands

Commands

Export data

Reversible: NO Flag affected: NO
Parameters: List or row variable name
Syntax: Export datdist|row-name

This command exports data from an OMNIS list or row variable.

Set print or export file name {Export.txt}
Prepare for export to file {Delimited (commas)}
Exportdata LIST1

End export

Fetch current row

Reversible: NO Flag affected: YES

Parameters: Cursor name (Current is the default)
List of files and/or fields

Syntax: Fetch current row [fronsursor-namg[into
{file[field1[,file[field2]...}]

This command fetches or reads the current row of the select table. The flag is set if a row is
fetched. If a list of fields is added to the Fetch, the current map is overwritten and the
columns are mapped into the fields listed.

See thd-etch next roncommand for more information about fetching data.

Fetch first row

Reversible: NO Flag affected: YES

Parameters: Cursor name (Current is the default)
List of files and/or fields

Syntax: Fetch first row [fromcursor-namg[into {file field1],file[field2]...}]

This command fetches or reads the first row of the select table. The flag is set if a row is
fetched. If a list of fields is added to the Fetch, the current map is overwritten and the
columns are mapped into the fields listed.

A Fetch first roncommand followed by a seriesfdtch next roncommands enables the
select table to be processed on a row-by-row basis in a descending order.

See thd~etch next roncommand for more information about fetching data.

227

228

Fetch last row

Reversible: NO Flag affected: YES

Parameters: Cursor name (Current is the default)
List of files and/or fields

Syntax: Fetch last row [frontursor-namé[into {file[field1[,file[field2]...}]

This command fetches or reads the last row of the select table. The flag is set if a row is
fetched. If a list of fields is added to the Fetch, the current map is overwritten and the
columns are mapped into the fields listed.

A Fetch last roncommand followed by a serieskeétch previous roleommands enables
the select table to be processed on a row-by-row basis in an ascending order.

See th ommand for more information about fetching data.

Fetch next row

Reversible: NO Flag affected: YES

Parameters: Cursor name (Current is the default)
List of files and/or fields

Syntax: Fetch next row [frontursor-namg[into {file[field1] file[field2]...}]

This command fetches or reads the next row of the select table. The flag is set if a row is
fetched. If you add a list of fields to the Fetch, the current map is overwritten and the
columns are mapped into the fields listed. A seridsed¢h next rocommands enables the
select table to be processed on a row-by-row basis in descending order.

You can fetch the previous, first, last, or current row using one of theFeetar...
commands. Their behavior is the sam&eaish next rovexcept that they fetch a different
row.

Set report name R_SQL1
Prepare for print
Fetch next row
While flag true
Print record
Fetch next row
End While
; Last fetch found empty select table
End print

Chapter 5—Commands

The following example prints an OMNIS report using data from the select table:

Set report name REL

Begin SQL script

SQL: Select * from FELEMENTS where ATNO < '50';

End SQL script

Execute SQL script

If flag false
OK message SQL Error (Icon) {Select error//[sys(132)]}
Reset cursor(s) (Current)
Quit all methods

End If

Fetch next row ; ; gets the first row of the select table
If flag true
Prepare for print
Repeat
Print record
Fetch next row
Until flag false ;; this indicates end of select table
End print
Else
OK message {No rows were selected to print}
End If

or do it like this
Do TableBasedList.$fetch(1)

Fetch previous row

Reversible: NO Flag affected: YES

Parameters: Cursor name (Current is the default)
List of files and/or fields

Syntax: Fetch previous row [froraursor-namg
[into {file[field1],file[field2]...}]

This command fetches or reads the next row of the select table. The flag is set if a row is
fetched. If a list of fields is added to the Fetch, the current map is overwritten and the
columns are mapped into the fields listed.

A series ofFetch previous roeommands enables the select table to be processed on a row-
by-row basis in an ascending order.

See thdetch next roncommand for more information about fetching data.

Commands 229

Find

Reversible: YES Flag affected: YES
Parameters: Field name (must be indexed)
Calculation

O Exact match
O Use search

Syntax: Find onfield-name[([Exact matcH,Use search] [{calculation]]
This command builds a find table and locates the first record in the table, that is, it loads the

main and connected files into the current record buffer. The flag is false and the buffer is
cleared if no record is found.

You use thé=ind command to locate records within a file. If you don’t use a search, the file
is searched in the order specified by the indexed field until the value given in the calculation
line is matched. In this case, the current find table is the same as the chosen Index.

When the closest match is found, the main and connected files are read into the current
record buffer and the flag is set true. If the indexed field is from a connected file, the search
is repeated automatically until the record having a connected entry in the main file is found.

A blank calculation indicates that tRénd is to be performed using the current value of the
selected index field. Thus, if you precede the command villea main filejt is the same
as aFind first.

OMNIS can perform &ind with anExact matchrequirement. In this case, the value in the
"field found" record must correspond in every detail (for example, upper or lower case
characters) to the current value of the indexed field in the current record buffer. A flag true
indicates a successful Find, otherwise a flag false results, and the main and its connected
files are cleared.

You use the exact match option to locate child records connected to a current parent record.
Clearing the find table

The find table is cleared if:

1. A Clear find tablecommand is executed with the same main file setting.

2. A newFind is carried out on the same file.

3. A Next/Previouszommand with a new (non-blank) index ddse Searchor Exact
match option where the originddind had none, is used.

230 Chapter 5—Commands

Commands

The following example illustrates a find table used to print and process records:

Set main file {F_CLIENTS}
Set search as calculation {C_CREDIT>=1000}
Clear main file
Find on C_NAME (Use search)
If flag true
Prepare for print
Repeat
Print record
Do method LogPrintOut
Next
Until flag false
End print
End If

Reversibility

If you use @ind command in a reversible block, the records modified by the Find are
restored when the method containing the reversible block finishes. Although the main and
connected records are recovered, the data within the record may not be recovered if it has
been deleted or changed. The current index is not reversed.

Examples using Find
; Delete
; Deletes records with confirmation using a search
Set main file {LCUST}
Set search name SRCHO001
Clear main file
Find on LNAME (Use search)
While flag true
Working message (Repeat count)
Delete with confirmation {Delete record [LNAME]?}
Next (Use search)
End While

231

232

: Find children
; Finds all connected children for current parent
Begin reversible block
Single file find on P_CODE (Exact match)
End reversible block
; The reversible block ensures that the parent
: record is restored when the method ends
Set main file {F_CHILD}
Clear main file
Find on P_CODE (Exact match)
While flag true
OK message {Found child [C_CODE]}
Next on P_CODE (Exact match)
End While

; Note that parent has been lost by the last Next command
; but it is restored when the reversible block reverses

Find first

Reversible: YES Flag affected: YES

Parameters: Field name (must be indexed)
O Use search
O Use sort

Syntax: Find first onfield-name[([Use searcH, Use sor})]

This command automatically locates the first record in a file using the index for the
specified field. If no field is given, the record sequence number is used. The main and
connected files are read into the CRB if a valid first record is found. The flag is set false if
no record is found.

You use thdJse searctoption in conjunction with the specified indexed field to select the
first record which fulfills the search specification. If the search is a calculation, the
optimizer will choose the best index if the index field is left blank.

You use thaJse Sortoption in conjunction with the current sort fields (Se sort fieljito
create a table of entries from the data file which are sorted into an order set by up to nine
sort fields.

The find table is cleared if:
1. A Clear find tablecommand is executed with the same main file setting.
2. A newFind is carried out on the same file.

3. A Next/Previouszommand with a new (non-blank) index ddse Searchor Exact
match option where the origindind had none, is used.

Chapter 5—Commands

Commands

If you use thd=ind first command within a reversible block, it is reversed when the method
finishes, that is, the main and connected records are restored. However, if the data within
the original record has been deleted or changed, it will not be possible to completely restore
the buffer.

Begin reversible block
Clear sort fields
Set sort field NAME
Set sort field TOWN
Set main file {FINVOICES}
Find first on INV_NUMBER (Use sort)
End reversible block
While flag true
Enter data
Next
End While

Find last

Reversible: YES Flag affected: YES

Parameters: Field name (must be indexed)
O Use search
O Use sort

Syntax: Find last orfield-name[([Use searclj, Use sor})]

This command automatically locates and displays the last record in a file using a specified
indexed field. You can use tlénd lastcommand to locate the last record added to a file

by using the record sequencing number as the index. The flag is set false if no record is
found.

You use thdJse searctoption in conjunction with the specified indexed field to select the
last record which fulfills the search specification. If the search is a calculation, the optimizer
will choose the best index if the index field is left blank.

Whenever you usekind command, a find table is created which determines the order in
which records are displayed using subsegNextandPreviouscommands. Once a find
table has been created, subseqidEnxtor Previouscommands will use the table provided
the commands have an empty or the same Index, and the same (orSsaptiand

Exact match conditions. AClear find table a newFind on the same file diext/Previous
commands with a new (non-blank) index or a Search or Exact match where the original
Find had none, will clear the find table.

TheUse Sortoption works in conjunction with the current sort fields (Seesort fieljlto
create a table of entries from the data file which are sorted into an order set by up to 9 sort
fields. Refer to thé&ind command for details of the find table and its use.

233

Begin reversible block
Set main file {FINVOICES}
Find last on INV_NUMBER
End reversible block
OK message {Last invoice record inserted was RSN [I_SEQ]}

Floating default data file

Reversible: YES Flag affected: NO
Parameters: File or list of files
Syntax: Floating default data filffilel1][,file2]...}

This command sets the default data file as the current data file and changes whenever the
current data file changes. You udeating default data filén libraries which open more

than one data file at once. The default behavior in OMNIS is that, as each new data file is
opened, it becomes the "current” data file. The concept of a current data file is important
when your commands refer to file classes without specifying a data file. So, for example, the
command

Set main file {FCUSTOMERS}

is ambiguous if more than one data file is open at the same time. To specify the data file to
be used, you can uSet default data filéo associate a file class with the current data file.
For example, to associate FCUSTOMERS with DATA1.DF1, you can use:

Set current data file {DATA1}
Set default data file {FCUSTOMERS}

References to FCUSTOMERS are now equivalent to references to
DATAL1.FCUSTOMERS. The association between FCUSTOMERS and DATA1 remains in
effect even if the current data file is set to a different data file. To return to the default state
where the default data file "floats" to whatever the current data file is, you can use:

Floating default data file {FCUSTOMERS}

TheFloating default data fileommand sets the default data file, for the specified list of
files, to be equal to the current data file and allows it to change (float) whenever the current
data file changes.

The command does not change the flag but is reversible, that is, the previous default data
files are restored when the method containing the command in a reversible block terminates.

234 Chapter 5—Commands

Commands

Flush data

Reversible: YES Flag affected: YES
Parameters: None
Syntax: Flush data

This command revers&o not flush datand reverts to the default mode where the
changed data is immediately written to disk after ejottate filesor Deletecommand.

The command sets the flag if the state of the 'Do not flush data’ mode is changed and is
reversible, restoring the previous state of the 'Do not flush' flag when reversed. If the
previous mode was 'Do not flush daEysh datawill cause any modified data which has
not been written to disk, to be written on the néptlate filesor Delete

; fast import via window
Test for only one user
If flag true
Do not flush data
Drop indexes
End If
Open window instance W_IMPORT
Set current list List1l
Prompt for import file
Prepare for import from file {Delimited(tabs)}
Import data {List1}
End import
Close import file
For each line in list from 1 to $linecount
Prepare for insert ;; transfer list to file
Load from list
Update files
End For
Flush data now ;; writes the data immediately to disk
Rebuild indexes
Flush data ;; Changes mode back to 'Flush data’

235

236

Flush data now

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Flush data now

This command causes any modified data which has not been written to disk to be
immediately written to disk. This command will only do somethingDioanot flush data
command has been executed.

This command leaves the flag unaffected and is not reversibl Ellmmata]or an
example.

For each line in list

Reversible: NO Flag affected: NO

Parameters: [Selected lines only
O Descending
Start value (line number of list)
End value (line number of list)
Step value (default is 1)

Syntax: For each line in list([Selected lines onlyDescendinp] from
start-valueto end-valuestepstep-value

This command marks the beginning of a loop that processes the lines of the current list. You
must specify the current list before executing the For loop. The For loop is a convenient
way to writeWhile/End Whildoops to step thragh each line of a list. With tigelected

lines only option, the loop will skip over any lines encountered that are not selected.

The Start value specifies the line in the list at which method execution of the For loop

starts. The loop continues until the processed line exceeds or is equétial thalue. If

the Step valueis not specified, the default value of 1 is used. The values involved must all

be integers. ThBescendingoption tells OMNIS to step through the list from a high line
number to a low line number. The Start and End values are swapped if the End value is less
than the Start value.

You can usdump to start of loovithin the loop to continue the next iteration of the loop.
Similarly, Break to end of loowill exit the loop prematurely.

For each line in lisbperates on the current list. The matcHimgl Forwill also operate on
the current list. Unpredictable behavior will result if the current list is changed and not
restored within th&or/End Forconstruct.

Chapter 5—Commands

Prepare for print
Set current list F_LIST
For each line in list from 1 to LIST.$linecount step 1
Load from list
Print record
End For
End print
; this is equivalent to the method below
Prepare for print
Set current list F_LIST
Calculate LIST.$line as 1
While LIST.$line<=LIST.$linecount
Load from list
Print record
Calculate LIST.$line as LIST.$line+1
End While
End print

For field value

Reversible: NO Flag affected: NO
Parameters: Field name or variable
Start value
End value
Step value (default is 1)
Syntax: Forfield-namefrom start-valueto end-valuestepstep-value

This command marks the beginning of a For loop which defines a series of commands to be
repeated a number of times. You fisfd-nameas a counter that is automatically
incremented by thstep-valueeach time th&nd Forstatement is reached.

The values involved must all be numbers, preferably integessrtfvalueis greater than
end-value andstep-valuds positive, the command will perform no loops. Similarly, no
loops are performed dtart-valueis less thaend-valug andstep-valuds negative.

You can usdump to start of loogvithin the loop to continue the next iteration of the loop.
Similarly, Break to end of loowill exit the loop prematurely.

Commands 237

The following example builds a list containing the sales totals for four regions.

; declare local vars LV_Sales, LV_Expenses of type Short number 0 dp
Set current list GRAPHLIST
Define list {Division,NetSales}
For LVARI from 1to 4 step 1
Do method PopulateDrilldownList (LVAR1)
Set current list GRAPHLIST2
Calculate LV_Sales as tot(Sales)
Calculate LV_Expenses as tot(Expenses)
Calculate NetSales as LV_Sales - LV_Expenses
Calculate Division as pick(LVARI-1,'North','East’,'South','West')
Set current list GRAPHLIST

Add line to list
End For
Calculate TotNetSales as totc(NetSales)
; etc.
Get SQL script
Reversible: NO Flag affected: YES
Parameters: Field name or variable
Syntax: Get SQL scripffield-name|variable}

This command loads the contents of the SQL buffer for the current session into a specified
field or variable. It provides direct access to the SQL statement buffer. The field name
parameter can be any OMNIS character field or variable. The SQL buffer holds all SQL
statements and text entered since theBagin SQL scriptvhich have not yet been

executed. The square brackets and SQL functions will have been evaluated but the values of
indirect @[] square bracket notation will not be available.

The commandBegin SQL scriptExecute SQL script, Perform S@hdReset cursor(sll
empty the SQL statement buffer for the current session. Therefore Geil®QL script
afterPerform SQLwill do nothing.

238 Chapter 5—Commands

Commands

Begin SQL script

SQL: Insert into [TABLE] insertnames(FTABLE)
End SQL script

Get SQL script {81}

Yes/No message {Do you want to send '[S1]}

If flag true
Execute SQL script
Else
Reset cursor(s)
End If
Get text block
Reversible: NO Flag affected: NO
Parameters: Field name or variable
Syntax: Get text blocKfield-name|variable}

This command loads the current contents of the global text buffer into the specified field or
variable. You build up the text block using tBegin text bloclandText: commands.

Following anEnd text blockyou can return the contents of the text buffer usingsttetext
block command.

; Declare var cTEXT of Character type
Begin text block

Text: To be, or not to be,

Text: those are the parameters.

End text block

Get text block cTEXT

Go to next selected line

Reversible: NO Flag affected: YES
Parameters: O From start

O Backwards
Syntax: Go to next selected ling[From star}[,Backward})]

This command scans a list for selected lines and goes to the first one it finds. It sets the
current line LIST.$ling for the current list#£CLIST) equal to the next selected line in that
list.

The Go to next selected lirmmmand steps through the list starting at the current line (if no
options are selected) until a selected line is found. When a selected line is located,
LIST.$line is set equal to that line number. If a selected line is not found, the flag is cleared
and LIST.$line is unchanged.

239

240

TheBackwards option causes the list to be searched in descending ordérpthestart
option causes the list to be searched from the start. If both opt@mksvards andFrom

start are selected, the list is searched from the end. The following example loads the list
with values 1 to 5 and ends with values: 3, 2, 3, 4, 3:

Set current list LIST1
Define list {LVAR1}
Calculate LVAR1 as 1
Repeat
Add line to list
Calculate LVAR1 as LVAR1+1
Until LVAR1=6
Calculate LIST.$line as 3
Load from list ;; transfers value 3 from list to LVAR1 in CRB
Select list line(s) {1}
Select list line(s) {5}
Go to next selected line (From start) ;; selects line 1
Replace line in list
; takes value of LVAR1 (that is, 3) and uses it
; to replace the value in line 1 of the list
Go to next selected line ;; selects line 5
Replace line in list
Redraw lists

Hide docking area

Reversible: NO Flag affected: NO

Parameters: Docking area (a constant)

Syntax: Hide docking areédocking-area-name}

This command closes either the top, bottom, left, or right docking area. The docking area is

specified using one of the docking area constants: kDockingAreaTop,
kDockingAreaBottom, kDockingArealeft, or kDockingAreaRight.

When you close a library, OMNIS does not automatically close any docking areas that are
open. You must explicitly hide each docking area ubiitlg docking arealeaving

docking areas open and closing the library containing those docking areas can cause
problems in your application.

Show Docking Area { kDockingAreal eft }

Install Toolbar {TDESK} ;; toolbar installed on Left Docking Area
; When the library closes...
Hide docking area { kDockingArealLeft } ;; hides current docking area

Alternatively you can use

Chapter 5—Commands

Commands

Do $root.$prefs.$dockingarea.$assign(kDockingAreaNone)

Hide fields

Reversible: YES Flag affected: NO
Parameters: Field name or list of field names
Syntax: Hide fields{field1[,field2,...]}

This command hides the specified field or list of fields. You can display hidden fields with
Show fields

Yes/No message {Do you want to hide fields?}
If flag true
Begin reversible block
Hide fields {Field1,Field2,Field3]
End reversible block
End If
For Count from 1 to 20 step 1 ;; delay loop
End For
OK message {Fields will now reappear after method has run}

To hide a single field on the current window you can use
Do $cwind.$objs.FIELD.$visible.$assign(kfalse)

or to hide all fields on the current window
Do $cwind.$objs.$sendall($ref.$visible.$assign(kFalse))

If calculation

Reversible: NO Flag affected: NO

Parameters: Calculation

Syntax: If calculation

This command tests the result of the calculation and branches if zero. If the result of the
calculation is non-zero, the result of the test will be true; a result of zero is interpreted as

false. As with allf commands, control passes to the next command in the method if the
result is true, otherwise to the n&dd If, Elseor Else Ifin the method.

If SECURITY >4
Disable menu line MREPORTS/4
End If

241

242

If canceled

Reversible: NO Flag affected: NO
Parameters: None
Syntax: If canceled

This command tests whether a Cancel function has been selected and branches if false. The
condition is true if either a working message Cancel button is clicked, or the Escape key
(under Windows) or Cmnd-period (under MacOS) is pressed. The condition is false if none
of these events happensEliable cancel test at loojs switched on, a loop may detect a
Cancel and quit all methods before it is detected by @anceledcommand.

Disable cancel test at loops
Working message (Cancel box)
Repeat
Redraw working message
If canceled
Sound bell
OK message (lcon) {Method Terminated.}
Quit method
End If
Until flag false

If flag false

Reversible: NO Flag affected: NO
Parameters: None

Syntax: If flag false

This command lets you implement a branch or change of processing order within a method
depending on the result of the previous command. It tests the flag and if it is false, the
commands following th# flag falseare executed. However, if the flag is true, control
branches to the nefdse Else Ifor End Ifin the method.

Test for window open {w_calendar_date}
; If the window is closed, flag will be false
If flag false

Set main file {f_constant}

Clear main file

Next
End If

Chapter 5—Commands

If flag true

Reversible: NO Flag affected: NO
Parameters: None
Syntax: If flag true

This command lets you implement a branch or change of processing order within a method
depending on the result of the previous command. It tests the flag and if it is true, the
commands following th# flag true are executed. However, if the flag is false, control
branches to the nefdse Else Ifor End Ifin the method.

Open window instance w_calendar

Enter data
If flag true
Open window instance w_schedule
Enter data
Close window w_schedule
End If
Import data
Reversible: NO Flag affected: YES
Parameters: List or row name
Syntax: Import datdist|row-name

This command reads the next data item into the the specified list or row variable. You use
thelmport datacommand to import data from a file or port. Once you select an import file
or port, and issue Rrepare for imporcommand]mport dataadds the data to the specified
list or row variable.

If a record is successfully read from the file or port, OMNIS sets the flag. An error occurs if
the import file or port is closed or if the specified list or row variable does not exist. The
flag is set after reading a record successfully.

After the import is complete, you should folldmport datawith anEnd importand the
appropriateClose import fileor Close port

Commands 243

There is a one-to-one mapping between the columns or fields in the import file and the
columns in the list or row variable. Therefore, if there are fewer columns or fields in the
import file than in the list or row, the excess import columns or fields are ignored. Likewise,
if there are more columns in the list or row than in the import file, the excess columns are
left blank.

Set port name {2 (Printer port)}

Set port parameters {1200,n,7,2}

Prepare for import from port {Delimited (tabs)}
Import data IMPORTLIST

End import

Close port

Import field from file

Reversible: NO Flag affected: YES

Parameters: Field name
O Single character
O Leave in buffer

Syntax: Import field from file intofield-name
[([Single charactdf,Leave in buffg)]

This command reads a line of characters from the current import file to the specified field. It
lets you read fields from a file without using a window &ngort data Usually the
command reads a whole line at a time but there are options which modify this.

The Single characteroption tells OMNIS to read a single character at a time. If the field is
a Character or a National field, it is set to have a length of one, containing the single
character imported from the file. If the field is a Number field, the field value is set to the
ASCII code of the single character imported from the file.

TheLeave in buffer option tells OMNIS to read the string or single character but not
remove it from the buffer. Therefore, the nbxrport field from filewill read exactly the
same value.

An error will occur if the import file has not been opened; OMNIS clears the flag on
reaching the end of the file. Do not niirport dataandIimport field from filebecause they
use the input buffer in different ways.

Set import file name {Data. TXT}
Prepare for import from file {Delimited (tabs)}
Repeat

Import field from file into CVAR1
Until CVAR1='start data'
Do method ImportData
Close import file

244 Chapter 5—Commands

Commands

Import field from port

Reversible: NO Flag affected: YES

Parameters: Field name
O Single character
[Leave in buffer
O Clear buffer
O Do not wait

Syntax: Import field from port intdield-name[([Single charactdr
[,Leave in buffdf, Clear buffe}[, Do not wai})]

This command reads a line of characters from the current port to the specifielniped.
field from portlets you read fields from a port without using a window lamglort data
Usually the command reads a whole line at a time but there are options which modify this:

Single charactertells OMNIS to read a single character at a time. If the field is a Character
or a National field, it is set to have a length of one, containing the single character imported
from the port. If the field is a Number field, the field value is set to the ASCII code of the
single character imported from the port.

Leave in buffer tells OMNIS to read the string or single character but not remove it from
the buffer. Therefore, the neixhport field from porcommand will read exactly the same
value.

Clear buffer clears the import buffer so that previously received values are ignored.
Do not wait prevents OMNIS from waiting until a string or character is available.

An error will occur if the import port has not been opened; OMNIS clears the flag if nothing
has been read. Do not mix theport dataandImport field from porcommands because
they use the input buffer in different ways.
Set port name {1 (Modem port)}
Prepare for import from port {One field per line}
Repeat
Import field from port into CVAR1
Until CVAR1="start data’
Do method Importdata
Close port

245

246

Insert line in list

Reversible: NO Flag affected: YES

Parameters: Line number (can be a calculation, default is current line)
Field values

Syntax: Insert line in list {[line-numbe} [(valuel,value]...)]}]

This command takes the current field values and inserts them at a particular line in the list.
The new line is inserted before the specified line and all the lines below the specified line
are moved down one place.

If a set of comma-separated values is included as a parameter, these values are read (in
order) into the columns of the new line. In this case, the field names for the columns are not
used to specify the data for the new line, for example

Define list {BOOL,NUM,CHAR}
Insert line in list {('Yes',LVARL1,'Good"}

You can specify the line number using a calculation. However, if the parameter for the
command is empty or evaluates to zero, the current line is used, that is, the field values are
inserted at the current line and all other lines are moved down one place.

If there is no current line(ST.$line= 0), the field values are added at the end of the list. If
the line is beyond the current end of the list (for example, the LIST.$line given is greater
thanLIST.$linecoun)t Insert line in listis equivalent t&Add line to list The flag is cleared
if the list is already at its maximum sizd $T.$linemak
; this example inserts 50 calculated lines into the list
Set current list LIST2
Define list {LVAR1,S4}
For LVARL1 from 1 to 50 step 1
Calculate S4 as rnd(1/LVAR1,6)
Insert line in list
End For
Redraw lists (All windows)

; in this example two values are added to the list
; and a third is inserted between them

Set current list cList

Define list {NAME}

Insert line in list {('John"}
Insert line in list {(Mary")}
Calculate cList.$line as 2 ;; sets current line as line 2
Insert line in list {(Piggy")}

Redraw lists (All windows)

Chapter 5—Commands

Commands

Alternatively you can use the $addbefore() and $addafter() methods to add lines to the
current list.

Install menu

Reversible: YES Flag affected: YES
Parameters: Menu class name

Instance name

Parameters list

Syntax: Install menumenu-namé/instance-narmje
[(parameter],parameter?...)|

This command installs an instance of the specified menu class on the main menu bar and
assigns an instance name. The default instance name is the name of the menu class. The flag
is set if the menu is installed.

You can choose the menu class from a list containing your own menus in the current library,
and the standard mentfsile, *Edit, and so on. When the menu instance is installed its
$construct() method is called.

Passing parameters

You can send parameters to the menu’s $construct() method. In the following example,
three values are passed as parameters and used to set up the conditions required by the
menu options.

Install menu MREPORTS/repl (CVAR1,LVAR1,CO_NAME)

; the $construct() method for MREPORTS
; declare parameter variable MODE of Character type
; declare parameter variable SECURITY of type Number 0 dp
; declare parameter variable COMPANY of type Field reference
If SECURITY >4
Disable menu line MREPORTS/4
End If

Three values are passed to the method. This allows the menu to perform different functions
depending on the parameters passed to it when installed.

If you use thdnstall menucommand in a reversible block, the menu instance is removed
from the menu bar when the method terminates. However, the order of the menus on the
menu bar may not necessarily be the same as before.

You can install a menu using the $open() method.
Do $clib.$menus.MENU.$open()

247

Install toolbar

Reversible: NO Flag affected: NO

Parameters: Toolbar class name
Instance name (default is class name)
Docking area (a constant)
Parameters list

Syntax: Install Toolbarclass-nam§instance-nanmi§docking-
area][(parameterl/[,parameter2]}..)]

This command installs the specified toolbar class into the named docking area. You specify
the docking area using one of the toolbar const@abBisckingAreaTop
kDockingAreaBottorrkDockingAreal eft kDockingAreaRight, or kDockingAreaFloating

If you omit the docking area name the toolgroup is installed into the docking area specified
in the class. You can install multiple toolbars onto the same docking area.

Show docking area {kDockingAreaTop}
Show docking area {kDockingArealL eft}

Install Toolbar {T_Format}/Top
Install Toolbar {T_Style}/Left
Install Toolbar {T_Utils/kDockingAreaTop}

You can install a toolbar using the $open() method.
Do $clib.$toolbars. TOOLBAR.$Sopen()

Invert selection for line(s)

Reversible: NO Flag affected: YES

Parameters: Line number (can be a calculation, default is current line)
O All lines

Syntax: Invert selection for line(sYAll lines) [{line-number}

This command inverts the selection state of a line, that is, from selected to deselected or
vice-versa. You can specify a particular line in the list by entering either a number or a
calculation. You can show the selection state on the window by invokiigtiraw lists
(Selection onlyfommand.

248 Chapter 5—Commands

TheAll lines option inverts the selection states of all lines of the current list. If no line
number is given, the current line selection is inverted. When a list is saved in the data file,
the selection state of each line is stored. The following example selects all but the middle
line of the list:

Set current list LIST1

Define list {LVAR1}
For LVAR1 from 1to 6 step 1

Add line to list
End For
Select list line(s) (All lines)
Invert selection for line(s) {LIST1.$linecount/2}
; Or use Invert selection for line(s) {3}
Redraw lists

Jump to start of loop

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Jump to start of loop

This command jumps to théntil or Whilecommand at the beginning of the current loop,
missing out all commands after the jump. When used/ifhitle—End Whildoop, Jump to

start of loopjumps to the start of the loop so that OMNIS can make the While test; the loop
continues or terminates depending on the result of this test, whareak,to end of loop
automatically terminates the loop regardless of the value of the condition. Pldcimgpa
outside a loop causes an error.

Repeat

Next

Prepare for edit

Enter data

If flag false

Jump to start of loop

End If

Calculate TOTAL as CREDIT
Until TOTAL > 10000

Commands 249

250

Launch program ‘_

Reversible: NO Flag affected: YES

Parameters: [Do not quit OMNIS
MacOS program name
Document or file name (full pathname of document or file)

Syntax: Launch program(Do not quit OMNIS)
{program-nam¢/document-nanig

This command launches the specified MacOS program. If you include a file name, the
application is launched with the file name as a document. If the specified file name
represents a document which the program cannot understand, it will be ignored. You must
specify pathnames for the program and document, as shown in the example below.

The default action is to quit OMNIS, but tbe not quit OMNIS option lets you keep

OMNIS open. If you choose this option, OMNIS will continue to run in the background,
concurrently with the new program. A new program launched by OMNIS will always be
opened on top, even if OMNIS is already in the background. The flag is set false if an error
is detected, for example, if a program or file name cannot be found. Once you attempt a
Launch programcontrol passes from your application to the operating system and there is
no automatic way of returning to OMNIS.

Launch program {Word 6/mac HD:Admin:Memo}
; Note full path for document or file name
If flag false
OK message (Icon,Sound bell) {Couldn't find Word 6}
End If

Chapter 5—Commands

Commands

Load connected records

Reversible: YES Flag affected: YES
Parameters: File class name
Syntax: Load connected recordfile-name}

This command loads the connected records for the specified filé.oBaeconnected
recordscommand ensures that the identity of the current connected records for the current
record is correct. As OMNIS automatically loads connected records of the main file into the
current record buffer, this command is not usually required. However, in multi-user systems,
this command ensures that, if any other workstation makes changes to the way in which
records are connected, these changes will be reflected at the current workstation.

The flag is cleared if there is no current record for the specified file class, and in the event
that no file class is specified, OMNIS uses the main file. This command does not clear the
Prepare for updatenode but does cause multi-user semaphores to be set and should be
avoided when ifPrepare for..mode.

If a parent record requires locking, another user is editing it, anddiitfor semaphores
command is on, the lock cursor will be displayed. If the user cancels the lock, the flag is
cleared and the parent record is not loaded.Odaot wait for semaphoresmmand
prevents the user from having to wait for the record and returns a flag false if the parent
record is not available.

If placed in a reversible block, the parent record reverts to its former value when the method
terminates. If you need to read in grandparent records, you can add this command to the
usualNextcommand:

Next

Load connected records {FPARENT}

Redraw MyWindow

251

252

Load error handler

Reversible: YES Flag affected: NO

Parameters: O All libraries
Number or name/number (of custom menu method)
First error code number
Last error code number

Syntax: Load error handler(pll libraries)] [class-nam@number [(first-error-
numbef,last-error-numbej)] [{method-namd}

This command loads a specified method which handles errors which may occur within a
library. You can specify a range of error codes to be handled by the handler by giving the
first and last error number. If no range is specified, the handler is called for all errors. Errors
are eithefFatal or Warning

Error codes such a&errUngindexkerrBadnotationkerrSQL, can also be used as
parameters. Th€atalog window lists all the constants available in OMNIS.

Fatal errors

A fatal error is one that normally stops method execution and drops into the debugger if
available. The error cod(ERRCODAES displayed on the status line in the debugger and is
greater than100,000.

Warning errors

A warningerror is one that does not normally quit the method nor report an error
description. The error coddERRCODAES displayed on the status line in the debugger, if
invoked, and i¢ess than100,000.

The check box optioAll libraries is provided. If this is not checked, the handler is called
only for errors encountered in the library which loaded the error handler. This command
leaves the flag unaffected and is reversible; that is, the handler is unloaded when the
command is reversed. An error handler remains loaded until it is unloaded or the library
containing the handler method is closed. Error handlers loaded within an error handler
always unload when that error handler terminates.

Here is a typical error handler:

; declare local variable LCODE of Long integer type
; declare local variable LTEXT of Character type
Calculate LCODE as #ERRCODE
Calculate LTEXT as #ERRTEXT
If LCODE = kerrBadnotation

; handle error
End If

Chapter 5—Commands

Commands

An alternative to assigningERRCODEand#ERRTEXTo local variables is to pass them
as parameters to the error handler. You must define LCODE and LTEXT as parameter
variables (with the same types) in the error handling method.

An error handler can use one of ®et error actiorcommands (SEA) to set what it requires
the next action to be. If the error handler quits without makiggtarror actiorand there

is another handler capable of accepting the error, the second handler is called. Otherwise,
the default action for the error is carried out, depending on whether it is a fatal error or
warning.

If an error occurs within an error handler, that error is handled in the usual way except that
the original error handler will not be used (even if it could handle that error). It is possible
to load error handlers within an error handler; these are meant to deal with errors within the
handler and are unloaded automatically when the error handler completes execution. The
following example handles the error returned by the data manager when an attempt to
duplicate a unique index occurs on update:

Load error handler Codel/ErrorHnd(kerrUngindex)
Prepare for edit

Enter data

Update files if flag set

ErrorHnd ;; Error handler
If #ERRCODE = kerrUngindex

OK message (Icon) {You have entered a duplicate field value. | am
appending 'X' to your entry}

Calculate INDVAL as con(INDVAL,'X")
Enter data
If flag true
SEA repeat command
Else
SEA continue execution
End If
End If

253

254

Load event handler

Reversible: YES Flag affected: YES

Parameters: Library name
Routine name
Parameters list

Syntax: Load event handlefibrary-naméd]routine-name
[(parameter],parameter?...)]

This command makes the specified external routine an event handler, enabling the routine
to show its own windows, put its own menus on the menu bar, act as its own event filter,
and so on.

Event handlers are modules of code which, when loaded, form part of the OMNIS event-
processing loop. Events are passed to the external before being handled by OMNIS. As
each call to the external takes place, it can identify whether to take appropriate action. If the
event handler returns a flag false, OMNIS knows that the event was meant for OMNIS and
the external has ignored it.

You can enter the routine name as the parameter. If the library/resource is not in the
EXTERNAL folder, the name of the file containing the library/resource and the name of the
library/resource within that file are given as parameters. If no file name is given, the current
dynamic link library/resource is searched for the specified routine name.

When the method is called, any existing event handler is not unloaded but continues to be
called along with the new handler. The flag is cleared if the routine cannot be loaded.

If you uselL.oad event handlen a reversible block, the event handler is unloaded when the
method containing the reversible block terminates.

You can pass parameters to the external code by enclosing a comma-separated list of fields
and calculations. If you pass a field name, for exan@ad,external Maths1

(LVAR1,LVAR2)the external can directly alter the field value. Enclosing the field in

brackets, for exampl&all external Maths1 ((LVAR1),(LVAR2¢pnverts the field to a

value and protects the field from alteration.

In the routine itself, the parameters are read using the usual GetFldVal or GetFldNval with
the predefined references Ref_parml, Ref_parm2, and so on, Ref_parmcnt gives the
number of parameters passed. If the field name is passed as a parameter, you can use
SetFldVal or SetFIdNval with Ref_parml, and so on, to change the field's value.

Load event handler EventHand

Chapter 5—Commands

Commands

Load external routine

Reversible: YES Flag affected: YES

Parameters: Routine name or
Library name/routine name
Parameters list

Syntax: Load external routindile-namé]routine-name
[(parameter],parameter?...)]

This command loads the specified external code into memory. You can enter the routine
name as the parameter. If the library/resource is not in the EXTERNAL folder, the name of
the file containing the library/resource and the library/resource name within that file are
given as parameters.

If the library/resource is already loaded or is not found, the flag is cleared and no action is
taken. If this command is included in a reversible block, the library/resource is unloaded
when the method terminates. If the library/resource is loaded in, it is called with the mode
set at ext_load.

You can pass parameters to the external code by enclosing a comma-separated list of fields
and calculations. If you pass a field name, for exan@@ddl,external Maths1

(LVAR1,LVAR2)the external can directly alter the field value. Enclosing the field in

brackets, for exampl&all external Maths1 ((LVARL1),(LVAR2¢pnverts the field to a

value and protects the field from alteration.

In the routine itself, the parameters are read using the usual GetFldVal or GetFldNval with
the predefined references Ref_parml, Ref_parm2, and so on, Ref_parmcnt gives the
number of parameters passed. If the field name is passed as a parameter, you can use
SetFldVal or SetFIdNval with Ref_parml, and so on, to change the field's value.

Load external routine {mathslib/sqroot} (value,CVAR1)

255

Load from list

Reversible: NO Flag affected: YES

Parameters: Line number (can be a calculation, default is current line)
List of field or variables

Syntax: Load from list {[line-numbe} [(field1][,fieldZ]...)]}]

This command transfers field values from the current list to the corresponding fields in the
current record buffer. However, if you include a list of fields, the values in the current list

are transferred to the specified fields (see example). Each column value, taken in the order it
was defined, is copied to the corresponding field in the field list.

Field names parameter list

The command.oad from listwith '0 (CVAR1,,CVAR12)' specified will load the first

column of the current line of the list into CVARL, ignore the second column, and load the
third column into LVAR12. If too few field names are specified, the other columns are not
loaded. If too many field names are specified, the extra fields are cleared. Any conversions
required between data types are carried out.

If the line number specified in the command line is empty, or if it evaluates to zero, the
values are loaded from the current line. If the list is empty or if the line evaluates to a value
greater than the total number of lines in the list, the flag is cleared and the fields in the
parameter list or in the list definition are cleared.
Set current list LIST2
Define list {CODE,NAME,CREDIT}
Build list from file on CLIENTS
Load from list {4(,CVAR3,LVAR1)}
If flag false
OK message (Sound bell) {Line 4 is beyond the end of list}
Else
OK message {CVAR3=[CVAR3], LVARL is [LVAR1]}
: CVARS3 is Ist(4,NAME), LVAR1 is Ist(4,CREDIT)
End If

256 Chapter 5—Commands

Commands

Logoff from host

Reversible: No Flag affected: YES
Parameters: None
Syntax: Logoff from host

This command causes a logoff from the current session without disconnecting from the
remote database. A Commit is carried out on any uncommitted transactions. You can use
anotherSet hostnamé&et usernaméet passwordndLogon to hossequence to log the

session onto another database, or the same database as another user, for the same remote
database. Alternatively, you can issue anoBtart sessiomo disconnect from the current

remote database and set up communication with another remote ddtagafiefrom host

places OMNIS in an “off-line” state, in which case you must execute arlaigen to host

before proceeding with the next SQL transaction.

Set current session {ORACLE?2}
Logoff from host
Set current session {SYBASE?2}
Logoff from host

Logon to host

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Logon to host

This command issues a logon to the current session. If you have correctly supiet the
hostnameSet usernamandSet passwordommands, OMNIS will log onto the remote
computer and will initialize communications with the server.

Set username {SA}
Set password {Lion}
Set hostname {Serve300}
Logon to host
If flag false
OK message (Icon,Sound bell) {Logon failed}
Else
OK message {Logon was successful}
End If

There are some important differences in the way you specify the logon parameters for
different servers. Refer ® MNIS Studio Data Access Manageanualfor details.

257

258

Make schema from server table

Reversible: NO Flag affected: YES
Parameters: Schema class name
Syntax: Make schema from server taffchema-name}

This command makes a schema class from a select table of column definitions. It is
typically used afteDescribe server table (Columnshich creates a select table defining a
table on your server.

Make schema from server table{schema-nacnehtes or redefines an OMNIS schema

class using the current select table. The select table should have the same structure as that
created byDescribe server table (Column€)ne column in the schema class is defined for
each row in the select table. The command will generate an OMNIS schema class with the
same column names as the server table column names, provided that the column names are
valid OMNIS column names.

The Make schema class from servable command tries to convert column names and data
types to the OMNIS schema class and does not usually generate errors. In some cases,
however, it may be necessary to modify the schema class to produce the desired result. If
the schema name already exists, the old class will be overwritten by the new one thus
redefining the schema class. Any references throughout the library to columns from the old
schema, either as field names or in calculations, will become references to the columns in
the same positions in the new schema class. This does not apply to literals containing the
field names such as parameters toflih@ function.

Describe server table (Columns) {TableName}
Make schema class from server table {SchemaName}

Describe server table (Columns) {table-namgdates a select table with one row for each
column of the specified server database table. The following example creates a set of
OMNIS schemas for each available table on the server:

; declare var LTABLES of List type and give it column TABLE
Set current list LTABLES
Describe database (Tables)
Build list from select table
If LTABLES.$linecount ;; if the list has data
For each line in list from 1 to LTABLES.$linecount
Describe server table (Columns) {[Ist(TABLE)]}
Make schema class from server table {[Ist(TABLE)]}
End For
End If

Chapter 5—Commands

Making a schema class from a list

You can usévlake schema class from servable to create a schema class from a schema
definition held in a table-based list using the ” notation, for example

Make schema class from server table {SchemaName,"LIST}
You can use th®ake schema class from sertable command to generate schema classes

even when not using the DAM. The schema specification usbthkg schema class from
server tableand created by Bescribe server table (Columnis)

Col | Column description

Column name

SQL data type for the column
Column width

Number of decimal places (for numeric columns); empty for floating Numhers

NULL or NOTNULL; for some servers only

Empty; for future expansion

Njojoa|lh~{fw|IN]|PF

Description for the column where available

Maximize window instance

Reversible: NO Flag affected: NO

Parameters: Window instance name

Syntax: Maximize window instancerindow-instance-name

This command maximizes the specified window instance, that is, it sizes the window to the

maximum size of the OMNIS application window (the Finder window under MacOS). You
can maximize a window only if it has a maximize button.

Maximize window instance MyWin2

; full screen for data entry, etc.

Minimize window instance MyWin2

; reduces window to an icon at the bottom of screen

You can maximize a window using the $maximize() method. To maximize the current
window use

Do $cwind.$maximize()

Commands 259

260

Merge list

Reversible: NO Flag affected: YES
Parameters: List or row name

O Clear list

O Use search
Syntax: Merge listlist-name[([Clear lisf[,Use searc]]

This command adds the specified list to the end of the list previously specified as the
current list. Once the list reaches its maximum size, the command finishes and clears the
flag. OMNIS does not check that the same fields are stored in the two lists (which they
should be). If the same fields are not present, data is not transferred.

If you use theClear list option, the current list is initially cleared and defined to hold the
same fields as the specified list. This is the same as copying a list.

If you use thdJse searchoption, only lines matching the search class are merged or added
to the current list. All lines match if there is no current search class.

In the following example, ligtIST1is merged or added to the current list, namdigT2
Set current list LIST2
Set search name SRCH001
Merge list LIST1 (Clear list,Use search)
If flag true
Sort list
Else
OK message {Merge failed at line [LIST1.$linecount]}
End If

This example appends selected lines only.

Set current list LIST2
Set search as calculation {#LSEL}
Merge list LIST1 (Use search)

or do it like this
Do LIST.$merge(AnotherList)

Chapter 5—Commands

Message timeout A

Reversible: NO Flag affected: NO
Parameters: Interval (in seconds)
Syntax: Message timeoytnterval}

This command specifies the time OMNIS has to wait for DDE responses to messages sent
to other applications. There is a default value of 30 seconds when OMNIS is started.

The following general purpose method sets up a DDE channel by increasing the message
timeout by 5 seconds until successful. You pass three parameters to the method, that is, the
initial timeout, the channel number and the program 'name|document'.

; Open DDE
; declare Parameter LNUM (Short integer (0-255))
; declare Parameter LCHAN (Short integer (0-255))
; declare Parameter LPROGDOC (Character)
Set DDE channel number {LCHAN}
Repeat
Message timeout {LNUM}
Open DDE channel {LPROGDOC}
If flag false
Yes/No message {Give up 'Open DDE channel?}
End If
Calculate LNUM as LNUM + 5
Until flag true

Minimize window instance

Reversible: NO Flag affected: NO
Parameters: Window instance name
Syntax: Minimize window instanc&vindow-instance-name

This command minimizes the specified window instances, that is, the window is shown as
an icon at the bottom of the OMNIS application window (or the Finder window under
MacOS).

Open window instance WCUSTOMERS/wcust1/20/30/270/230
; let the user enter data, etc.
Minimize window instance wcustl ;; reduces window to an icon

You can minimize a window using the $minimize() method. To minimize the current
window use

Do $cwind.$minimize()

Commands 261

Modify class

Reversible: NO Flag affected: YES
Parameters: Class name (Search or Report only)
Syntax: Modify class{class-name}

This command opens a library class in design mode. Method execution continues and does
not wait for the design window to be closétbdify clasdets users modify new search and
report classes created with tRew classommand. Opening a class in design mode when

one of its methods is running cause3ut all methodgo be carried out before the design
window opens. If the class does not exist, the command clears the flag.

New class {Search/S_CUSTOMERS}
Modify class {S_CUSTOMERS}

; Now you can:

Set search name S_CUSTOMERS
Print report (Use search)

Modify methods

Reversible: NO Flag affected: YES
Parameters: Class name

Syntax: Modify methodd{class-name}

This command opens the method editor for the specified class. Method execution continues
and does not wait for the design window to be closed. Opening a method in design mode
first causes Quit all methodsf one of the methods for that class is running. The flag is
cleared if the specified class does not exist, or if it is a file, search, or report class.

New class {Window/W_CUSTOMERS}

Modify methods {W_CUSTOMERS}

; Opens at the $construct() method for window W_CUSTOMERS

262 Chapter 5—Commands

New class

Reversible: NO Flag affected: YES

Parameters: Class type
New class name

Syntax: New clasqclass-type/new-class-name | super-class-name}

class typecan be one of the following:
File, Task, Window, Report, Menu, Search, Code, Toolbar, Schema, Table

This command creates a new class with the specified type and class name. For example, you
can uséNew classn association wittModify classto allow users to create new search and

report classes. Attempting to create a class with the same name as one which already exists
clears the flag and displays an error message.

New class {Window/W_CUSTOMERS}
Modify class {W_CUSTOMERS}

Next

Reversible: YES Flag affected: YES

Parameters: Field name (must be indexed)
O Exact match
O Use search

Syntax: Next [onfield-namé [([Exact matcl, Use searc])]

This command locates the next record using the current find Tdi#&lextcommand
works in the same way as the corresponding option o@dh@mandsmenu but with no
redraw, allowing you to work through a file. It is usually used aftéind command which
creates a find table of records.

If the Index field, Exact match and/or Search option used iN#xtis incompatible with
the precedindrind, a new findtable is built. Normally, the parameters in this command are
left blank so that the current find table is used.

If the Nextcommand does not followFind, a find table is built for the current main file
before doing th&lext

If an indexed field is specifiedNext on SU_NAMEor example, the find table is just the
index order for the field. These searchoption creates a find table for the current main file
in which the search specification is implicitly stored. Thus, changes to the search do not
affect the find table once it is created.

Once the next record is located, the main and connected files are read into the current
record buffer.

Commands 263

264

An error occurs wheneverNext on FIELDcommand is performed on a non-indexed field
or if the field is not in the main file or its connected files.

If the next record is found, the flag is set; if not, it is cleared.

If the Exact match option is chosen, the next record is loaded where the index value of the
specified field matches the current value.

If you useNextwith a search, it builds a find table if necessary and finds the next record
listed on the find table which meets the search criteria.

In the following examplelNextis used without an exact match in order to work
systematically through the file. As each next record is found, the flag is set and the
commands in the loop are executed. When a next record cannot be found, the flag is cleared
and theRepeat-Untiloop terminated.
Find first on SEQ ;; creates a table equal to the SEQ index
While flag true

Working message {Processing records}

Prepare for edit

Calculate PRICE as PRICE*1.2

Update files

Next
End While ;; Loop terminates at end of table

; This finds all the records where CODE = CVAR1
Single file find on CODE {CVAR1}
While flag true
OK message {Found [NAME]}
Next (Exact match)
End While

No/Yes message

Reversible: NO Flag affected: YES
Parameters: Title (for message box)

O Icon

O Sound bell

O Cancel button
Message (text)
Syntax: No/Yes messageifle] [([Icon] [,Sound bel]l
[,Cancel buttof)] {message}

This command displays a message box containing the specified message and pNwides a
and aYespushbutton. Also, you can includ&€ancelbutton by checking th€ancel
button option. When the message box is displayed method execution is halted temporarily;

Chapter 5—Commands

Commands

it remains open until the user clicks on one of the buttons before continuiniyoTheton
is the default button and can therefore be selected by pressing the Return key.

The number of lines displayed in the message box depends on your operating system, fonts
and screen size. In the message text you can force a break between lines (a line return) by
using the notation "//". Also you can add a sltitig for the message box.

For greater emphasis, you can seledcan for the message box (the default “info” icon
for the current operating system), and you can force the system bell to sound by checking
the Sound bellcheck box.

You can insert &lo/Yes messag# any appropriate point in a method. If the user clicks the
No button, the flag is cleared; otherwise, a Yes sets the flag. You can use the
msgcancelled(unction to detect if the user pressed the Cancel button.

No/Yes message (lcon,Sound bell) {The balance in this account is now
[LBALZ1].//Are you sure you want to increase the credit limit?}

If flag true
Do method IncreaseCredit
End If
OK message
Reversible: NO Flag affected: NO
Parameters: Title (for message box)
O Icon
O Sound bell
O Cancel button
Message (text)
Syntax: OK messagetifle] [([Icon][, Sound be]l[,Cancel buttoh)] {message}

This command displays the specified message and waits for the user to diitk tre
Cancelbutton before continuing. Method execution is halted temporarily while the message
box is displayed. The number of message lines displayed depends on your operating system,
fonts and screen size. In the message text you can force a break between lines (a line return)
by using the notation "//". Also you can add a stitie for the message box.

For greater emphasis, you can seledtcan for the message box (the default “info” icon
for the current operating system), and you can force the system bell to sound by checking
the Sound bellcheck box.

The message box displayed by this command h&kKahutton by default, but you can add
a Cancelbutton by checking th€ancel button option. After executing an OK message,
the flag is unchanged, but you can usentisgcancelled@unction to detect if the user
pressed the Cancel button.

You can use square bracket notation in the message text to display the current value of
fields and variables. For example, the following method executes the SQL text passed to it

265

266

and displays the SQL error number and teys(131)andsys(132)respectively) if there is
an error.

; ExecSQL

; declare Parameter pSQL (Character 10000000)

; declare Parameter pAction (Character 100)

; pPSQL holds the SQL text, and pAction holds the SQL command
Perform SQL {[pSQL]}

If flag false

OK message [pAction] (Icon,Sound bell) {A SQL error occurred
while executing [pAction].//[sys(131)]: [sys(132)]}

End If

On

Reversible: NO Flag affected: NO
Parameters: Event constant or list of event constants
Syntax: Onevent-constarjtevent-constant,]..

This command is used in an event handling method and marks the beginning of a code
segment that executes when the specified event (or one of a number events) is received by
the current event handling method. @n command also marks the end of any preceding

On statement. You specify the event or list of events using the event constants.

When OMNIS generates an event it sends the event information as a series of event
parameters to the appropriate event handling method. The first parameter is always an event
constant. Further parameters, if any, depend on the event and further describe the event.
This event information is interpreted by fBe statements in the event handling methods.
Window field events are sent to the $event() method behind the field, then to the $control()
method for the window instance, and then to the $control() method for the current task.
Events that occur in the window itself, such as a click on the window background, are sent

to the class method called $event(), then to the $control() method for the current task. A
particular event is sent to the fidh command which applies, and when the r@mt

command is encountered quits the method.

You should place any code which is to be executed for all events before tlmfirst

command. You cannot néSh commands or put them in #nor Elsestatement. You can

useOn defaultto handle any events not handled by an earlier On event comman@nThe
commands must be in event handling methods only: if used elsewhere they are not executed.
The functionsys(86)at the start of a method reports any events received by the object.

Chapter 5—Commands

Commands

The following example shows a typical event handling method for a window field.

On evBefore
; whatever code is needed for evBefore event
On evAfter
; whatever code is needed for evAfter event
On evClick, evDoubleClick
; whatever code is needed for evClick and evDoubleClick events

Seeals@uit event handler

On default

Reversible: NO Flag affected: NO
Parameters: None

Syntax: On default

This command is used in an event handling method and handles any events not handled by
the precedingdn commands. You use tl@@n command to mark the beginning and end of
anOn statement. You should place any code which is to be executed for all events before
the firstOn command.

On evClick, evDoubleClick

: whatever code is needed for evClick and evDoubleClick events
On default

; this bit handles all other events

Open check data log

Reversible: YES Flag affected: NO
Parameters: O Do not wait for user
Syntax: Open check data log)o not wait for user)

This command opens the check data log. IBbenot wait for user option is specified,
execution continues with the next command, otherwise execution stops until the user has
closed the log. You use the check data log to manage the problems encountered in a data
file after theCheck datacommand is run. The data log window lets you repair any problems
listed in the window, print the contents of the log, or clear the log.

Check data (Check indexes)
Open check data log

267

268

Open client import file

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Open client import file

This command will open the import file specified with et client import file name
command. If the file already exists, OMNIS will open it and move to the end of the file
where the incoming data will be appended. However, if the file does not already exist,
OMNIS will create and open it. This lets you have an import file that is repeatedly added to
until you are ready to import its entire contents. By precedin@pen client import file
command with @elete client import file {file-nameommand, you can guarantee an
empty file for the next SQL transaction.
Set client import file name {VAX_FILE.TXT}
Begin SQL script
SQL: Select Name, Title from Authors
End SQL script
Execute SQL script
If flag true

Open client import file

If flag true

Retrieve rows to file
Else
OK message {couldn't open file for import}

End If
Else

OK message {error selecting rows from server}
End If

Open cursor

Reversible: NO Flag affected: YES
Parameters: Cursor name
Syntax: Open cursor{cursor-name}

This command opens the specified cursor and executes any SQL statement set for that
cursor. Thecursor-namemust be a currently valid cursor, but when omitted the current
cursor is used. You can pass the SQL statement to be executed by this command to the
named cursor usingeclare cursor The command is the same as:

Set current cursor {CURSOR_NAME}

Execute SQL script

Chapter 5—Commands

Open data file

Reversible: NO Flag affected: YES

Parameters: O Do not close other data
O Read-only Studio/OMNIS 7
Data file name
Internal name

Syntax: Open data file(Do not close other dath)(Read-only
Studio/OMNIS 7){data-file-naméd/internal-namé}

This command opens the specified data file and makes that file the "current" data file. It
clears the flag if the data file cannot be found or opened. Dtheot close other data
check box option is not specified, all existing data files are closed even if the command
fails. Opening a data file which is already open will close and reopen that data file. The
Read-only Studio/OMNIS 7check box causes the data file to be opened in read-only
mode. This lets you open an OMNIS 7 data file in read-only mode in OMNIS Studio
without conversion taking place.

You can override the default internal name by specifying your own in the parameter for the
command, for example

Open data file {Clients.df1/Names}

If an opened data file uses more than one segment, all segments are opened. The rules for
finding the additional segments which form part of the data file are as follows. Under
Windows, the PATH and the paths given in the OMNIS environment variable are searched.
Under MacOS, root directories of all mounted volumes are searched as well as the folders
containing the first segment and the most recently opened library.

; example 1
Open data file {SALES.DF1/SALES}
If flag true
Find first
If flag true
Open data file {PURCH.DF1/PURCHASES}(Do not close other data)
If flag true
Calculate PURCHASES.FIELD2 as SALES.FIELD1
Prepare for insert with current values
Enter data
Update files if flag set
End If
End If
End If

Commands 269

; example 2
; Transfer from data file 1 to data file 2
Open data file {PORDERS1.DF1/PORDERS1}
If flag true
Set main file {ORDERS}
Find first on ORDERNUM
While flag true
Prepare for insert with current values
Open data file {PORDERS2.DF1/PORDERS2}
Update files if flag set
Open data file {PORDERS1.DF1/PORDERS1}
Next on ORDERNUM

End While
End If
Open DDE channel 3!
Reversible: YES Flag affected: YES
Parameters: Program name|Topic hame (include the pipe)
Syntax: Open DDE channdprogram-name|topic-name}

This command opens the current channel for exchanging data. If there is a valid response,
the flag is set and the channel is successfully opened. If the channel is already open, the
existing conversation is closed.

When entering the command in a method, you use the parameters to specify the program
and the topic to which the message is to be addressed. Note that the "pipe" (or vertical bar)
between the program name and topic name is required.

This command is reversible, that is, a previous conversation will reopen if this command is
contained within a reversible block.

When the command is used in a method containing a reversible block, and if a new
conversation is initiated using the same channel number as an existing conversation, the
original continues to process incoming messages only, and at the end of the method, the new
conversation is stopped and the original becomes fully active.

270 Chapter 5—Commands

Commands

Set DDE channel number {2}
Open DDE channel {OMNIS|COUNTRY}
If flag false
OK message {Country library not running}
Else
Do method TransferData
Close DDE channel
OK message {Update finished}
End If

Open desk accessory

Reversible: NO Flag affected:

Parameters: Desk accessory name

Syntax: Open desk accessojgesk-accessory-name}

K

This command opens a specified desk accessory while OMNIS continues to run in the
background. Without MultiFinder, the DA opens immediately but cannot be used until

OMNIS stops running methods and waits for an input from the user.

The flag is set if the command opens the DA, and cleared if there is too little memory or the

DA is not found.

Yes/No message {Put this entry in SmartPad?}

If flag true
Open desk accessory {SmartPad}
If flag false

OK message {Either there is too little memory

or SmartPad is not installed}
End If
End If

271

272

Open library

Reversible: NO Flag affected: YES

Parameters: O Do not close others
O Do not open startup task
Library name
Internal name
Password
Parameters list

Syntax: Open library ([Do not close othefd,Do not open startup tagf
{library-nam¢/internal-namé/password|
[(parameter],parameter?...)]}

This command opens the specified library file and closes other libraries, if specified. You
specify the library name (including path name if required), internal name, password, and
startup method parameters of the library to be opened. If the disk file with the specified path
name cannot be opened or is not a valid library, the flag is cleared and no libraries are
closed.

If the internal name of an opened library is specified, a check is made to ensure the internal
name is unique among the open libraries, and a runtime error occurs if this is not the case. If
no internal name is specified, the default internal name is the disk name of the file with the
path name and suffix removed. For example, the internal name for 'hd:myfiles:testlib.lbr" is
‘testlib'.

Do not close others

TheDo not close othersption lets you keep open all other libraries. Otherwise, all other
open libraries are closed (see @lese librarycommand for the consequences of closing a
library). If an attempt is made to open a library which is already open, that library is closed
and reopened.

Startup task

If the Do not open startup taskoption is specified, the startup task construct for the
opened library is not called. Otherwise, the startup task $construct() method is called and
the parameters for it are passed. The startup task instance name will be either the library
name or the library internal name if it has one: itascalled Startup_Task.

Passwords

If a password is specified, an attempt is made to open the library with that password. If it is
not a valid password or no password is specified, the library is opened in the usual way, that
is, if the library does not need a master password, it is opened at the master level; otherwise
the usual prompt for password dialog is opened (the library is closed and a flag false
returned if this dialog is closed without a password being entered).

Chapter 5—Commands

Commands

Open library {MYLIB.LBR} (Param 1)
Open library (Do not close others) {SQLTOOLS.LBR}

The following method tries to open the named library, and @séSileif it fails. The
parameter variables accept the library name and internal name passed to the method.

; OpenLibrary method
; Libname and IntName are passed to this method
; declare Parameter Libname (Character 10000000)
; declare Parameter IntName (Character 10000000)
If pos('.,IntName) ;; if IntName has an extension, strip it
Calculate IntName as mid(IntName,1,pos(’.",IntName)-1)
End If
Do $root.$libs.$findname(IntName)
If flag false
Open library (Do not close others) {[Libname]/[IntName]}
Do $root.$libs.$findname(IntName)
If flag false
OK message {Can't find library}
Get File (Libname,"Please locate the file")
Open library (Do not close others) {[Libname]/[IntName]}
Do $root.$libs.$findname(IntName)
If flag false
OK message {Still can't open library!}
End If
End If
End If

Open lookup file

Reversible: YES Flag affected: YES

Parameters: Lookup reference or label
Data file name
File class name
Index field number

Syntax: Open lookup filg[lookup-referencdata-file-name/file-
name/field-number}

This command opens an OMNIS data file for use as a lookup file. You give each lookup
file a reference name which you use in subsedoektip()functions to select a particular
data file and file class.

You can open any OMNIS data file as a lookup file. In a lookup file, you can use the file
classes to look up field values based on an indexed search. Each file class should consist of

273

274

at least two fields: the first is the index (usually a character field), the second is any field
type. For example, the data file LAREAS.DF1 has the following file structure:

File name Fieldl Field2
FPIC Char Indexed Picture
FCITIES Char Indexed Char

The parameters f@pen lookupare separated by "/". The first parameter is a label that
you create to become the reference to that lookup "channel”. If you omit this label, OMNIS
assumes that you will use only one lookup file whereupon you cdoale()without its

first parameter. The label you give to each lookup is case-insensitive and if you use the
same one twice, the previous lookup file is closed. A flag true is returned if the data file is
found and opened. Here is a typical example:

Open lookup file {City/HD:LOOKUP.DF1/FCITIES/1}
If flag true

OK message {The city you require is [lookup('City",'',2)]}
End If

This example opens a data file called LOOKUP.DF1 and assigns the label "City" to the
lookup channel. The City lookup uses the file class FCITIES within that data file and uses
the first index to search for the required data. The OK messagmaokep()to search the

first indexed field for an exact match with the value "I". If the match is found, the value of
field 2 in the matched record is returned and displayed as part of the OK message. If no
match is foundlookup()returns an empty value.

Note that the index and field are specifiechambersecause your particular library may

not include the file class used in the lookup data file. If you omit either number, the default
is to use the first field as the index, and the second as the field value to be returned in the
lookup() function.

OMNIS looks for the data file using the following rules. Under Windows, the current PATH
and additional paths included in the OMNIS environment variable are searched. The
AUTOEXEC.BAT file sets up the environment variables, for example

PATH C:\;C:\WINDOWS;C:\DOS;C:\DOS\TOOLS

SET OMNIS=C:\WINDOWS\LOOKUPS

Under MacOS, the System folder, OMNIS folder and then the root of each mounted volume
is searched, in that order.

You can open more than one file class within a particular data file by assigning a different
label to each lookup, for example

Open lookup file {City2/LOOKUP.DF1/FCITIES2}

Open lookup file {City/LOOKUP.DF1/FCITIES}

Open lookup file {Country/LOOKUP.DF1/FCOUNTRIES}

Chapter 5—Commands

Commands

The flag is set if the lookup is successful, that is, the data file is opened, the file slot exists
and the indexed field is indeed indexed. The lookup file is closed if the command is
reversed (sieBegin reversible bIoQk|

You can close lookup files usirgjose lookup filebut this is not necessary: all lookup files
associated with a library are closed automatically when the library quits.

You can maintain the data within the lookup file from within the library by:
1. Adding the appropriate file classes to your library,

2. Changing the data file to the lookup file usibgen data file

3. Opening a window and editing/ inserting data in the usual way, and

4. Returning to the original data file.

You can also load multiple data files witlpen data file

Open runtime data file browser

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Open runtime data file browser

This command opens a restricted version of the Data File Browser suitable for use in the
runtime version of OMNIS. The Runtime Data File Browser lets you check data files and
individual data slots. The IDE Data File Browser, and the runtime version are mutually
exclusive, that is, opening one closes the other. If the Runtime Data File Browser is already
open, executing this command brings it to the front.

Open data file {Salaries.df1}

Set current data file {Saleries}

Open runtime data file browser

275

Open task instance

Reversible: NO Flag affected: NO

Parameters: Task class name
Instance name (the default is the class name)
Parameters list
Syntax: Open task instandask-class-namjgtaskinstance-namje
[(parameter],parameter?...)]

This command opens the specified task and assigns an instance name. You can include a list
of parameters which are sent to the $construct() method in the task instance. Note that
startup task instance is normally opened when the library opens: its name will be either the
library name or the library internal name if it has one.

Open task instance Taskl (1)

: $construct for Task 1
; declare Parameter pMenu of type Boolean
If pMenu
Install menu mAccounts
End If

Open trace log

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Open trace log

This command opens the trace log.

276 Chapter 5—Commands

Open window instance

Reversible: YES Flag affected: NO

Parameters: Window class name
Window instance name default is the class name

left/top/right/bottom/ to position and size window; no. of pixels
/CEN to center the window
/MAX to maximize the window
/MIN to minimize the window
/STK to stack the window
Parameters list
Syntax: Open window instanceindow-class-namiwindow-instance-namle

[/left/top[/right[/bottoni]]] [/ CEN| [/MAX] [/MIN] [/STK
[(parameter],parameter?...)]

This command opens an instance of the specified window class. You can specify the
position and size of the window instance (using the left, top, right, bottom coordinates in
pixels), and you can center, maximize, minimize, and stack the window. Furthermore, you
can send a list of parameters to the window’s $construct() method.

Open window instandets you open multiple instances of the same window class. The
default instance name for a window is the class name, but if you want to open multiple
instances of the same window class you must assign a unique name to each instance.
Window instance names are case-sensitive.

Open window instance WCLIENT/winstl/stk

Open window instance WCLIENT/winst2/stk

; will open and stack two instances of the WCLIENT window

Alternatively you can let OMNIS assign enumerated names to multiple instances by
specifying **' as the instance name.

Open window instance WCLIENT/*

Open window instance WCLIENT/*

; will open two instances WCLIENT1 and WCLIENT2

Window Position and Size

You can specify the position of the top-left corner of the window instance by adding the
coordinates to the end of the window name/instance name parameter, that is,
window-nam#nstance-nanéeft/top. You specify the position in pixels, the origin being
/0/0, that isunderthe menu bar. By providing all four coordinates, you can specify the
position and size of the window instance.

Open window instance WCLIENT/winst1/20/30/200/300/stk

Open window instance WCLIENT/winst2/20/30/300/400/stk

You can use variables to locate a window instance, for example

Commands 277

278

Open window instance
WPALETTE/wpall/[LVLeft}/[LVTop)/[LVRight}/[LVBot]
Centering and Stacking Windows

The/CEN option automatically centers the window instance. You can include the four
window size coordinates with tHEEN option so the window is sized and centered.

Open window instance WCLIENT/winst1/20/30/200/300/CEN
The/STK option opens the window instance about 12 pixels (the stack offset) to the right

and down from the current top window. When a stacked window reaches the edge of the
screen, it is placed back at the top of the stack, offset slightly from the first window.

Open window instance WPALETTE/wpall/STK

Maximizing and Minimizing Windows
The/MAX option opens and maximizes the window instance. If you include the position

and size coordinates with this option, the window is opened with the specified position and
size and then maximized.

Open window instance WCLIENT/winst2/20/30/200/300/MAX
; opens the window at 20/30/200/300 and then maximizes it

The/MIN option opens and minimizes the window instance. If you include the position and
size coordinates with this option, the window is opened with the specified position and size
and then minimized.

Open window instance WCLIENT/winst3/30/40/250/350/MIN
; opens the window at 30/40/250/350 and then minimizes it

$construct() Method and Passing Parameters

When you open a window instance, the $construct() method for that instance is run. In this
method, you place commands which set up the conditions required by the window. For
example, you may want to set the main file, build particular lists, and so on. Just @s with
methodandDo code methoglou can send parameters to the window u€ipgn window
instance for example

Open window instance WCLIENT/winst2 (CVAR1,LVAR1,CO_NAME)

In this case, the values held in CVAR1, LVAR1, and CO_NAME are passed to the
$construct() method for the WCLIENT window instance.

Reversible blocks in the $construct() method do not reverse until the window instance is
closed, unlike a normal method whose reversible blocks reverse on termination of the
method.

Alternatively you can use the $open() method to open a window.

$windows.WINDOW.$open(‘instancename’[,location,constructparams])

Chapter 5—Commands

Optimize method

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Optimize method

This command stores an optimized form of the method so when the method is executed for
a second time it runs much faster. You should put this command at the beginning of a
method, except when you put it in a reversible block. Methods which are executed
frequently, such as control methods and loops, are best optimized. The command is
reversible and does not change the flag.

WhenOptimize methods executed for the first time it converts the method being executed
into its optimized form and continues execution. When the method terminates, the
optimized form of that method is kept in RAM; the optimized form is executed if the
method is called again. @ptimize methodk in a reversible block the optimized form of the
method is disposed of when the method terminates; so it will be rebuilt each time the
method executes. The optimized method is also discarded whenever the design window is
open for the method or the method is modified using the notation.

Optimize method

Set main file fRequests

Set current list BookRequests

Define list {Reqld,BookName,CollegeName}

Set search name sPhysics

Find first on Reqld (Use search)

While flag true
Single file find on Bookld (Exact match) {ReqBkld}
Single file find on Collegeld (Exact match) {ReqCollegeld}
Add line to list
Next

End While

WARNING Optimizing too many methods will increase the memory used which may
eventually result in a slowdown or worse.

Commands 279

OR selected and saved

Reversible: NO Flag affected: YES

Parameters: Line number (can be calculation, default is current line)
O All lines

Syntax: OR selected and save@\[l lines)] [{line-number}

This command performs a logical OR of the Saved selection with the Current selection. To
allow sophisticated manipulation of data via lists, a list can store two selection states for
each line; the "Current" and the "Saved" selection. The Current and Saved selections have
nothing to do with saving data on the disk; they are no more than labels for two sets of
selections. The lists may be held in memory and never saved to disk: they will still have a
Current and Saved selection state for each line but they will be lost if not saved. When a list
is stored in the data file, both sets of selections are stored.

You can specify a particular line in the list by entering either a number or a calculation.

TheOR selected and savedmmand performs a logical OR on the Saved and Current

states and puts the result into the Current selection. Hence, if either or both the Current and
Saved states are selected, the Current state becomes selected, but if both states are
deselected, the resulting Current state will remain deselected.

Logic Table (S=selected, D=deselected)

Saved Current Resulting Current

State
S S S
D S S
S D S
D D D

TheAll lines option performs the OR on all lines of the current list. The following example
selects all lines of the list.

280 Chapter 5—Commands

Set current list LIST1
Define list {LVAR1}
Calculate LVAR1 as 1
Repeat
Add line to list
Calculate LVAR1 as LVAR1+1
Until LVAR1=6
Select list line(s) (All lines)
Save selection for line(s) (All lines)
Invert selection for line(s) {3}
OR selected and saved (All lines)
Redraw lists

Paste from clipboard

Reversible: NO Flag affected: YES
Parameters: Field name

O Redraw field

O All windows

Syntax: Paste from clipboardigld-namé [([Redraw field[,All window$)]

This command pastes the contents of the clipboard into the specified field, current selection
or at the insertion point. When the field name parameter is spe&ifistk from clipboard

pastes the contents of the clipboard into the field replacing the contents of the whole field.
However, when the field name parameter is not specified the command will paste the
contents of the clipboard at the current selection (a range of selected characters) or the
insertion point within the current field.

; copies one field to another then clears the first field
Copy to clipboard C_NAME

Paste from clipboard C_COMPANY (Redraw field)
Clear data C_NAME (Redraw field)

Commands 281

Perform SQL

Reversible: NO Flag affected: YES
Parameters: SQL script
Syntax: Perform SQL{sql-script}

This command sends a SQL statement direct to the current session without loading the SQL
buffer. It replaces the sequence

Begin SQL script

SQL: Select Name from Clients where Name like J

End SQL script

Execute SQL script

The flag is set if the server accepts the SQL statement. You can use the fieystfh84)
andsys(132}o report any errors returned from the server, for example

Set current session {Session_Ora}
Reset cursor(s) (Current)
Perform SQL {Select Name from Clients where Name like J}

If flag false
OK message {Error returned: [sys(132)]}
End If
Popup menu
Reversible: NO Flag affected: YES

Parameters: Menu name
x coordinate, y coordinate

Syntax: Popup menmenu-name ([x-coordinate,y-coordinate])

This command installs the specified menu as a popup menu at the specified location. The
location is thex,y screen coordinate relative to the (0,0) position. Under Windows, the
coordinate (0,0) is the point directly under the menu bar within the OMNIS application
window. Under MacQS, (0,0) is literally the top left corner of the screen. If you omit the
X,y coordinates the menu pops up at the current mouse position.

Themouseover(junction returns the mouse position relative to the open window and not
the OMNIS application window. Using this function to specify the x and y position of the
popup menu may not produce the effect you want.

Popup mentehaves much likBopup menu from ligxcept the source of the popup is a
user-defined menu. It clears the flag if the user does not select a menu line, otherwise, the
line selected from the popup is executed.

282 Chapter 5—Commands

Commands

: $event for window class
On evRMouseDown
Popup menu mContext3

Popup menu from list

Reversible: NO Flag affected: YES

Parameters: List name
x coordinate, y coordinate

Syntax: Popup menu from lidist-name ([x-coordinate,y-coordinate])

This command installs the specified list as a popup menu at the spegifseteen

location. Under Windows, the coordinate 0,0 is the point directly under the menu bar within
the application area. Under MacQOS, 0,0 is literally the top left corner of the screen. If you
omit the X,y coordinate from this command the menu pops up at the current mouse position.

Popup menu from lisiehaves much likBopup menexcept the source of the menu is a
list. The specified list can contain any number of rows but only the first column and a
limited number of rows are displayed in the popup menu.

This command clears the flag if the user does not select a list lindSihdlineis
unaffected. After the command has executed you calstfst return the line selected.

Themouseover(junction returns the mouse position relative to the open window and not
the OMNIS application window. Using this function to specify the x and y position of the
popup menu may not produce the effect you want.

: $event for window class
On evRMouseDown
Popup menu from list cList

Prepare current cursor

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Prepare current cursor

This command sends the SQL statement given to the current cursor to the DAM in order
that it can interpret and understand the statement. This is normally done implicitly as part of
an execute, but you can make this explicit using this command. Consider that a statement
has 3 stages:

1. Prepare—always needed
2. Execute—always needed

3. Describe—only needed if the statement has results, a Select, for example

283

When sending a SQL statement uditegform SQLandExecute SQiscriptthe SQL script

is parsed and interpreted by the server. Should you wish to send the same statement again,
this preparation stage can be bypassed to save time byRusimare current cursor For

example:

Begin SQL script

SQL: INSERT INTO Sales(coll,col2,..) VALUES (@][coll],@][col2], ..)

End SQL script

Prepare current cursor

Execute SQL script

Subsequent use &fxecute SQkcript on the same cursor will execute the same statement
without having to set up the SQL buffer each time since the indirection and bind variables
are already prepared. This can greatly speed up the process of, say, inserting many rows
into a server table within a loop.

Set current cursor { Cursorl }

Repeat
; get next row
Execute SQL script ;; insert the row
Until .. ;; N0 more rows to insert

Prepare for edit

Reversible: YES Flag affected: YES
Parameters: None
Syntax: Prepare for edit

This command prepares OMNIS for editing data. It brings records into memory ready for
updating and rereads the current records when in multi-user mode in case another user has
made a change to a record since it was read in. Your method can then alter the values of the
records. The contents of the current record buffer are not written back to didipdate

filesis encountered.

If there is a window open and you require data to be entered via that wiBdtervdatais
required after th@repare for edit

TheEdit option on theCommandsmenu is, in fact, equivalent to the commands:

284 Chapter 5—Commands

Commands

Prepare for edit
Enter data
If flag true
Update files
Else
Clear main & connected
Redraw MyWindow
End If

Prepare for edit/insert mode is cleared only Baacel prepare for update, Update files
Quit all method€£ommand. You can build lists, print reports and change the main file in the
middle of an update without canceling the Prepare fonde.

Multi-user considerations
Records in the current record buffer from Read/write files will be locked ®Wherare for

editis executed, so as to prevent simultaneous editing of a record. The lock is removed by
Update filesor any command which cancels the Prepare for mode.

If Wait for semaphoreis active, &repare for editwill wait for a record to become
available if another workstation has locked it. If the user presses Ctrl-Break (or Cmnd-
period under MacOS) while waiting for access, the command fails and processing halts.
With Do not wait for semaphorexctive, a record lock returns control to the method with
the flag false.

In the following method, the Edit mode is used to process the whole ofarfier. datais
not used as no user intervention is requitdptlate fileswrites data to the disk and clears
the Prepare for.. mode and record locks.

In ‘Wait for semaphores’ mode:

Set main file MYFILE
Find first on MYINDEX
While flag true
Prepare for edit
Calculate CLBALN as CLBALN - TCCOST
Update files
Next
End while

In ‘Do not wait for semaphores’ mode:

285

Set main file MYFILE
Find first on MYINDEX
While flag true
Repeat
Prepare for edit
Until flag true
Calculate CLBALN as CLBALN - TCCOST
Repeat
Update files
Until flag true
Next
End while
In the next Edit example, thenter datacommand is included in the method so that the user
can edit the record from the keyboard. Again, the comrulpatite filescancels the
Prepare for update mode and writes data to the disk.

Prepare for edit
Enter data
Update files if flag set

The next example has been written to control record locking by preventing OMNIS from
waiting for a record lock. It takes the form of general purpose ‘prepare for edit’ which you
can call with a number which tells it how many times to try for a lock if the record is locked
by another user:

; general Prepare for edit
; declare Parameter TRIES (Number O dp)
Do not wait for semaphores
Calculate COUNT as 1
Repeat
Prepare for edit
Calculate COUNT as COUNT+1
Until #F | (COUNT>TRIES)
; Keeps trying until flag true OR counter>TRIES
Wait for semaphores

286 Chapter 5—Commands

Prepare for export to file

Reversible: NO Flag affected: YES
Parameters: Export format
Syntax: Prepare for export to filgexport-format}

export-formatis one of the followingbelimited(commas),
Delimited(tabs),One field per line, OMNIS data transfer

This command prepares to export records to a file in one of the specified data formats. The
file must previously have been set us8ef print or export file name

Set print or export file name {Export.txt}
Prepare for export to file {Delimited (commas)}
Export data LIST1

End export

Prepare for export to port

Reversible: NO Flag affected: YES
Parameters: Export format
Syntax: Prepare for export to pofexport-format}

export-formatis one of the followingbelimited(commas),
Delimited(tabs),One field per line, OMNIS data transfer

This command prepares to export records to a port in one of the specified data formats. The
file must previously have been set usBgf port namer Prompt for port name

Set port name {COML1:}

Prepare for export to port {Delimited (commas)}
Export data LIST1

End export

Commands 287

288

Prepare for import from client 1

Reversible: NO Flag affected: YES
Parameters: Data format
Syntax: Prepare for import from cliedtlata-format}

data-formatis one of the followingbDelimited(commas),
Delimited(tabs),One field per line, OMNIS data transfer

This command prepares to import records from the DDE client in the specified data format;
it is a DDE command, OMNIS as server. The data referred to in the subskoperitdata
commands are imported from the DDE client. A single DDE Poke message received from
the client contains a complete record. As each field is received, it is read into the fields in
the top window in field order.

If the imported record contains more fields than there are in the window, the extra ones are
ignored. Conversely, if there are too few, the extra fields in the window are left blank.
Open window instance W_import_data
Prepare for import from client {Delimited (tabs)}
If flag true
Import data {ImportList}
End If
End import

Prepare for import from file

Reversible: NO Flag affected: YES
Parameters: Data format
Syntax: Prepare for import from fil§data-format}

data-formatis one of the followingbDelimited(commas),
Delimited(tabs),One field per line, OMNIS data transfer

This command prepares OMNIS for a seriefhgdort datacommands. You must specify

the format for the import data as the parameter, otherwise an error will occur. The
parameter can contain square bracket notation but must evaluate to a valid import format
name. You should use tiset import file nameommand to specify the name of the file to

be read in.

If the data matches the specified import format, the flag is set. However, if the data does not
match the import format, the flag is cleared.

When data is imported via a method rather thatutiities menu, you must open a
window which defines the fields in which the incoming data must be placed. The example
below shows a typical import data method.

Chapter 5—Commands

Commands

You can use a $control() method in conjunction withlthport datacommand.

Open window instance W_import_window
; Set control method (optional)
Set import file name {datal.DBF}
Prepare for import from file {Delimited (tabs)}
If flag true
Import data {ImportList}
End If
End import
Close import file

If there are too few fields on the window, imported fields will be lost. If there are too many,
the extra fields are cleared. You can uselbanot flushcommand to speed up the import
when there is only one user logged into the data file.

Prepare for import from port

Reversible: NO Flag affected: YES
Parameters: Data format
Syntax: Prepare for import from poftiata-format}

data-formatis one of the followingDelimited(commas),
Delimited(tabs),One field per line, OMNIS data transfer

This command prepares OMNIS for importing data from a port. It is similar erépare
for import from filecommand. The user can cancel the import of data Windpare for
importis waiting for data from the port. If this happens, OMNIS clears the flag.

Set port nameefines which port is used. Under MacOS, the choice is 1 (Modem port) or 2
(Printer port). Under Windows 3.x, the choices are Com1:, Com2:, and so on.

Open window instance W_import_window
; Set control method (optional)
Set port name {1 (Modem port)}
Set port parameters {1200,n,7,2}
Prepare for import from port {Delimited (commas)}
If flag true
Import data {ImportList}
End If
End import
Close port

289

Prepare for insert

Reversible: YES Flag affected: YES
Parameters: None
Syntax: Prepare for insert

This command prepares OMNIS for inserting new data into the main file. It clears the main
file and prepares to insert a new record into the main file. All Read/write non-main file
records in the current record buffer are reread if a record has been changed. You can edit
data in all the read/write files in the buffer, other than the main file.

Prepare for inserts notthe same as tHasert option on theCommandsmenu which is in
fact equivalent to:

Prepare for insert
Enter data
If flag true
Update files
Else
Clear main & connected
Redraw MyWindow
End If

TheEnter datacommand is required only if the user is to enter data via a window. Data is
not written to the disk untlUpdate filesis executed.

Prepare for edit/insert mode is cleared only aacel prepare for update, Update files
a Quit all methodsommand. You can build lists, print reports and change the main file in
the middle of an insert without canceling the Prepare for... mode.

If the main file is changed while in Prepare for insert mode, the main file at the time of the
Prepare for inserts used whetypdate filesis encountered.

In multi-user mode, thErepare for...commands reread the current records from the data
file if another user has edited a record.

290 Chapter 5—Commands

Commands

Prepare for insert with current values

Reversible: YES Flag affected: YES
Parameters: None
Syntax: Prepare for insert with current values

This command prepares OMNIS for inserting new data into the main file using the values in
the current record buffer as a starting pdirepare for insert with current valuesffers
from Prepare for insertn that the fields in the main file are not cleared.

In multi-user mode, thBrepare for...commands reread the current records from the data
file if another user has edited a record.

Set main file {ORDERS}
Prepare for insert with current values
If flag false
Quit method kFalse
End If
Enter data
Update files if flag set

Prepare for print

Reversible: YES Flag affected: YES

Parameters: [Ask for job setup
O Do not finish other reports
Report instance name (default is the class name)
Parameters list

Syntax: Prepare for print(Do not finish other report§)
[{report-instance-namé]} (parameter], parameter...)]

This command prepares OMNIS for record-by-record report printing. You specify the
report instance name and you can add a list of $construct parameters for the report instance.
The default instance name is the name of the report class itself.

You must puPrepare for printafter anySet report nameSelect destination,.Set port
name Set print file nameSet sort fieldandReport parametecommands and before the
first Print record command.

TheAsk for job setup option opens the job setup dialog that lets you select the number of
copies, paper trays, the printer, and so on, for the current print job.

Prepare for printhas theDo not finish other reports option which when checked allows
multiple reports to be in progress at the same time. If this is unchecked (the default) all
reports in progress are terminated before the new report is started, which is compatible with
earlier versions of OMNIS.

291

292

The flag is set if the command is successful, errors cause a message to be displayed. If
placed in a reversible block, tReepare for printmode is canceled and the totals printed
when the command is reversed.

All the Print commands give an error if no report is selected, or if the report is printed to a
port and no port is selected.

When reports are printed record-by-record usirigt recordin a loop, the sort fields set

up in the report class still trigger the subtotals. No sorting takes place and, therefore, you
must take care in the choice of index. You can trigger subtotals from the method by
including a variable on the first line of the report class, including it in the sort fields and
then using the method to change its value when required.

The Prepare for print mode is terminated or canceldgnolyprint You mustinclude an
End printafter aPrepare for printeven if a totals section is not required.

Perform SQL {Select * from FELEMENTS}
Prompt for destination
If flag true
Fetch row
Set report name reportl
Prepare for print
Repeat
Working message (Repeat count) {Printing}
Print record
Fetch row
Until flag false
End print
End If

Chapter 5—Commands

Commands

; Example 2
; CVARL1, used to trigger subtotals section 1, is a sort field and
; placed on line 1 of the report class
Set report name RS_CONTACTS
Set main file {CONTACTS}
Prompt for destination
If flag true
Prepare for print
Find first
While flag true
Calculate CVAR1 as TOWN
Print record
Next
End While
End print
End If

Previous

Reversible: YES Flag affected: YES

Parameters: Field name (must be indexed)
O Exact match
O Use search

Syntax: Previous [orfield-namé [([Exact matcl,Use searc]]

This command locates the previous record using the current find tablBrdvieus
command works in the same way as the corresponding option Gotiimandsmenu but
with no redraw, allowing you to work through a file. It is usually used afénc
command which creates a find table of records.

If the Index field, Exact match and/or Search option used iNéxtis incompatible with
the precedingdrind, a new table is built. Normally, the parameters in this command are left
blank so that the current find table is used.

If the Previouscommand does not followFind, a find table is built for the current main
file before doing thérevious

If an indexed field is specifie@®revious on SU_NAMfbr example, the find table is just

the index order for the field. THése searcloption creates a table for the current main file
in which the search specification is implicitly stored. Thus, changes to the search do not
affect the find table once it is created.

293

Once the previous record is located, the main and connected files are read into the current
record buffer and the flag is set, otherwise, the flag is cleared. An error occurs whenever
Previous on FIELDs performed on a non-indexed field.

If the Exact match option is chosen, the previous record with the same index value is
found, or the flag is cleared if no previous records exist with the same index value.

If you usePreviouswith a search, it finds the previous record listed on the index table
which meets the search criteria.

In the following exampleRreviousis used without an exact match in order to work
systematically through the file. As each previous record is found, the flag is set and the
commands in the loop are executed. When a previous record cannot be found, the flag is
cleared and thRepeatUntil loop terminated.
Find last on SEQ ;; this creates a table equal to the SEQ index
While flag true

Working message {Processing records}

Prepare for edit

Calculate PRICE as PRICE*1.2

Update files

Previous
End While

Print check data log

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Print check data log

This command prints the current contents of the check data log to the current report
destination. There is no need for the log to be open.

Check data (Check indexes)
If flag true
Print check data log
Else
OK message {Check data works only if one user is logged on}
End If

294 Chapter 5—Commands

Commands

Print class

Reversible: NO Flag affected: NO
Parameters: Class name
Syntax: Print classlass-name

This command prints the field list and methods (if any) for the specified class. The
following example prints the field list and/or methods for all the classes in the current
library.
; declare local variable FLIST of List type
Set current list FLIST
Calculate FLIST as $clib.$classes.$makelist($ref.$name)
Redefine list {CVARS5}
For each line in list
Print class {[Ist(CVARS5)]}
End for

Print record

Reversible: NO Flag affected: YES
Parameters: Report instance name
Syntax: Print record {report-instance-namé}

This command prints a single record of the specified report instance. You use it when
printing a report on a record-by-record basis and usually within a loop. It provides greater
control over the report generator tHawint report If you omit the report instance name

Print recordis applied to the most recently started report instance ($ireports.$first).

Each timePrint recordis encountered, a record section of the report is printed to the
selected output using the data in the CRB. Any page heading, subtotal heading and subtotal
sections before the record section are printed where necessary.

Subtotal sections are printed whenever the sort fields change value, provided that the fields
entered in the Sort Fields dialog h&gbtotalsset to True.

The flag is cleared if:

U noPrepare for printis used, or

U the user cancels the report by pressing Ctrl-Break or Cmnd-period, or
U thereis an error.

These errors will not cause OMNIS to execuf@uat all methodslf the flag is cleared,
OMNIS will not execute any furthé?rint recordcommands until it encounters another
Prepare for print

295

296

; example 1
Set main file {f_client}
Set report name r_letters
Send to screen
Prepare for print
Find first
While flag true

Print record

Next
End While
End print

; example 2
Perform SQL {Select C_CODE,C_NAME from CUST}
Set report name R_CUST
Prepare for print
Fetch row
While flag true
Print record
Fetch row
End While
End print

Print report

Reversible: NO Flag affected: YES

Parameters: [Ask for job setup
O Use search
O Do not finish other reports
Report instance name (default is the class name)
Parameters list

Syntax: Print report {[Use searclf, Do not finish other reporiy]
[{report-instance-namé]} (parameter], parameter...)]

This command prints the specified report instance to the selected output. You specify the
report instance name and you can add a list of $construct parameters for the report instance.
The default instance name is the name of the report class itself.

Subtotal sections are printed whenever the sort fields change value, provided that the fields
entered in the Sort Fields dialog h&btotalsset to True.

Chapter 5—Commands

You specify sort fields and the main file or list as part of the report parameters. If the main
file has not been set in the report class, the current main file is used. You can override all
the parameters in the class using the appropriate commands, for exaahéd, margin

Print reportdoes not use the current record buffer but a special memory buffer to load in
and sort records. Thirint reportdoes not affect Prepare for mode and does not lose
current records. If the report is printed from a list, data is read directly from the report main
list, as specified in the parameters for the red®T.$lineis unaffected.

TheAsk for job setup option opens the job setup dialog that lets you select the number of
copies, paper trays, the printer, and so on, for the current print job.

All records are printed unless thise searchoption is specified. In this case, only the
records matching the current search class are printed. It is not necessafyriepase for
print beforePrint report

TheDo not finish other reports option allows multiple reports to be in progress at the
same time. If this is unchecked (the default) all reports in progress are terminated before the
new report is started, which is compatible with earlier versions of OMNIS.

The flag is cleared if the report is canceled before completion by the user or in the event of
an error. Most errors will display a message but will not cause OMN®iitcall methods

Set report main file {f_client}
Set report name r_letters
Clear sort fields

Set sort field ORDERCODE
Send to screen

Print report

Print report from disk

Reversible: NO Flag affected: YES
Parameters: File name
Syntax: Print report from disk file-name}

This command prints the contents of the specified disk file to the current report destination.
The specified file must contain output generated using the Disk printing device.

Commands 297

Print report from memory

Reversible: NO Flag affected: YES
Parameters: Field or variable name
Syntax: Print report from memoryar-name

This command prints the contents of the specified binary field or variable to the current
report destination. The specified field or variable must contain output generated using the
Memory printing device.

Print top window

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Print top window

This command prints the top window to the current print destination. It behaves the same as
theWindow>>Print Top menu option.

Send to printer
Print top window

Process event and continue

Reversible: NO Flag affected: NO
Parameters: [Discard event
Syntax: Process event and continBiscard event)

This command causes the current event to be processed immediately allowing the event
handler method containing the command to continue to execute. Normally, the default
processing for an event takes place when all the event handler methods dealing with the
event have finished executing. It is not possible to have active unprocessed events when
waiting for user input so the default processing is carried out for any active events after an
Enter data command has been executed or at a debugger break Therefore if required, you
can use this command to override the default behavior and force events to be processed
allowing the event handler method to continue.

TheDiscard eventoption lets you discard the active event. For example, in an event
handler for evOK the following code would cause the OK event to be thrown away before
the subsequent enter data starts.
On evOK

Process event and continue (Discard event)

Open window instance {window2}

Enter data

298 Chapter 5—Commands

Commands

Prompt for data file

Reversible: NO Flag affected: YES

Parameters: Internal name
O Do not close other data
O Read-only Studio/OMNIS 7

Syntax: Prompt for data file(Do not close other datk)(Read-only
Studio/OMNIS 7){internal-name}

This command prompts the user to enter the name of a data file. A dialog box is displayed
that lets the user choose a data file. An error message "Unable to find data file" is generated
if the selected file cannot be opened, and the user is forced to select another file name or
Cancel. If the user selects Cancel, the flag is cleared and the original data file remains
selected.

The selected file is opened in shared mode unless the volume does not support record
locking.

The existing open data files remain open ifBreenot close other dateoption is selected.

In this case, the new data file becomes the "current" data file and this becomes the default
data file for file classes which have not been associated with a particular data file using the
Set default data fileommand. If théo not close other dateoption is not specified, all

other open data files are closed even if the command fails.

If an attempt is made to open a data file which is already open, that data file is closed and
reopened. ThRead-only Studio/OMNIS 7check box causes the data file to be opened in
read-only mode. This lets you open an OMNIS 7 data file in read-only mode in OMNIS
Studio without conversion taking place.
Test if file exists {ORDERS.DF1}
If flag true

Open data file {ORDERS.DF1}
Else

Prompt for data file

If flag false

Quit method

End If

End If

299

Prompt for destination

Reversible: YES Flag affected: YES
Parameters: None
Syntax: Prompt for destination

This command displays the Set report destination window so the user can select the
destination for the report. The user can choose the following destinations: printer, screen,
page preview, file, port, clipboard, or DDE channel.

If the command is part of a reversible block, the destination reverts to its former identity
when the method terminates. If the user selects the Cancel button on the dialog, the flag is
cleared.

Set report name Orders

Prompt for destination

If flag true
Print report
End If
Prompt for event recipient ‘.
Reversible: NO Flag affected: YES
Parameters: Recipient tag name
Syntax: Prompt for event recipienfrecipient-tag}

This command prompts the user to select the name of an application which will become the
destination of all subsequent events. The "recipient tag" is entered also. Recipient tags may
have a maximum of 31 characters to comply with the MacOS Finder. Several recipients may
be prompted for, each with a different tag, but you can use only one at a time. A complete
list of current recipients is built with tHguild list of event recipientsommand.

If no recipient tag is specified for the application, the tag will be supplied by OMNIS. Its

name will be capitalized and spaces removed. Once an event recipient has been tagged, you
can use the tag as a parameter foltbe event recipierdommand without further

prompting, thus allowing recipients to be changed easily.

300 Chapter 5—Commands

Commands

; This example is a pushbutton method which sets up two recipients
On evClick
OK message {Locate the Excel spreadsheet for me}
Prompt for event recipient {Sheet} ;;tagged as "Sheet"
OK message {Locate the remote database for me}
Prompt for event recipient {Data} ;; tagged as "Data"
Set current list LIST1
Build list of event recipients
Redraw lists
Set event recipient {[LIST1(1,1)]}
; Uses the first recipient in list, that is, R1,C1
On default
Quit event handler

Prompt for import file

Reversible: YES Flag affected: YES
Parameters: None
Syntax: Prompt for import file

This command prompts the user to select the name of the import file. The flag is set if the
import file is successfully selected, otherwise a Cancel clears the flag, closes the current file
and closes the dialog. You use the selected file in any subséayent datacommands.

If you usePrompt for import filein a reversible block, the import file is closed when the
method containing the reversible block terminates.
Open window instance W_IMPORT
Prompt for import file
Prepare for import from file {Delimited(tabs)}
If flag true
Import data {ImportList}
End If
End Import
Close import file

301

Prompt for input

Reversible: NO Flag affected: YES

Parameters: O Sound bell
O Cancel button
O Upper case only
O Password entry
O Prompt above entry
Prompt text
Title
Icon id
Maximum characters
Return field

Syntax: Prompt for input ([Sound be]l[,Cancel buttoh
[,Upper case only,Password entiy[,Prompt above entt}]
prompt-texttitle]/[icon-id]/[max-char$ Returnsreturn-field

This command opens a message box requesting a value from the user. You can specify the
text for the prompt, title and icon for the message box, and the maximum number of
characters for the input. If the user enters a value and presses OK, the command sets the flac
and returns the user value. The command is not reversible.

The first parameter for therompt for inputcommand is therompt-textwhich is the

prompt displayed to the left of the entry field by default; you can place the prompt text
above the entry field using tiRrompt above entryoption. You can also entettitle for

the message box. The prompt and title default to empty. Note that if you want to enter an
empty title, you need to enter '/ /' to avoid ambiguity with the newline convention.

You can specify an icon for the message box usingctireid of an icon from the

OMNISPIC or USERPIC icon data file. Zero is the default which means no icon. You can
use one of the icon size constants enclosed in square brackets with the icon id to specify a
non-default size, for example, [1710+k48x48]. You can specify the maximum number of
characters that the user can entanax-chars This defaults to the maximum length

defined in your return field. Theeturn-field can specify an initial value for the entry field

on the message box, and receives the value entered after the user clicks OK.

The Sound belloption causes the system beep to sound when the message box opens. The
Cancel button option adds a Cancel button to the message box. The flag returns false if the
user presses the Cancel button. Ulpper case onlyoption forces all input to be upper
case, while th®assword entryoption hides the input, by displaying *' for each character
entered.
Prompt for input Please enter your name Returns Iv_input (Sound

bell,Cancel button,Prompt above entry)
; Iv_input now contains value entered by user

302 Chapter 5—Commands

Commands

Prompt for library

Reversible: NO Flag affected: YES

Parameters: O Do not close others
O Do not open startup task
Internal name
Parameters list

Syntax: Prompt for library {[Do not close otheig,Do not open startup tapk
[{internal-name](parameter],parameter?...)]}]

This command prompts the user for a library file. You can specify the internal name and
startup task construct parameters of the library to be opened, together \lithribeclose
others andDo not open startup taskoptions.

If the internal name of an opened library is specified, a check is made to ensure the internal
name is unigue among the open libraries; a runtime error occurs if this is not the case. If no
internal name is specified, the default internal name is the disk name of the file with the path
name and suffix removed. For example, the internal name for 'hd:myfiles:testlib.lbr' is
‘testlib'.

If an attempt is made to open a library which is already open, that library is closed and
reopened. Refer tGlose libraryfor the consequences of closing a library. If the user
cancels the Select Library dialog, the flag is cleared and no libraries are closed.

Do not close others

TheDo not close othersption lets you keep open all other libraries. IfEreenot close
others option is not selected, then all other open libraries are closed when the user opens a
new library, including the one containing the currently executing method.

Passwords

If the library does not need a master password, it is opened at the master level, otherwise the
usual prompt for password dialog is opened. The library is closed and a flag false returned
if this dialog is closed without a password being entered.

Startup task

If the Do not open startup taskoption is specified, the startup task construct for the
opened library is not called and there is no startup task instance. Otherwise, the startup task
$construct() method is called and the parameters for it are passed.

Prompt for library {MyLbr (Param1)}
Prompt for library (Do not close others) {SQLTool}

303

Prompt for page setup

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Prompt for page setup

This command displays the Printer page setup dialog box. This dialog allows the page size,
orientation and printer's effects to be chosen before a report is printed. The flag is set if the
dialog is closed by clicking on the OK pushbutton. Cancel clears the flag and leaves the
page parameters unchanged. NotePttepare for printandPrint report commands have

the Ask for job setup option which opens the setup dialog before printing.

Prompt for page setup
If flag true
Print report
End If
; You will need to repeat the Prompt
; to reset the page setup to its former values

Prompt for port name

Reversible: YES Flag affected: YES
Parameters: None
Syntax: Prompt for port name

This command displays the Set port dialog box that lets the user select a port. The flag is set
if the port is successfully selected,; if the user cancels, the flag is cleared and the port closed.

You can set the baud rate and other parameters for the porSetipgrt parameters

If the commandis in a reversible block, the port is closed when the method terminates.

Open window instance WIMPORT
Prompt for port name
Prepare for import from port {Delimited (commas)}
If flag true
Import data {ImportList}
End If
End Import
Close port

304 Chapter 5—Commands

Commands

Prompt for print or export file

Reversible: YES Flag affected: YES
Parameters: None
Syntax: Prompt for print or export file

This command displays the Select Print or Export File dialog. The flag is set if the file is
successfully selected. If the file exists already, a further dialog lets you delete it. If the user
cancels, the flag is cleared and the file is closed.

If the commandis in a reversible block, the file is closed when the method terminates.

Prompt for print or export file

If flag true
Send to file
Set report name R_Addresses
End If
Print report
Prompt for word server 4
Reversible: NO Flag affected: YES
Parameters: Word server tag
Syntax: Prompt for word serveword-server-tag}

This command prompts the user to specify an application for text checking using the
standard dialogs offered by the Apple interface. Apple Word Servers are available for both
spelling and grammar.

Once chosen, OMNIS will remember the checker, using an alias record in the OMNIS
Preferences file, and the checker need not be reselected each time the Library is opened.
Since you can open only one word server at a time, prompting for a new word server
replaces the original, which must be recalled Witbmpt for word serveif required.

By giving the command a tag parameterdmpt for word server {NetSpellerfor example)
you can use the tag name to quit the word server. This is useful if memory is running short.

Prompt for word server {NetSpeller}
If flag true
OK message {Speller found, tagged 'NetSpeller'}
; NetSpeller is added to the Application Menu
Else
OK message {Your speller is not available}
Quit method
End If

305

306

; following line could be under a radio button
; Send Core event {Quit Application (‘NetSpeller)}
NetSpeller remains available until the Quit event, or until an alternative word server is
prompted for. You can use the next example behind a pushbutton to check a particular field.
On evClick

Prompt for word server ; ; opens a dialog box

Send Word Services event {Check field text(('CVARL1")}

; checks the text in CVAR1 using the checker prompted for

Quit event handler

Prompted find

Reversible: YES Flag affected: YES
Parameters: O Exact match
Syntax: Prompted find (Exact matcH)

This command prompts the user to enter a value in an indexed field on the current window
and locates the record which most closely matches that value. The user can use the Tab key
to select an indexed field. The Find field is the current field for the window when the user
clicks on the OK button.

Once the user enters a value in the Find field and clicks OK, OMNIS locates the record
most closely matching this value, the main and connected files are read into the current
record buffer and the flag is set. If the indexed field is in a connected file, the find continues
until a record connected to a valid main file record is located. The current index, as used by
NextandPrevious is set to the Find field.

If the exact field value cannot be matched, the next highest value in the index is located.
You use thé€exact matchoption if you want only the exact match.

Open window instance {wSuppliers}
Prompted find
If flag true
Redraw {wSuppliers}
End If

Chapter 5—Commands

Commands

Publish field ‘_

Reversible: YES Flag affected: YES
Parameters: Field name

Edition name
Syntax: Publish fieldfield-name[{edition-name}

This command publishes the specified OMNIS field in the specified edition. A full
pathname can be given for the edition, that is, a specification for the volume and folder(s) in
which you want to create the edition. For example

If sys(113)
Publish field SALESTOTAL { HD80:Public Folder:OMNIS-MyLbr-Sales Total }
End If

This creates the edition file "OMNIS-MyLbr-Sales Total" in the folder "Public Folder" on
the hard disk volume HD8O. If the edition already exists, the data is published using the
existing edition. Before other network users can "see" the edition, you must enable sharing
for the Public Folder, this is possible only from the System 7 Finder (see System 7 user
guide).

If you do not specify an edition name, the existing edition for that field is used,; if there is no
existing edition for that field, the default edition name "library name-field name" is used.

The flag is set if the field is already published in that edition or if the field is successfully
published. The command does nothing and clears the flag if System 7 is not running. If the
command is used within a reversible block, the edition is canceled when the command is
reversed.

When a field is newly published, none of the publisher options are se®wnish now
command must be used to update the edition. If you want the edition to be updated
automatically, th&et publisher optionsommand must be used.

Fields published with this command are not shown with borders and are invisible to the
user, that is, thEdit menu'sPublisher options.. cannot affect them. If you publish a local
variable, its edition is canceled when the method terminates. Lists are published as tab-
delimited text and pictures as PICT.

Publish field CNAME {HD80:Public:Sales-Name}

Publish field CTOTAL {HD80:Public:Sales-Total}

Set publisher options (Publish on save) {CNAME,CTOTAL}

Prepare for edit

Enter data

Update files if flag set

307

Publish now ‘_

Reversible: NO Flag affected: YES
Parameters: File or field list
Syntax: Publish now {file[field1[,file[field2]...}]

This command updates the editions for the specified fields. Field values are written from the
current record buffer to the editions. The field list can take a file name (for all fields in a

file) or a range of fields, which includes a range of fields in the order listed in the Field
names window. If no file and/or field list is given, all publications for the library are

updated.

The flag is set if the command publishes one or more fields.

Publish field CNAME {HD80:Public:Sales-Name}
Publish field CTOTAL {HD80:Public:Sales-Total}
Find first

Publish now {CNAME,CTOTAL}

Queue bring to top

Reversible: NO Flag affected: NO
Parameters: Window instance name
Syntax: Queue bring to toprindow-instance-name

This command queues a "bring to top" event for the specified window instance as if the user
had clicked on the window instance with the mouse. The command brings the window
instance to the fore and generates evWindowClick and evToTop events. If, at runtime, the
specified window instance does not exist, the command will do nothing.

Open window instance WCLIENT/W1

Open window instance WCLIENT/W2

Queue bring to top W1 ;; brings W1 to the top

308 Chapter 5—Commands

Commands

Queue cancel

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Queue cancel

This command queues a "cancel" event as if the user had clicked on the Cancel button or
pressed the Cancel key combination, that is, the user pressed Ctrl-break under Windows or
Cmnd-period under MacOS. The command takes no parameters.

; Timer method cancels enter data after 120 secs
Set timer method (120 sec) Winl/Timer

Prepare for edit

Enter data

Update files if flag set

; Timer method for Win1/Timer
Queue cancel

Queue click

Reversible: NO Flag affected: NO
Parameters: [Shift
O Command/Ctrl
Field name
Selection point or Start value, end value
Syntax: Queue click ([Shif[, Command/Cti)]
{field-name|[(selection-poirlstart-value, end-valug)

This command queues a "mouse click" event on a specified field, that is, it simulates a user-
generated mouse click/drag operation on a field. You must specify the name of the field as a
parameter, including the click positions within the field (that is, Start Row, Finish Row for
lists and Start Character, Finish Character for text field selection). The specified field will

get the focus.

There are options for including up to three modifier keys (that is, Shift, Ctrl/Cmnd) along
with the click.

The field name parameter must be the name of a window field, not the name of the method
associated with the field or the data naffee{dname not$datanamg

Queue click on Edit fields

You can specify a range of characters. For example, the pardisleterame (2,5)
highlights the characters within cursor positions 2 to 5 (that is, characters 3 to 5). Note that

309

310

cursor position 0 is to the left of character 1, and cursor position 1 is to the right of
character 1 (or to the left of character 2).

If Shift is selected and 5 is passed as the selection point, all characters between the current
cursor position and cursor position 5 will be highlighted.
Queue click {field-name (7,2)}

; Characters 3 to 7 will be highlighted

Queue click {field-name (5,9)}

; Characters 6 to 9 will be highlighted

Queue click (Shift) {field-name (8)}

: Current cursor is at 15

; Characters 9 to 15 will be highlighted

Queue click (Shift) {field-name (22)}

; Current cursor is at 15

; Characters 16 to 22 will be highlighted

Queue click (Shift) {field-name (7,9)}

: Current cursor is at 15

; Characters 10 to 15 will be highlighted

Queue click (Shift) {field-name (9,7)}

; Current cursor is at 15

; Characters 8 to 15 will be highlighted

As the examples show, the two parameters act as a "click on, drag to" key operation.

Queue click for lists

If the specified field is a window list box or grid, the range is interpreted as a range of list
lines. For example, the paramelist-field-name (2,5)selects the lines 2 to 5 (if
$multipleselect for the list field is set), and the current line will be set to 2. An evClick
event is generated after the specified lines have been selected.

Queue click {List-field-name (7,3)}

; Lines 7 to 3 will be selected, the current line will
:besetto 7

Queue click (List-field-name (2,9)}

: Lines 2 to 9 will be selected, the current line will
;be setto 2

Queue click (Shift) {List-field-name (12)}

; The current line to line 12 will be selected,

; The current line does not change

Chapter 5—Commands

Queue click (Shift, Command/Ctrl) {List-field-name (13)}

; Line 13 will be selected and lines already selected will stay

; selected. The current line does not change

Queue click (Shift, Command/Ctrl) {List-field-name (4,8)}

; Lines 4 to 8 will be selected and lines already selected will stay
; selected. The current line does not change

Queue click for pushbuttons

If the specified field is a pushbutton it is activated and an evClick event is generated as if
the user had clicked on the button.

Queue click for Radio buttons and check boxes

If the specified field is a check box or set of radio buttons, the check box field or group of
radio buttons is checked/unchecked accordingly, and an evClick event is generated.
Methods behind radio buttons and check boxes run as if the user had clicked on the window

fields.

Queue close

Reversible: NO Flag affected: NO
Parameters: Window instance name

Syntax: Queue closavindow-instance-name

This command queues a "close window" event for the specified window instance as if the
user had selected the close option (system menu under Windows or close box under
MacOS).

The specified window instance is closed, but an evClose event is not produced. If the
specified window instance does not exist, the command has no effect. If you omit the
window instance name, the top window instance at the time of execution will be closed. In
this case, a proper evClose event is generated.

Open window instance WCUSTOMERS/winst1
Open window instance WCUSTOMERS/winst2

; do something in winst2

Queue close ;; closes winst2, the top instance

Commands 311

312

Queue double-click

Reversible: NO Flag affected: NO

Parameters: [Shift
O Command/Ctrl
Field name
(Selection point or Start value, end value)

Syntax: Queue double-click([Shifi[, Command/Ctil)]
{field-name[(selection-poirlstart-value, end-valug§)

This command queues a "double-click event" on the specified field, that is, it simulates a
user-generated double-click event on the field. A double-click event always generates an
evClick before an evDoubleClick. You must specify the name of the field as a parameter,
including the click positions within the field (that is, Start Row, Finish Row for lists and
Start Character, Finish Character for text field selection).

There are options for including up to three modifier keys (that is, Shift, Ctrl/Cmnd) along
with the click.

The field name parameter must be the name of a window field, not the name of the method
associated with the field or the data naffee{dname not$datanamg
Queue double-click for edit fields

Double-clicks on text within an edit field will select the complete word. If a range was
specified, all COMPLETE words falling within the start and end positions will be
highlighted. For example, if the text in the field is:

Good books are the lifeblood of a master spirit
and the command is:

Queue double-click {field-name (7,23)}
The selected text will be:

books are the lifeblood

Queue double-click for list fields

Double-clicks on list fields will generate an evClick followed by an evDoubleClick. The
behavior in other ways is the same as describe@udeue click

Queue double-click for other field types

Pushbuttons, radio buttons and check boxes behave in the same way as desbedeor
click. An evDoubleCLick event isotgenerated.

; method for pushbutton: Opens a new window while in Enter data
; mode and selects all the text in field2

Chapter 5—Commands

Commands

On evClick
Open window instance WCLIENTS
Queue double-click {field2}
On default
Quit event handler

Queue keyboard event

Reversible: NO Flag affected: NO
Parameters: Key sequence (can be a calculation)
Syntax: Queue keyboard evefkey-sequence}

This command queues a "keyboard" event or series of events. It simulates keyboard entry
by the user from within your methods. You can enter the key sequence in several ways:

1. Recording a key sequence
You can use th8tart Recording andStop Recordingbuttons to specify the keys to be
generated. During the recording, all key events are echoed to the Key sequence
parameter field, and are not acted on by OMNIS in any other way (for example, pressing
Ctrl/Cmnd-Q will NOT suddenly quit OMNIS). Click events, however, behave normally
so you can click ostop recording button.

2. Entering into the text field
You can enter the text representation manually to generate the keys. Syntax checking is
done at design time. When recording is off, you can edit the Key sequence parameter
manually. This lets you delete key combinations or enter key sequences by hand. Since
spaces are used to automatically separate key presses, the special key name SPACE will
have to be manually entered to generate a "space key" event.

3. Specifying a calculation
You can enter a calculation like concatenating text fields, which will contain the text
representation of the keys to be generated. Syntax checking is done at runtime. Incorrect
key sequence syntax will result in a runtime error. When you use a calculation, the
general calculation syntax applies, which is checked at design time.

Key names

Special keys or key combinations are represented using the names of the keys. When a
given key combination is run on another platform, a conversion is carried out internally so
that, for example, alt-c under Windows becomes opt-c under MacOS. The list below
summarizes the conversion:

Windows

Modifier Key names: shift-, alt-, ctrl-

Special Key namesSpace, Up, Down, Left, Right, PgUp, PgDn, PgLeft, PgRight, Home,
End, Tab, Return, Enter, Bkspc, Clear, Cancel, Minus, Move, Del, Ins, Exit

313

MacOS
Modifier Key names: shift-, opt-, com-

Special Key namesSpace, Up, Down, Left, Right, PgUp, PgDn, PgLeft, PgRight, Home,
End, Tab, Return, Enter, Bkspc, Clear, Cancel, Minus, Move, Del.

Set current field

If queued key events are intended for an edit field or a list, it is advisable to queue a "set
current field" event before generating the key events. On the other hand, general key events,
for example, menu accelerators or shortcut keys, do not require a specific current field.

Key event restrictions under Windows

Under Windows, you can use alt-<key> sequences to select menu options from the menu
bar. Since the menu bar is handled by Windows,Qurelie keyboard evegénerates

internal OMNIS events, queuing alt-<key> events will NOT drive the menu bar. Thus, for
example, queuing alt-f will not drop tiréle menu.

As a consequence of the above restriction, evKeyPress events are not generated for queued
alt-<letter> sequences either.

A second situation where evKeyPress events are not generated is when you queue alt-
control-<letter> events. These key combinations are normally used to produce accented
characters, and this facility exists only in some but not all keyboards. Since Windows does
not generate character messages, these events do not generate evKeyPress.

WARNING When queuing events on pushbuttons a danger of recursion can occur under
Windows, but also under MacOS if buttons have been given Windows behavior, that is,

they get the focus. Normally, when the focus is on a pushbutton, you can activate it by
pressing the space bar. If that pushbutton receives an evClick event and has a queued space
key event WITHOUT a set current field, the space key event will be sent back to the
pushbutton, thereby generating another evClick, which again activates the space key event.
A recursion occurs and exhibits an apparent crash.

Key event restriction under MacOS

Under MacOS, you use opt-<letter> to generate extended characters. When queued key
events include such opt-<letter> sequences, evKeyPress is not generated.

314 Chapter 5—Commands

; Button method
On evClick

Open window instance ADDRESS

Queue keyboard event {YourName}
On default

Quit event handler

: Paste button
On evClick

Queue keyboard event {com-v} ;; does a paste operation
On default

Quit event handler

Queue OK

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Queue OK

This command queues an "OK" event. It simulates the user clicking on the OK button or
pressing the Enter key.
; This field method traps the Tab event and issues an OK event
On evTab
Queue OK
On default
Quit event handler

Commands 315

316

Queue quit

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Queue quit

This command queues a quit event. It simulates the user selectiExjtfuit option in
theFile menu. In enter data modeQaieue OKor QueueCancelshould precede Queue
quit to close the enter data correctly.

; Button method to terminate data entry and quit
If flag true

Queue OK

Queue quit
Else

Queue cancel

Close top window

End If
Queue scroll
Reversible: NO Flag affected: NO

Parameters: [Page
Left|Right|Up|Down scroll direction
Field name
(Units), that is, the number of lines (up/down) or characters (left/right)

Syntax: Queue scrol(scroll-direction],Pagq) {field-namd (units)}

This command queues a "scroll" event in the specified scrollable field, that is, it simulates a
mouse click or page key event on a scrollable field. With this command you can scroll a
field up or down, left or right provided the appropriate scroll bar is available. You cannot
use this command to scroll a window instance.

The field name parameter must be the name of a window field, not the name of the method
associated with the field or the data nasfee(dname not$datanamg

The Units parameter specifies the number of lines to scroll up or down in a vertical scroll
bar for a field; one unit represents one line. For a horizontal scroll bar, the unit is
approximately one character.

If the Pageoption is selected, the event simulates clicking above or below the "thumb" and
is the same as using the Page up or Page down key.

Chapter 5—Commands

Commands

; $construct() for window instance to display end of text field
Queue scroll (Down, Page) {FIELD1}

Queue scroll {LIST1 (5)}

; scrolls the field list by 5 lines

Queue set current field

Reversible: NO Flag affected: NO
Parameters: Field name
Syntax: Queue set current fieffield-name}

This command queues a "set current field" event in the specified field, that is, it simulates a
user-generated click or tab to the specified field. In enter data mode, the contents of the
field is selected. The command does not generate an evClick. However it will produce
proper evBefore and evAfter events durifigter data

The field name parameter must be the name of a window field, not the name of the method
associated with the field or the data nasfie(dname not$datanamg
; field method to jump to another field on the window instance
On evAfter
Queue set current field {SALARY) ;; jumps to SALARY field
On default
Quit event handler

Queue tab

Reversible: NO Flag affected: NO
Parameters: O Shift

Syntax: Queue tab(Bhift)

This command queues a "tab" or "shift-tab" event. It simulates a user-generated tab event.
With the Shift option, it simulates a shift-tab keypress.

; Field method for field on a window instance to simulate auto tab
; when the 6th character is entered; $keyevents must be true
On evBefore

Calculate COUNTER as 0
On evKeyPress

Calculate COUNTER as COUNTER + 1

If COUNTER >=4

Queue tab

End If
On default

Quit event handler

317

318

Quick check

Reversible: NO Flag affected: YES
Parameters: [Perform repairs
Syntax: Quick check (Perform repairs)

This command performs a quick check on the current data file. It examines the status of the
current data file by reading only the internal tables in which records of any inconsistencies
are stored. These records indicate corruption caused by either hardware or software failure.
No attempt is made to systematically check the entire data file for problems (you use the
Check datacommand for this purpose).

The command is not reversible: it sets the flag if it completes successfully and clears it
otherwise.

If the Perform repairs option is specified, any repairs required are automatically carried

out, otherwise the results of the check are added to the check data log. The check data log is
not opened by this command but is updated if it is already open.Retiierm repairs

option is specified, the following applies:

If you are not running in single user mode, OMNIS automatically tests that only one user is
logged onto the data file (the command fails with flag false if not), and further users are
prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will
be incremented at regular intervals. The command may take a long time to execute and it is
not possible to cancel execution even if a working message with cancel box is open.

Quick check
Yes/No message {View the check data log}
If flag true
Open check data log
End If

Chapter 5—Commands

Commands

Quit all if canceled

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Quit all if canceled

This command quits all methods that are running when the user clicks on a Cancel button
inside a working message dialog box. The keyboard equivalent to the Cancel pushbutton is
the Escape key under Windows or Cmnd-period under MacOS. Note that the test for cancel
is carried out inVorking messagenly if Disable cancel test at loogs first been

executed.

Begin reversible block
Disable cancel test at loops
End reversible block
Repeat
Working message (Cancel box, Repeat count)
Quit all if canceled
Calculate LVAR1 as LVAR1+1
Until LVAR1=200
OK message {Finished method, counter = [LVAR1]}

Quit all methods

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Quit all methods

This command quits all methods that are running.

If the command is executed during a method which has been called, OMNIS quits both the
current method and the calling method.

; Calling method
Do method QuitMethod
OK message {This never runs}

; Quitmethod
Quit all methods

319

320

Quit cursor(s)

Reversible: NO Flag affected: YES
Parameters: Current, Session, or All option (Current is the default)
Syntax: Quit cursor(s)Current|Sessiofall)

This command disposes of the specified cursor and frees all memory it occupied. It has
three possible values: Current, Session, or All.

TheCurrent option quits the current cursor. If the current cursor is the only remaining
cursor, a logoff is carried out and communication with the remote database is disconnected.
All memory used by the cursor is released. A S&wcurrent sessiaor Set current cursor
followed byStart sessiomndLogon to hostvould be required to recreate the cursor.

This command will close any open import file and will close the SQL driver. If you have
used the automatic logon process, closing the driver will log off from the remote computer
and disconnect the modem, otherwise, it will leave you connected and logged on. After
Quit cursor(s)is executed, you cannot perform any other SQL transactions until another
Start sessiols issued.

The Sessiormoption performs a quit for all cursors in the session containing the current
cursor. A logoff and disconnect from the remote database used by that cursor will be carried
out.

Chapter 5—Commands

TheAll option performs a quit for all cursors. A logoff and disconnect from all the remote
databases in use will be carried out.

; select a cursor and close it

Set current cursor {SQL_1}

Quit cursor(s) (Current)

; or use

Close cursor {SQL_1}

Quit event handler

Reversible: NO Flag affected: NO

Parameters: O Discard event
O Pass to next handler

Syntax: Quit event handler[Discard everjt[,Pass to next handpi

This command is used to quit out of the currently executing event handling method and is
only used to terminate ddn clause. It is not reversible and does not affect the flag.

If the Discard eventoption is checked, the event is thrown away and OMNIS quits the
event handling method.

If the Pass to next handleoption is checked, the event is passed to the next level of
handler such as the window $control() method or task $control() method.
On evAfter
If CoName ="
OK message {You must enter a name}
Queue set current field {eCompanyName}
Quit event handler (Discard event)
End If

; $event() for a window field
On default
Quit event handler (Pass to next handler)
; passes all events to the window $control() method

Commands 321

Quit method

Reversible: NO Flag affected: NO
Parameters: Return field
Syntax: Quit method

This command quits the current method and returns control to the calling method, if any.
Do method Print

; Print
Set report name rStock
Prompt for destination

If flag false
Quit method
Else
.. print the report
Quit OMNIS
Reversible: NO Flag affected: NO
Parameters: O Force quit
Syntax: Quit OMNIS [(Force quit]

This command quits OMNIS closing all libraries and data files. It is equivalent to the
Exit/Quit option in theFile menu. However, if thEorce quit option is not checke@uit
OMNISwill set the flag false and do nothing if an instance or library cannot be closed.

If the Force quit check box is checked OMNIS will force any class instances to close so
that the quit can take place, even if they have custom $canclose logic which would normally
prevent them from closing.

Yes/No message {Do you want to quit OMNIS?}
If flag true

Quit OMNIS (Force quit)

: closes all instances and tasks, then quits OMNIS
End If

322 Chapter 5—Commands

Commands

Redefine list

Reversible: NO Flag affected: NO
Parameters: List of file and/or field names
Syntax: Redefine lis{file[field1[,file[field2]...}

This command redefines the column headings of the current list. No change is made to the
internal data type and structure of the list; columns can neither be added nor removed,
merely renamed. If you place more field nameRéudlefine listhan there were in the

original list, the extra names are ignored. Changing the field name of a column may cause a
data conversion to take place as subsequent lines are added. List boxes on windows will no
longer display the data in the list unless you change their $calculation property to include
the new variable or field name(s).

Set current list LIST1

Define list {Field1Date,Field2Num,Field3Char}

Add line to list

Redefine list {,,Field4Boolean}

: the third column is now defined Field4Boolean

Add line to list

: the Boolean field value is converted to a character field

; format 'YES' etc., then added to the list

or do it like this
Do List.$redefine(Field1Date,Field2Num,Field4Boolean)

323

324

Redraw

Reversible: NO Flag affected: NO

Parameters: [Refresh now
Field or window instance name (or list of fields or windows)

Syntax: Redraw [Refresh now)field1|window],field2|window?2,.].

This command redraws the specified field or window instance (or list of fields or window
instances). Th&efresh nowoption ensures the redraw is completed when the command is
executed. Without this option the redraw occurs when the method has finished executing.

Prepare for edit
Enter data
If flag true
Update files
Else
Clear main & connected
Redraw WinDataEntry
End If

Alternatively you can use the $redraw(setcontents,refresh) method to redraw the contents
and/or refresh a field or window; ‘setcontents’ defaults to true, ‘refresh’ defaults to false.

Do $cfield.$redraw() ;; redraws the current field

Do $cwind.$redraw() ;; redraws the current window
Do $root.$redraw() ;; redraws all window instances
Redraw lists
Reversible: NO Flag affected: NO
Parameters: O All windows
O All lists
O Selection only
Syntax: Redraw lists ([All windowg[, All lists][, Selection onl}]

This command redraws the current list window field or all list fields. It lets you update the
display of the current list field after you delete, change, or insert a line, so that the screen
list reflects the changes. When OMNIS exectRedraw liststhe selected line is scrolled

into view and the visible lines recalculated.

OMNIS can execute Bedraw listcommand for all window instances and for all lists using
the All windows, andAll lists options. If neither option is selected, only the fields on the
top window instance which display the current list are redrawn.

Chapter 5—Commands

The Selection onlyoption causes the redraw to affect the highlighting of the selected lines,
the contents are not redrawn.

OMNIS also redraws any fields which are local to the list field so that they will display the
new values. It also redraws the grid fields associated with the current list.

Open window instance LAYOUT

Set current list LIST1

Define list {LVAR1,CVAR1}

Calculate LVARL1 as 42

Add line to list {(LVAR10,CHR(LVAR10))}
Redraw lists

Redraw menus

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Redraw menus

This command redraws all instances of your own custom menus. When exdRetrmwv
menus OMNIS re-evaluates any square-bracket notation contained in the menu titles and
lines before redrawing the menu bar.

This example assumes that the menu instance uses [CVARS5] as its title.

Parameter LNUM (Number O dp)

Calculate CVARS as pick(LNUM,'Purchases','Invoices')

Redraw menus

; If LNUM = 0, menu called Purchases, otherwise called Invoices

Redraw toolbar

Reversible: NO Flag affected: NO

Parameters: [Droplists only
Instance name

Syntax: Redraw Toolbar(Droplists only] {instance-name}

This command redraws the toolbar instance. You can redraw droplists only using the
Droplists only option.

Show docking Area {kDockingAreaTop}

Install Toolbar {T_Formats}

; do something

Redraw Toolbar (Droplists only) {T_Formats}

Commands 325

326

Redraw working message

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Redraw working message

This command redraws the text in the working message after evaluating any square bracket
notation. OMNIS does not increment the working message count and does nothing if there
is no open working message.

When a library is being debugged, you can monitor the values of critical variables and fields
with the following line:
Working message (Cancel box) {{CVAR1],[TOTAL], [sys(84)]}

Once the message has been displayed, you can use the coRedaam working message
to refresh the values monitored in the message box.

; declare local variable COUNT of type Number 0 dp
Working message {COUNT = [COUNT]}
For COUNT from 1 to 100 step 1
Redraw working message
End For

Chapter 5—Commands

Commands

Reinitialize search class

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Reinitialize search class

This command reloads the current search definition into meiReiyitialize search class

is useful if square bracket notation has been used in the search class. The square bracket
expressions are re-evaluated using current field values before reloading the search
definition. Each find table keeps its own copy of the search conditions so you must reissue
theFind command if a search needs reinitializing.

For example, a search class uses the comparisondiiéN Begins with [S5MWindow
wStarts is used to allow the user to specify a value for S5.

Set search name STOWN
Repeat
Open window instance wStarts
Enter data
Close window wStarts
If flag true
Reinitialize search class
Do method PrintReports
End If
; assumes no rev. blocks in window construct to change flag
Until flag false

Remove all menus

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Remove all menus

This command removes all menu instances from the menewdudingthe standard

OMNIS menus such dsle, Edit, andHelp (under Windows only). If you uskemove all
menudn a reversible block, the menu instances are reinstalled when the method containing
the block finishes.

Begin reversible block
Remove all menus
End reversible block
OK message {Menus are now removed}
: now all menu instances are reinstalled

327

328

Remove final menu

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Remove final menu

This command removes the final or right-most menu instance from the meexdading
the standard OMNIS menus suchFile, Edit, andHelp (under Windows only). If you use
Remove final menin a reversible block, the final menu instance is reinstalled when the
method containing the block terminates.

Begin reversible block
Remove final menu
End reversible block
OK message {Menu is now removed}
; now the final menu is reinstalled

Remove menu

Reversible: YES Flag affected: YES
Parameters: Menu instance name
Syntax: Remove menmenu-instance-name

This command removes the specified menu instance from the menu bar and sets the flag.
You can choose the menu name from a list containing any custom and standard built-in
menus, such ad-tle, *Edit, and so on.

If you use this command to remove a menu instance which has previously been installed in
place of the standafeile or Edit menu (using th®eplace standard File/Edit menu
command) the previously replaced standzitd or Edit menu is restored.

If you useRemove menin a reversible block, the specified menu instance is reinstalled
when the method containing the reversible block terminates.

Begin reversible block
Remove menu STARTUP
End reversible block
OK message {STARTUP is now removed}
; now the menu instance is reinstalled
or do it like this

Do $imenus.INSTANCE.S$close()

Chapter 5—Commands

Remove toolbar

Reversible: NO Flag affected: NO
Parameters: Instance name
Syntax: Remove Toolbafinstance-name}

This command removes the specified toolbar instance.

Show docking area {kDockingAreaRight}
Install Toolbar {T_Tennis}

; do something

Remove Toolbar {T_Tennis}

Hide docking area {kDockingAreaRight}

or do it like this
Do $itoolbars.INSTANCE.S$close()

Rename class

Reversible: NO Flag affected: YES

Parameters: O Perform find and replace
Class name/New class hame

Syntax: Rename clasgiPerform find and replacé)
{class-name/new-class-name}

This command renames the specified library class and can perform a find and replace.
Errors, such as attempting to use a name that is already in use, simply clear the flag and
display an error message. You can rename a class which is in use.

When renaming a class, you can useRagorm find and replace option to search
through all the classes in the library and replace the references to the old class name with
the new name.

New class {Search/S_My}
Modify class {S_My}

Delete class {S_User}

Rename class {S_My/S_User}
Set search name S_User

Print report (Use search)

Commands 329

330

Rename data

Reversible: NO Flag affected: YES

Parameters: File class name
New file slot name

Syntax: Rename data {file-name/new-slot-name}

This command renames the data for a specified file class in a data file so that the data will
then belong to a file with a different name; that is, it renames a slot. The existing file class
name and the new slot name are specified as parameters.

The specified file class is disconnected from the data, and an empty slot and indexes for that
file will be created as soon as that file is accessed again.

If the specified file name does not include a data file name as part of the notation, the
default data file for that file is assumed.

If the file is closed or memory-only, the command does not execute and returns flag false.

If you are not running in single user mode, OMNIS automatically tests that only one user is
logged onto the data file (the command fails with flag false if this is not true), and further
users are prevented from logging onto the data until the command completes.

This command sets the flag if it completes successfully and clears the flag otherwise. The
command is not reversible.

Rename data {C_CONTACTS/C_ARCHIVE}
If flag true
OK message {File archived}
Else
OK message {Can't archive when more than one user is logged on}
End If

Chapter 5—Commands

Reorganize data

Reversible: NO Flag affected: YES
Parameters: [Test only
O Optimize

O Convert pictures
File or list of files (the default is all files)

Syntax: Reorganize datg][Test only{, Optimizé [, Convert pictureB]
[{filel[file2]...]]

This command reorganizes the data for the specified file or list of files. Reorganization is
the process by which the data structures held in the OMNIS data file are brought into line
with the file class definitions.

Reorganize dataeorganizes the data for the specified list of files, and is equivalent to the
option on theSlot menu in the Data File Browser.

If you omit a file name or list of filegll the files with slots in the current data file are
reorganized.

If a specified file name does not include a data file name as part of the notation, the default
data file for that file is assumed. If the file is closed or memory-only, the command does not
execute and returns with the flag false.

If you are not running in single user mode, OMNIS automatically tests that only one user is
logged onto the data file (the command fails with the flag false if this is not true), and
further users are prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will
be incremented at regular intervals. The command may take a long time to execute, and it is
not possible to cancel execution even if a working message with cancel box is open.

The command sets the flag if it completes successfully and clears the flag otherwise. The
command is not reversible.

Commands 331

If the Test only checkbox option is specified, no reorganization is actually carried out. The
flag is set if at least one file needs reorganization.

TheOptimize checkbox option specifies whether reorganize with optimize is to be carried
out. This distributes the free space to make the data storage more efficient.

The Convert pictures checkbox option causes all pictures in the data to be converted to a
shared picture format.

Reorganize data (Test only)

If flag true

Yes/No message {Reorganize now?}

If flag true

Reorganize data

End If
Else

OK message {No reorganization required}
End If
Repeat
Reversible: NO Flag affected: NO
Parameters: None
Syntax: Repeat

Thiscommand repeats a command or series of commands that are contained in a loop
closed by atuntil command. Each time the command is repeated, OMNIS tests the
condition attached to tHéntil command to ensure that the condition is true. If the condition
is true, the commands in the loop are not executed and the command dfietiltise
executed. However, if the condition is false, OMNIS jumps back to the first command
following the Repeatommand. An error will result if there iRepeatommand without a
matchingUntil command. Repeat loops always execute at least onc&éepeat—Until

logic test is carried out at tlemdof the loop, after the commands in the loop are executed,
whereas th&Vhile—End Whildogic test is carried out at the beginning of the loop.

332 Chapter 5—Commands

You can use thRepeatommand to step through a Find table in order to print each row, as
follows.

; Perform SQL to select your data
Fetch next row
If flag true
Prepare for print
Repeat
Print record
Fetch next row
Until flag false
End print
Else
OK message (Sound bell) {No rows to print}
End If

You can usé&epeato write general purpose methods to insert data, and can include a
working message in the Repeat loop that displays while the loop is executing.
; Perform SQL to select your data
Set main file {[FILENAME]}
Fetch next row
Repeat
Working message (Repeat count) {Inserting...}
Prepare for insert with current values
Update files
Fetch next row
Until flag false

You can use abntil flag true/falsecommand at the end of a Repeat loop to force the loop
to repeat until the true or false state is met. In the following case, the window WCHOOSE
remains open until the user enters a valid value for LETCODE.

Repeat
Open window instance WCHOOSE
Enter data ;; user enters a value for CVAR1

Close all windows
Find on LETCODE (Exact match) {CVAR1}
Until flag true ;; if false, loops again

Commands 333

334

Replace line in list

Reversible: NO Flag affected: YES

Parameters: Line number (can be a calculation, default is current line)
Field values

Syntax: Replace line in list{[line-numbe} [(value],valuel...)]}]

This command transfers field values from the current record buffer to the corresponding
fields in the current list. Alternatively, it is possible to specify a comma-separated list of
values enclosed in brackets after the line number. In this case, the values stored in the
specified line of the list are set up from the values in the brackets and not from the variables
specified when the list was defined. For example

Replace line in list {LIST.$linecount(abc’,,LVAR12+3)}

will store ‘abc’ into the first column of the final line of the current list, leave the value of the
second column unchanged, and load the result of LVAR12+3 into the third column. If too
few values are specified, the other columns will be left unchanged,; if too many values are
specified, the extra values are ignored. Any conversions required between data types are
carried out.

If the line number specified in the command line is empty, or if it evaluates to zero, the
current line is used. If the list is empty or if the line is beyond the current end of the list, the
flag is cleared.

Set current list LIST2

Define list {CODE,NAME,CREDIT}
Build list from file on CLIENTS
Calculate CVARS3 as 'New string'
Calculate LVAR1 as 23

Replace line in list {4(,CVAR3,LVAR1)}
If flag false

OK message {line 4 is beyond the end of the list}
Else

OK message {New value in list is [LIST2.4.CVAR3]}
End If

Chapter 5—Commands

Commands

Replace standard Edit menu

Reversible: YES Flag affected: NO

Parameters: Menu class name (must be user-defined or Edit)
Instance name

Syntax: Replace standard Edit merfmenu-name/instance-nanje}

This command removes the standard builEdlit menu from the menu bar and replaces it
with a custom menu. You can assign an instance name for the replacement menu. The
default instance name of the replacement menu is the menu class name. If no replacement
menu name is specified, thelit menu is reinstated.

The replacement menu will remain enabled even when commands ddislalale all
menusare issued, or modal user-defined windows are opened. The only time the
replacement menu will not remain enabled is when a report is printed to screSemdtio
screen and the check box optid»o not wait for useris not checked (that is, OMNIS is
awaiting user input).

You can disable thEdit menu or its replacement menu by udiigable menu line

Replace standard Edit menu {MY_EDIT1}
Set main file {FMAIN}

Prepare for insert

Enter data

Update files if flag set

; Now put system Edit menu back

Replace standard Edit menu

Replace standard File menu

Reversible: YES Flag affected: NO

Parameters: Menu class name (must be user-defined or File)
Instance name

Syntax: Replace standard File medmjenu-name/instance-nanje}

This command removes the standard builile menu from the menu bar and replaces it

with a custom menu. You can assign an instance name for the replacement menu. The
default instance name of the replacement menu is the menu class name. If no replacement
menu name is specified, tkde menu is reinstated.

The replacement menu will remain enabled even when commands ddislalale all
menusare issued, or modal user-defined windows are opened. The only time the
replacement menu will not remain enabled is when a report is printed to screen with the
Send to screecommand, and the check box optida not wait for user is not checked

(that is, OMNIS is awaiting user input).

335

336

You can disable thEile menu or its replacement menu by uddigable menu line

Replace standard File menu {MY_FILE1}
Set main file {FMAIN}

Prepare for insert

Enter data

Update files if flag set

; Now put system File menu back

Replace standard File menu

Request advises L

Reversible: YES Flag affected: YES

Parameters: Field name
Server data item name

Syntax: Request advisdteld-name {server-data-item-name}

DDE command, OMNIS as client. This command sends a request to the server asking to be
advised of any changes made to a specified data item. An error occurs if the channel is not
open. The command takes the OMNIS field name and the server data item name as
parameters. The data item name can contain square bracket notation.

Whenever OMNIS is advised of a change in field value, that value is changed providing
your library is in enter data mode.

The flag is set if the command is successful.

You can use a control method to detect the arrival of data from the server using evSent.

Request advises C_COMPANY {C_COMPANY}
Request advises C_ADDRESS {C_ADDRESS}
Prepare for insert

Enter data

Update files if flag set

Chapter 5—Commands

Commands

Request field A
Reversible: NO Flag affected: YES

Parameters: Field name
Server data item name

Syntax: Request fieldield-name[{server-data-item-nam¢}

DDE command, OMNIS as client. This command requests a data item from the DDE
channel. An error occurs if the channel is not open. The command takes the OMNIS field
name and the server data item name as parameters. The data item name can contain square
bracket notation. If the data item name is not specified, the OMNIS field name is used. The
flag is set if the command is successful.

Set DDE channel number {1}
Calculate Tries as 1
; Keeps trying until conversation opened or number of tries > 10
Repeat
Open DDE channel {OMNIS|DDE2}
Calculate Tries as Tries + 1
Until #F | Tries > 10
Calculate CVAR1 as '[TakeControl]'
Send command {[CVARL1]}
If flag false
OK message {Error: [CVAR1], Open tries = [Tries]}
End If
Request field C_COMPANY {C_COMPANY}
Request field C_ADDRESS {C_ADDRESS}
Prepare for insert with current values
Enter data
Update files if flag set

Reset cursor(s)

Reversible: NO Flag affected: YES
Parameters: Current, Session, or All option (Current is the default)
Syntax: Reset cursor(g)Current|Session|All)

This command resets the specified cursor(s) for a server. It has three possible values:
Current, Session or All.

TheCurrent option clears or empties the SQL buffer, the error status and select table for
the current cursor.

The Sessioroption resets all cursors in the session containing the current cursor.

337

338

TheAll option resets all the open cursors.

Reset cursor(s) (Current)
Perform SQL {Select * from elements}
Build list from select table
If [LIST.$linecount] > 0
OK message {[LIST.$linecount] records found}
Else
OK message {No records found}
End If

Restore selection for line(s)

Reversible: NO Flag affected: YES

Parameters: Line number (can be calculation, default is current line)
O All lines

Syntax: Restore selection for line(Al lines)] [{line-number}

This command copies the Saved selection state to the Current selection state and sets the
flag. To allow sophisticated manipulation of data via lists, a list can store two selection
states for each line; the "Current" and the "Saved" selection. The Current and Saved
selections have nothing to do with saving data on the disk; they are no more than labels for
two sets of selections. The lists may be held in memory and never saved to disk: they will
still have a Current and Saved selection state for each line but they will be lost if not saved.
When a list is stored in the data file, both sets of selections are stored.

TheRestore selection for line(spmmand allows the Saved selection state of the specified
line (or All lines) to be copied into the Current set. You can specify a particular line in the
list either by entering a number or a calculation. You are required to redraw the list to
refresh the state of the displayed list field. Rfidines option restores the selection states
for all lines of the current list. The following example selects the middle line of the list:
Set current list LIST1
Define list {LVAR1}
Calculate LVAR1 as 1
Repeat

Add line to list

Calculate LVARL1 as LVAR1+1
Until LVAR1 = 6
Select list line(s) {3}
Save selection for line(s) (All lines)
Deselect list lines (All lines)
Restore selection for line(s) (All'lines) ;; line 3 selected
Redraw lists

Chapter 5—Commands

Retrieve rows to file

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Retrieve rows to file

This command copies the select table, row by row, into the current client import file. A
Retrieve rows to filenust follow a Select statement, for examplerform SQL {Select *

from table} Any data returned by the remote computer is appended to the import file in tab-
delimited format.

It is faster to us®etrieve rows to filthan to use Fetch/Export loops.

Set client import file name {test}
Open client import file

Perform SQL {Select * from table}
Retrieve rows to file

Close client import file

Revert class

Reversible: NO Flag affected: YES
Parameters: Class name
Syntax: Revert clasgclass-name}

This command reads the specified class from the library file on disk into RAM, so that any
changes made to that class using the notation are lost. The flag is set if the class is
successfully re-read. A runtime error occurs if the specified class cannot be found.
Calculate $windows.MYWIND.$objs.Field1.$visible as kfalse

; makes change to window

Open window instance MYWIND

Prepare for edit

Enter data
Update files if flag set
Revert class {MYWIND} ;; puts window back to saved version

Commands 339

340

Rollback current session

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Rollback current session

This command cancels all transactions for the current session. It causes any SQL
transactions sent to the server since the last commit to be rolledRmdilack current
sessioris usually used in conjunction wikutocommit (Off)and allows finer control of
transaction management than the defautbcommisystem. WithAutocommit (On)the
default action for a session is only to rollback all unsuccessful statements after an
unsuccessfuExecute SQL scripA standard management strategy is:

Autocommit (Off)
Begin SQL script
; SQL transaction
End SQL script
Execute SQL script
If flag false
Rollback current session
Else
Commit current session
End If
: Commit current session and
; Rollback current session override Autocommit (On)

Chapter 5—Commands

Commands

Save class

Reversible: NO Flag affected: YES
Parameters: Class name
Syntax: Save clasgclass-name}

This command writes the specified class, which normally contains changes made by
notation, into the library file on disk. You uSave classo make the changes permanent.

The flag is set if the class is successfully saved. A runtime error occurs if the specified class
cannot be found.

; Example to hide a field on a window and save the new version
Open window instance WCLIENT

Do $iwindows.WCLIENT.$objs.C_FIELD.$visible.$assign(false)
Save class {WCLIENT}

Redraw WCLIENT

Bring window instance to front WCLIENT

Save selection for line(s)

Reversible: NO Flag affected: YES

Parameters: Line number (can be calculation, default is current line)
O All lines

Syntax: Save selection for line(sfAll lines) [{line-number}

This command saves the selection state of the specified line(s) in memory and sets the flag.
To allow sophisticated manipulation of data via lists, a list can store two selection states for
each line; the "Current" and the "Saved" selection. The Current and Saved selections have
nothing to do with saving data on the disk; they are no more than labels for two sets of
selections. The lists may be held in memory and never saved to disk: they will still have a
Current and Saved selection state for each line but they will be lost if not saved. When a list
is stored in the data file, both sets of selections are stored.

341

Save selection for line(g)lows the selection state of the specified line (or All lines) to be
copied into the Saved set. You can specify a particular line in the list by entering either a
number or a calculation. If the line number is not specified, the current line selection is
saved. Th&\ll lines option saves the selection for all lines of the current list. This example
selects the middle line of the list:

Set current list LIST1

Define list {LVAR1}
Calculate LVAR1 as 1

Repeat
Add line to list
Calculate LVAR1 as LVAR1+1
Until LVAR1=6
Select list line(s) (All lines)
Save selection for line(s) (All lines)

Invert selection for line(s) {LIST.$linecount/2}
XOR selected and saved (All lines) ;;1AND1=0,1ANDO0=1
Redraw lists

SEA continue execution

Reversible: NO Flag affected: NO
Parameters: None
Syntax: SEA continue execution

This command continues method execution at the command following the command which
called an error handler; SEA stands for Set Error Action. Using it is, in effect, like saying
"Error is acknowledged. Now, skip over the error line and proceed with the succeeding
good lines."

Using this command is similar to setting the go point in the debugger at L+1 where L is the
error line. The command is always used within an error handler.
; Error handler to trap break key when waiting for semaphore
If #ERRCODE = KerrCantlock
OK message {user canceled request for record lock}
SEA continue execution
End If
; Edit method must test flag to prevent error on update

342 Chapter 5—Commands

Commands

SEA repeat command

Reversible: NO Flag affected: NO
Parameters: None
Syntax: SEA repeat command

This command attempts to repeat the command that caused an error; SEA stands for Set
Error Action. This is most useful after an out of memory condition. The command is always
used within an error handler. It is your responsibility to ensure that an endless looping
situation between the error handler and the command is not created. Also, you must ensure
that any side effects of the original execution of the command which caused the error are
taken into account.

; error handler traps attempt to edit locked
; record and the user presses break key
If #ERRCODE = kerrCantlock
Yes/No message {Cancel edit}
If flag true
Quit all methods
Else
SEA repeat command
End If
End If

SEA report fatal error

Reversible: NO Flag affected: NO
Parameters: None
Syntax: SEA report fatal error

This command causes the default action for a fatal error to occur; SEA stands for Set Error
Action. If the debugger is available, it is invoked, otherwise, execution halts with an error
message. This command, like the other SEA commands, should only be used from within an
error handler. The SEA commands determine the behavior following fatal or warning

errors.

; This causes warning error to generate same action as fatal error
If #ERRCODE = KerrUngindex ;; KerrUngindex is a warning error code
SEA report fatal error

; your method ..
End If

343

344

Search list

Reversible: NO Flag affected: YES

Parameters: [From start
O Only test selected lines
O Select matches (OR)
O Deselect non-matches (AND)
O Do Not Load Line

Syntax: Search list([From stari[,Only test selected linpg Select
matches (OR]), Deselect non-matches (AND)Do
Not Load Ling)]

This command searches the current list for field values that match the current search class or
search calculation and loads them into the Current Record Buffer. The search starts at the
beginning of the list iFrom start is checked, otherwise at the line aftez current line.

If OMNIS finds a line that matches the search class, that line number becomes the current
line $line and the flag is set. If OMNIS cannot find a matching line,the $line is cleared and
the flag is cleared. If there is no current search class, all lines are said to match and OMNIS
sets the flag.

When checked, thBo Not Load Line option ensures the line found by the search is not
loaded into the current record buffer.

TheOnly test selected line®ption restricts the list scan to selected lines only. ISelect
matches (OR)option is checked, the command scans all the lines from the line after the
current line to the end and selects all those that match the search; if you alsdrusethe

start option, the whole of the list is scanned, that is, the search starts at line 1. Lines that are
already selected before the command is executed remain selected. This is equivalent to
ORing the existing selected lines with the lines that match the search. The current line is
not affected.

If the Deselect non-matches (ANDyption is used, the command scans all the lines from

the line after the current line to the end and deselects all those which do not match the
search; if you also use tl@om start option, the whole of the list is scanned, that is, the

search starts at line 1. Lines which are already selected before the command is executed are
deselected if they do not match the search, that is, the only lines left selected are those
which were already selected and which match the search. This is equivalent to ANDing the
existing selected lines with the lines which match the search. The current line is not

affected.

Chapter 5—Commands

Using the Select and the Deselect options together alters the selection state so that matching
lines are selected, non-matching lines are deselected. The current line is not affected.

This example selects line 3 of the list:

Set current list LIST1
Define list {LVAR1}
Calculate LVAR1 as 1

Repeat

Add line to list

Calculate LVAR1 as LVAR1+1
Until LVAR1=6
Set search as calculation {LVAR1=3 | LVAR1=1}
Search list (From start) ;; the current line is now 1
Search list (Select matches (OR)) ;; Selects line 3
Redraw lists

or do it like this
Do LIST.$search(SearchCalc,FromStart,OnlySelected, ..)

Commands 345

346

Select list line(s)

Reversible: NO Flag affected: YES

Parameters: Line number (can be calculation, default is current line)
O All lines

Syntax: Select list line(s)(All lines)] [{line-number}

This command selects the specified list line. The specified line of the current list is selected
and is shown highlighted (or checked on popup lists) on any window list fields provided
that the field has $multipleselect on. If the line number is not specified, the current list line
is selected. Thall lines option selects all lines of the current list. The current line is not
affected. When a list is saved in the data file, the line selection is stored. The following
example selects the middle line of the list:

Set current list LIST1

Define list {LVAR1}
Calculate LVAR1 as 1

Repeat
Add line to list
Calculate LVARL1 as LVAR1+1
Until LVAR1=6
Select list line(s) {LIST.$linecount/2}
; or we could use Select list line(s) 3

Redraw lists (Selection only)

You can select the current line by assigning to its $selected property.
Do LIST.$line.$selected.$assign(kTrue)

Chapter 5—Commands

Commands

Select printer

Reversible: NO Flag affected: YES

Parameters: [Discard previous settings
Printer name (this parameter Windows only)

Syntax: Select printefprinter-name}

This command prompts the user to select a printer. Under Windows, you can choose the
required printer from a list of all installed printer drivers. Under MacOS you cannot specify

a printer name, the Chooser is opened, but since method execution does not pause while the
user makes a choice from the available printers, the following example does not work.

When this command is executed, the flag is set if the printer is selected successfully.

TheDiscard previous settingsoption causes OMNIS to reload the OMNIS page setup with
the default system settings for the specified printer.

You can use the functissys(101)}o return the name of the current printer.
Switch sys(6) = ‘M’

Case kTrue
Select printer

Default :» Windows, NT, or 95
Select printer {POSTSCRIPT Printer}
If flag true

Prompt for report
Prompt for destination
If flag true
Print report
Quit method
End If
End If
End Switch

347

348

Send advises now A

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Send advises now

DDE command, OMNIS as server. This command advises the client applications of all the
field values for all the fields for which Advise requests have been received. The values are
taken from the CRB.

Set main file {FCUST}
Find on CUSTOMER (Exact match) {CVAR1}
Send advises now

Send command 3!
Reversible: NO Flag affected: YES

Parameters: Command text

Syntax: Send comman{tommand-text}

DDE command, OMNIS as client. This command sends a command or a series of
commands as text to the current channel.

The command-text syntax must conform to whatever syntax rules apply to the server
program.

The DDE syntax dictates that the commands be enclosed in square brackets and OMNIS
attaches special meaning to them in strings. Therefore, it may be necessary to put the
command text into one of the OMNIS string variables. For example

Calculate #S1 as '[command-text]'

puts the command text into #S1 and
Send command{[#S1]}

sends the command to the server.

Alternatively you can enter the command directly into the command parameter by doubling
the first set of brackets, for example

Send command {[[releasecontrol]}

The flag is set if the server accepts the command(s).

Syntax and errors

When you send commands to OMNIS, the syntax is defined by the text shown in the
method editor. You can enter scripts in OMNIS, copy them to the clipboard and paste them

Chapter 5—Commands

Commands

into the client application. If the sent command returns an error to OMNIS, the hash
variablestERRCODEand#ERRTEXTstore the error code and message.
Set DDE channel number {2}
Open DDE channel {OMNIS|COUNTRY?}
If flag false

OK message {Country library not running}
Else

Calculate #S4 as 'OK message {Hi, this is DDE magic}'

Send command {[#S4]}

Send command {'Next'’}

Close DDE channel

OK message {Update finished}

End If
Send Core event z
Reversible: NO Flag affected: YES

Parameters: Core event message (see below)
Parameters list

Syntax: Send Core evelfevent-messadéparameter],parameter2...)]}

The following core events are available:
Quit Application
Open Documents
Print Documents
Do Script
Create Publisher
Set Data

This command sends one of the "Core" events. The event is sent to the current event
recipient unless an application name is provided as a parameter. Nad@d¢hat

application Quit application, Open DocumeahdPrint Documentire compulsory events

and will be accepted by an Apple-event-aware recipient at all times. To return a value use
Send Core event with return value

You can disable the compulsory events usindXisable receiving of Apple events
command with th®isable compulsory event®ption checked.

Quit Application

Send Core event {Quit application (APPNAME")}

Quit applicationis a compulsory event, and always responded to by an Apple event aware
application.Send Core event {Quit Application (APPNAMEjlits the named application
in the Application Menu. If no parameter is given, the current recipient quits by default.

349

350

CAUTION If the event recipient is the Finder, the Finder is quit, and you will need to
restart your machine.

Send Finder event {Open Files (MyHD:TeachText')}

; Use TeachText

Ok message {Now quit TeachText}

Send Core event {Quit Application (MyHD:TeachText')}

; Quits TeachText. Now re-set OMNIS by default

Open Documents
Send Core event {Open Documents (‘P ATHD ocl''P ATHD 02"}

Open Documerlbads the named documents into the target application. If received by
OMNIS, the event uses tl@pen Library item in theFile menu to open each library in
turn. If the documents are ad hoc reports, they are opened.

Print Documents
Send Core event {Print Documents (‘P ATHD od','P ATHD 0')}

Print Documentdoads the named documents into the target application and prints each one.
If received by OMNIS, and the documents are ad hoc reports, they are opened and printed.

Create Publisher
Send Core event {Create publisher (OBJECT','EDITION NAME")}

Create Publishesends a request to the current recipient to publish the OBJECT (a
document, spreadsheet, or other database, for example) so that your OMNIS library can use
the data in the EDITION NAME. For example

Send Core event {Create Publisher (‘MySheet','MonthResults")}

Set Data
Send Core event {Set data (TARGETFIELD',SOURCEFIELD)}

Set datasends an event to the current recipient that takes the data in SOURCEFIELD and
puts it in TARGETFIELD. (Notice the use of quotes; if SOURCEFIELD is quoted, the
actual string is passed to TARGETFIELD.)

This pushbutton method takes the data in the field CHARFIELD and puts it into a
spreadsheet cell.
On evClick

Set current list LIST2

Send Core event {Set Data ('R1:C1',CHARFIELD)}

If flag false

Ok message {Error sending core event}
End if
Quit event handler

Chapter 5—Commands

Do Script
Send Core event {Do Script (SCRIPT)}

Do scriptsends a script to the current recipient which will be executed. When sending
methods to OMNIS thBo scriptmessage is only accepted when OMNIS is not already
executing a method or performing an operation. If an event is not accepted, the event
errAEEventNotHandled is returned to the sender.

The syntax of the script to be sent to OMNIS is defined simply by the form of the
commands as displayed by OMNIS in the method design window (top right-hand list area).

When sent to another Apple application, such as Hypercard, a script must, of course, use the
script language and syntax of that application.

The following pushbutton method assumes that a script has been entered in the field
SCRIPT. If the script can be run by the current recipient (local OMNIS by default), the
results can be seen; otherwise the OK error message appears.

On evClick
Send Core event {Do Script (SCRIPT)}
If flag false
OK message {Do Script Failed}
End If

Quit event handler

When receiving scripts, OMNIS opens the debugger window if it is available and an error
occurs when interpreting the script.

Send Core event with return value ‘.

Reversible: NO Flag affected: YES

Parameters: Return field name or variable
Core event message (see below)
Parameters list

Syntax: Send Core eveifevent-messagEparameter],parameter?...)]}
with return valudield-name

This command sends eitheGat Dataor Do Scriptevent to the current event recipient and
returns a value. The flag is set if the event is accepted.

Send Core event {Get data (TARGETFIELD'} Returns FIELD

Get Data

Get Datasends an event to the current recipient and returns data to the specified field or
variable.

Commands 351

352

Send Core event {Get Data ('Containerl")} Returns LBOOL1
; Containerl is data container in target Lib
If LBOOL1
OK message {It does!}
Else
OK message {Sorry, not today}
End If
Send Core event {Do Script (SCRIPT)} Returns FIELD

Do Script

Do Scriptlets you execute a script in a remote application (for example a macro in a
spreadsheet) and return a value to OMNIS.

; declare local variable LBOOL1 of Boolean type

Use event recipient {HYPERCARD}

; Previously prompted for, and tagged

Send Core event {Do Script (LSCRIPT)} Returns LBOOL1

The result of the Hypercard Answer script (LSCRIPT) is a value Yes/No which is returned
to the OMNIS source library in the local field LBOOLL.

When a script is sent to OMNIS, the syntax of the commands is defined by what is shown in
the method design window. In freetype entry mode, you can create scripts in OMNIS and
transfer them via the clipboard to your chosen application.

When sent to another Apple application, such as Hypercard, a script must, of course, use the
syntax of that application.

Chapter 5—Commands

Send Database event ‘_

Reversible: NO Flag affected: YES

Parameters: Database event message (see below)
Parameters list

Syntax: Send Database evdetvent-messaggparami,paramd...)}

The following database events are available:
Does field exist (‘fieldname’)
Get field type (fieldname’, 'datatype’)
Get field size (‘fieldname’, ‘fieldsize")
Set Field ('myfieldname’, yourfield)
Get field (‘yourfield', 'myfield")
Does table exist (‘format’)
Use table (‘thatformat’)
Define Returns (‘'sourcglsource?...)
Next
Previous
Insert
Delete
Update

This command sends one of the database events to the current event recipient. The flag is
set if the event is accepted by the recipient. These events let you send and receive data from
other applications that contain fields and row/column database structures (tables; file class
names, for OMNIS), provided they implement the Database events. They use the standard
terminology of "Table" where OMNIS uses file classes.

You can run OMNIS as a networked data server for any other application on the network
and in this configuration would be Client/server.
Database events

The following tables show the OMNIS event messages use®eittl Database everithe
name in the first column is the Apple term for the event. CRB is Current Record Buffer.
RSN is Record Sequence Number.

Commands 353

General Database events
The following table shows the OMNIS event messages use®eittl Database evend

the parameters for each message. These general commands are used to interrogate or set
values in a database. The last two columns show the results when OMNIS is the target and

when it is the source of the events.

Apple OMNIS Command Action when Action when event
Event name | Database parameters to | event received sent by OMNIS
command send event by OMNIS
message
Get Get field type | FieldName, Returns field type| Sets text in
Structure ResultField of FieldName to | ResultField to be
client field type of
FieldName
Does Object| Does field FieldName Returns Boolear] Sets OMNIS flag
Exist exist (0n)if to true / false if
FieldName does | FieldName does /
not /does exist does not exist at
the server
Get Data Get field FieldName, Returns value Gets data from
ResultField from CRB FieldName and
corresponding to| return data into
FieldName ResultField (CRB)
Set Data Set field Value, Sets data in Sets the data of
FieldName OMNIS CRB FieldName in the
field 'FieldName' | remote server to bg
to be Value Value
Get Data Get field size | FieldName, Returns data sizg Returns the data
Size ResultField in bytes for size of FieldName
FieldName in bytes into
ResultField

Chapter 5—Commands

Commands

Record events

The following database events are used with complete OMNIS records (records or rows in

other applications). Th&end Database event {Define Returns
(FIELD1''FIELD2','FIELD3' . . .)}allows OMNIS to define fields as the source and
destination of "Next", "Previous", "Insert" and "Update".

Apple OMNIS Database Action when Action when
Event name | Database command event received by | event sent by
command parameters to | OMNIS OMNIS
message send event
Does Object| (none) N/A Returns true/false | N/A
Exist if RSN.
Get Data Next and Returns record Returns next/
Previous with requested previous
RSN (or nearest | sequenced record
following/previous | into previously
RSN) defined OMNIS
fields
Set Data Update Sets requested | Sets server recor
RSN to data with OMNIS
specified. defined fields
Delete Delete record Deletes OMNIS | Delete record as
Element record with RSN | defined by

specified by client.

defined fields
from server table.

Table events

A table is simply described as a collection of rows and columns in a database or
spreadsheet. For OMNIS, this equates to the combination of an OMNIS file class and

corresponding data file, and takes the name of the file class as a parameter. OMNIS keeps a
"table index" (record pointer) for the table currently in use for database events so record

(row) operations can be performed.
The Send Database event{Use table (TABLENAM&dmand must be issued with a

valid table name (file class name for OMNIS) that will be used for all subsequent record
(row) operations. This OMNIS command sends the Does Object Exist event before setting
the current active table to ensure that there is such a valid table, and also resets the "table
index" to point to the first record in that table. Use Table may also be used to reset the table

index to the first record in a table.

355

Apple OMNIS Database Action when Action when event
Event name | Database command event received | sent by OMNIS
command parameters to | by OMNIS
message send event
Does Object| Does table TableName. Returns Boolean | Sets OMNIS flag
Exist exist (File class name (1/ 0) if to true / false if
when sent to TableName TableName does /
OMNIS) does/does not does not exist at
exist the server
New Insert Inserts OMNIS | Adds record to
Element record with server table with
values specified | values defined by
by event issued | defined fields
by client

Data entry example

This set of methods shows how you can handle data entry remotely. Several pushbuttons are
put on the local window to mimic the standard OMNIS buttons, with methods behind them
to handle data in the server library with file class "f2".

The following commands are demonstrated:

Send Database evdiefine Returns (‘sourcel;'source?...)}
Send Database evdise table (‘thatformat’)}

Send Database evefhhsert}

Send Database evdfftrevious}

Send Database eveiiNext}

Send Database evdtipdate}

356 Chapter 5—Commands

Commands

; Declare class variable EditType of type S HORT INTEGER (0 TO 255)
Set main file {f2}

Send Database event {Define Returns ('CVAR1''LVAR1''CVAR2"}

; defines local fields for values from table f2

Send Database event {Use table ('f2")} ;; the name of a file class

$control ;; window control method
On evOK
If EditType =1

Send Database event {Insert}
Else If EditType = 2
Send Database event {Update}
End If
Calculate EditType as 0
If len(CVAR1) =0
Enable fields {entry1014,entry1016}
Else
Disable fields {entry1014,entry1016}
End If
Redraw {entry1014,entry1016}

The following methods run behind pushbuttons.

; Example of 'Next' pushbutton
On evClick
Send Database event {Next}
Redraw DataEntryWin
If flag false
OK message {No more records}
End If
Quit event handler

; Example of 'Insert' pushbutton
On evClick
Calculate EditType as 1
Clear range of fields CVAR1 to CVARS
Clear range of fields #1 to #60
Redraw DataEntryWin
Enter data
Quit event handler

357

Changing a field value

The following example method prompts for a recipient library, and then changes the value
of a field in the current record buffer.

The following commands are demonstrated:
Send Database evdlioes field exist (‘fieldname')}

Send Database evd8et Field ('myfieldname’, yourfield)}

; Declare local variable TEMP of Character type
On evClick
Calculate TEMP as 'Not known'
Prompt for event recipient {Betas}
; prompts for the library, and tags it
Send Database event {Does field exist (CONTACT"}
; just to confirm its name
If flag true

OK message {Contact name [CONTACT] found;
OK to change to 'Not known'}

Else
OK message {Sorry, can't find CONTACT,; quitting method}
Quit method
End If
Send Database event {Set Field (CONTACT', TEMP)}
If flag true
OK message {CONTACT now changed to[TEMP]}
Else
OK message {Failed to set remote field}
End If
Quit event handler

The following additional commands are shown:
Send Database evdoes table exist (‘format’)}

Send Database evdf@et field (‘yourfield', 'myfield")}

Send Database event {Does table exist ('Beta sites')}
If flag false
OK message {Sorry, 'Beta sites' not found}
Else
Send Database event {Get field (CO_NAME','%%S4")}
; Note use of quotes round local variable %%S4
OK message {Returned value is [%%S4]}
End If

358 Chapter 5—Commands

Commands

The following method fragments demonstrate two further commands:
Send Database evd@et field size (‘fieldname’, fieldsize")}

Send Database evdi@et field type (‘fieldname’, 'datatype’)}

; Declare local variable DATASIZE of Character type

; Declare local variable DATATYPE of Character type

Send Database event {Get field size (CHARFIELD','DATASIZE")}
OK message {Field 'CHARFIELD' has room for [DATASIZE] characters}
Send Database event {Get field type (CHARFIELD','DATATYPE")}
OK message {Field CHARFIELD is of type [DATATYPE]}

Finally, the current record buffer is deleted by:

Send Database evdilielete}

; Example of 'Delete’ pushbutton

On evClick
OK message {Are you sure you want to delete the current record?}
If flag true
Send Database event {Delete}
If flag true
OK message {Current record now deleted}
Else
Ok message {Delete event not accepted}
End if
End If

Quit event handler

Send field =L

Reversible: NO Flag affected: YES

Parameters: Field name
Server data item name

Syntax: Send fieldfield-name[{server-data-item-nam¢}

DDE command, OMNIS as client. This command sends the value of an OMNIS field to the
current DDE channel. An error occurs if the channel is not open. The command takes the
OMNIS field name and the server data item name as parameters. The data item name can
contain square bracket notation. If the data item name is not specified, the OMNIS field
name is used.

The flag is set if the server program accepts the value.

359

Set DDE channel number {1}
Open DDE channel {OMNIS|DDE2}
Calculate CVAR1 as '[TakeControl]'
Send command {[CVARL1]}
If flag false

OK message {Error sending: [CVARL1]}
End If
Send field C_CLIENT {S_NAME}
Send field C_TOTAL {S_TOTALS}

Send Finder event ‘.

Reversible: NO Flag affected: NO

Parameters: Finder event message (see below)
Parameters list

Syntax: Send Finder evefevent-messaggparameter],parameter?...)|}

The following Finder events are avalailable:

Show About Reveal Files

Get File Info Share Files
Duplicate Files Empty Trash

Make Alias For Files Restart Macintosh
Open Files Show Clipboard
Print Files Shutdown Macintosh

Sleep Macintosh

This command sends one of the Finder events to the standard MacOS Finder. With the
exception of th@pen FilesandPrint Files messages, events in this group can only be sent
to the local Finder.

The Finder event suite lets you manipulate files on your hard disk. If the events are
accepted, the flag is set to true.

You might be familiar with the following events that act directly on the local Finder, since
you can find them on the Finder's pull-down menus.

Send Finder event {Get File Info}
Send Finder event {Make Alias For Files}

Send Finder event {Reveal Files}
Send Finder event {Share Files}
Send Finder event {Duplicate Files}

If run without parameters, they bring up a standard dialog window, allowing one or more
files or folders to be selected for action. Pathname parameters can also be entered from the
keyboard, using Apple syntax; see the appropriate Apple reference manuals.

360 Chapter 5—Commands

Commands

Send Finder event {Get File Info
(‘MyHD:Desktop folder:Microsoft Word")}

The other four events above behave in a similar way.

The following messages are self-explanatory and take no parameters.

Send Finder event {Empty Trash}

; permanently removes deleted files.

Send Finder event {Show About}

; shows the 'About’ information for the computer.

Send Finder event {Restart}

Send Finder event {Show Clipboard}

Send Finder event {Shutdown}

Send Finder event {Sleep} ;; for PowerBooks and other portables
Send Finder event {Open Files}

Send Finder event {Print Files}

You can use these last two events to launch and print files under MacOS, for example:

Send Finder event {Open Files("YourMac:MyHD:Apps:AnApp:Doc2")}
Send Finder event {Print Files('MacNum:MyHD:Apps:AnApp:MyDoc")}
Send Finder event {Open Files (‘MyHD:AppleDoc")}

; this is the same as double-clicking on the AppleDoc icon.

Send to a window field

Reversible: YES Flag affected: NO

Parameters: O Show printer pages
Screen report field name

Syntax: Send to a window field($how printer page§field-name}

This command directs the output of a report to a window Screen Report field; you cannot
print to any other type of window field. When you print the report the field is changed into a
standard screen report window that has all the features of the standard screen report. The
Show printer pagesoption show the outline of the current paper size in the report field.

An error is generated if the field name is invalid for the current window. If yoGeise to
a window fieldin a reversible block, the report destination reverts to its former setting when
the method terminates.

; $event() method for a button

On evClick
Send to a window field {ScreenReportField}
Set report name RLABELS

Print report (Show printer pages) ;; prints to screen report
field showing current paper margins

361

362

Send to clipboard

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Send to clipboard

This command sends the output of any subsequent reports to the clipboard. The report is
printed as a text-only file and all text formatting is ignored. If two reports are sent to the
clipboard, the second report overwrites the first. Once a report has been sent to the
clipboard, you can launch another program, such as a word processor, and paste the report
into it.

If you useSend to clipboardh a reversible block, the report destination reverts to its former
setting when the method terminates. The contents of the clipboard are not altered by the
command or its reversal.

If you want to copy pictures from a report to the clipboard, you can print the report to
screen and use the mouse to select the area required. The standard Edit menu Copy option
will copy the graphic to the clipboard.

Send to clipboard

Set report name Orders

Print report

; Now launch word processor and paste

Send to DDE channel 3

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Send to DDE channel

This command directs any subsequent reports to a DDE channel. The current channel is
defined bySet DDE channel numbehn error occurs if the channel is not open or if the
report is not printed with an export format.

Each record within the report is prepared and sent by OMNIS as the data in a Poke
message. The term "Poke" is defined by the DDE protocol and refers to messages carrying
data which set field values in the target program. The server's item names, into which the
exported data is read, are defined3®t DDE channel item name

The subsequent print commands will send to the channel number which is current at the
time of the print command, not at the time of 8end to DDE channelbommand.

If you useSend to DDE channéh a reversible block, the report destination reverts to its
former setting when the method terminates.

Chapter 5—Commands

It may be the case that an export format for a particular OMNIS report does not correspond
to any of the formats supported by DDE. If a mismatch occurs, there will be an error
message at therint report or Prepare for printcommand.

Send to DDE channel

Set export format {Delimited (Tabs)}
Set report name DDEReport

Clear DDE channel item names

Set DDE channel item name {Name}
Set DDE channel item name {Tel}
Print report

Close DDE channel

Send to file

Reversible: YES Flag affected: NO
Parameters: None

Syntax: Send to file

This command directs the report output to the currently selected print file. The report is sent
as a text file (no text style or formatting) with the appropriate line terminators. The print file
is not closed when a report finishes so you can print multiple reports without changing the
destination or the name of the print file.

When you select the destination using the dialog windowRsmapt for destinatio); the
Page size pushbutton lets you set up the form feeds and lines per page. These settings are
stored in the preferences file.

Set lines per pagkets you specify page length from methods. If the Send form feed option

is selected, the end of each page is marked by a form feed character; otherwise, the pages
are forced by sending multiple line feeds. You $seprint file naméo designate the file

name.

If you useSend to filen a reversible block, the report destination reverts to its former
setting when the method terminates.

Send to file

Set lines per page {46}

Set print file name {Output.txt}

Print report

Commands 363

364

Send to page preview

Reversible: YES Flag affected: NO

Parameters: [Do not wait for user
O Hide until complete
Report title
lleft/top/right/bottom page preview position and size (coords in pixels)
/ISTK to stack the preview
/CEN to center the preview

Syntax: Send to page previey[Po not wait for usdf, Hide until completB]
[report-title] [/left]/top]/right[/botton]]]] [/ STK[/CEN

This command sends the report instance to a page preview screen. This lets the user check
the final page layout before printing. On small screens, the text is Greeked, that is, each
character is represented by a dot.

TheDo not wait for user option allows subsequent method lines to execute or lets the user
do other things without closing the report; the default is to gray out all menus while a screen
report is displayed. You may want to have several reports on the screen for reference while
doing some other work with the library. Without the option, the user must close the window
before doing anything else. The number of screen report instances is limited by the
operating environment. Under Windows, you should refer to the OMNIS.INI settings if you
are prevented from opening enough report windows.

TheHide until Complete option suppresses the output until all the report data is ready.
Normally, you can view the first part of the report before all the records have been
prepared.

Title and Position

You can give each page preview a title and control its position and size. The
Left/Top/Right/Bottom values fix the positions of the four corners to screen pixel
resolution. The /STK parameter offsets the top left-hand corner from the last page preview
and /CEN positions the page preview in the middle of the screen. The following example
stacks two page preview showing US and UK customers.

Set report name RS_FCUSTOMERS

Send to page preview (Do not wait for user) UK customers/STK

Set search as calculation {CU_COUNTRY ="'UK'}

Print report (Use search, Do not finish other reports) {rinst1}

Send to page preview (Do not wait for user) USA customers/STK

Set search as calculation {CU_COUNTRY ="'USA"}

Print report (Use search, Do not finish other reports) {rinst2}

If you change the shape and size of the page preview window it will no longer reflect the
paper size.

Chapter 5—Commands

If you useSend to page previeww a reversible block, the report destination reverts to its
former setting when the method terminates.

Send to port

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Send to port

This command directs the report output to the currently selected port. The report is sent as a
stream of text with the appropriate line terminators. The port is selected wibttpert
namecommand.

If you useSend to porin a reversible block, the report destination reverts to its former
setting when the method terminates.

; Set port name {Com2:} ;; for Windows

; Set port name {2 (Printer port)} ;; for MacOS

Send to port

Set port parameters {9600,n,7,0}

Print report

Send to printer

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Send to printer

This command sends the report to the current printer. You can choose the printer using the
Select printecommand.

If you useSend to printein a reversible block, the report destination reverts to its former
setting when the method terminates.

Set report name MyOrder
Send to printer
Print report

Commands 365

366

Send to screen

Reversible: YES Flag affected: NO

Parameters: [Page for screen
O Do not wait for user
O Hide until complete
Report title
lleft/top/right/bottom report position and size (coords in pixels)
/ISTK to stack the report instance
/CEN to center the report instance

Syntax: Send to screen
[([Page for scre€lh, Do not wait for usdr[,Hide until completB]
[report-title] [/left]/top]/right[/botton]]]] [/ STK[/CEN

This command sends the output of the current report to the screen. The screen report uses
the appropriate fonts and page size, but ignores the margins.

ThePage for screeroption paginates the report for screen-length pages.

TheDo not wait for user option allows subsequent method lines to execute or allow the

user to do other things without closing the report; the default is to gray out all menus while a
screen report is displayed. You may want to have several reports on the screen for reference
while doing some other work with the library. Without the option, the user must close the
window before doing anything else. The number of open screen reports is limited by the
operating environment. Under Windows, you should refer to the OMNIS.INI settings if you
are prevented from opening enough report windows.

TheHide until Complete option suppresses the output until all the report is ready.
Normally, you can view the first part of the report before all the records have been
prepared.

Title and Position

You can give each screen report a title and control its position and size. The
Left/top/right/bottom parameters set the positions of the four corners to screen pixel
resolution. The /STK parameter offsets the top left-hand corner from the last report instance
and /CEN positions the report in the middle of the screen. The following example stacks
two report instances showing US and UK customers.

Set report name RS_FCUSTOMERS

Send to screen (Do not wait for user) UK Customers/STK

Set search as calculation {CU_COUNTRY ="'UK'}

Print report (Use search, Do not finish other reports) {rinst1}

Send to screen (Do not wait for user) USA Customers/STK

Set search as calculation {CU_COUNTRY ="'USA"}

Print report (Use search, Do not finish other reports) {rinst2}

Chapter 5—Commands

If you useSend to screem a reversible block, the report destination reverts to its former
setting when the method terminates.

The prompt for destination dialog sets e not wait option and clears all the others.

As with all scrolling fields in OMNIS, screen reports can have panes. This lets you split the
window into panes and scroll each pane separately.

Send to trace log

Reversible: NO Flag affected: NO
Parameters: Text
Syntax: Send to trace lofjrext}

This command sends a specified line of text to the trace log. The text can contain square
bracket notation.

Send to trace log {Value of CLIENT field is [CLIENT]}

Send to trace log {Current task is [$ctask().$name]}

Send to trace log {Win1 $control: events are [sys(86)]}

Send Word Services event ‘.

Reversible: NO Flag affected: NO

Parameters: Word Services event message (at present, Check field text only)
Field name

Syntax: Send Word Services evelitheck field text(‘field-name’)}

This command performs the specified Word Services event on the parameter, typically an
OMNIS field. Together witiPrompt for word servethis event allows spell checking and

other text services to be carried out on data entry text and text variables in OMNIS fields. It
uses the current word services application, spell checker or grammar checker, for example.
Once you have set up the word server, OMNIS stores the path in the preferences file and
there is no need to prompt for the server each time you use OMNIS.

On evClick
Prompt for word server ;; opens a dialog box
Send Word Services event {Check field text (CVAR1"}

: checks the text in CVAR1
Quit event handler

Commands 367

Server specific keyword

Reversible: NO Flag affected: YES
Parameters: Server keyword
Syntax: Server specific keyworfserver-keyword}

This command sends a server-specific keyword to the current DAM. This mechanism
supports server-specific functionality which you cannot access via SQL scripts. At present,
the Sybase error and message handling keywords are supported. For example

Server specific keyword {<SQLMESSAGE>MSQL/sqlMessage}

causes the DAM to call OMNIS method MSQL/sqlMessage each time a message is returned
by SQLServer.

Similarly

Server specific keyword {<SQLERROR>MSQL/Error}

calls method MSQL/Error each time an error is returned.

Set 'About..."' method

Reversible: YES Flag affected: NO
Parameters: Number or class name/number (of method)
Syntax: Set 'About..." methodt[ass-naméghumber

[{method-namd}

This command changes the "About..." option by calling the specified method which you
should set to open a different About window. OMNIS executes the specified method when
this option is selected in exactly the same way as if it had been selected from a menu, for
example, standard windows are closed. If youSetgAbout..." methad a reversible

block, the command is reversed when the method terminates.

There are no restrictions on what you can do irSeéste About..." methodhat is, the method
that is called. Extra care is needed to ensure that the method does not alter any variables,
lists or the status of the flag.

Set 'About..." method Codel/About {About Library}
: End of method

; About Library ;; the ‘About’ method
Open window instance WABOUT ;; your own About window
Enter data

Close window WABOUT

368 Chapter 5—Commands

Commands

Set advise options A

Reversible: YES Flag affected: NO
Parameters: [Find/next/previous
O oK
O Redraw
Syntax: Set advise optiong[Find/next/previoul§,OK][,Redraw)]

DDE command, OMNIS as server. This command determines when OMNIS is permitted to
send requested Advise messages to the client application. Whiectya advise requests
option is active, OMNIS will accept Advise requests from the client program. By default,
the client program will only be advised of the values requested from OMNIS Séreh

advises novis executed.

However,Set advise optionspecifies other events which will cause the values to be sent.
There are three checkbox options available for this command: Find/next/previous, OK, and
Redraw.

TheFind/next/previous option sends the requested Advise value whenever a
Find/next/previous command or a Clear command is executedR heption sends the
requested Advise value wheneverEarter Dataor Prompted Findends with an OK. The
Redraw option sends the requested Advise value wheneRedsaawis executed.

Each of these options Bet advise optionsas its command equivalent within the
Exchanging Data..group, whose function is identical. These commands are listed as
Advise on Find/next/previous, Advise on @KdAdvise on redraw

Set server mode (Field requests,Advise requests)

Set advise options (Find/next/previous,OK)

OK message {Server mode for DDE enabled}

369

370

Set batch size

Reversible: NO Flag affected: YES
Parameters: Number of rows
Syntax: Set batch sizénumber}

This command sets the number of rows read into the local buffer byretthnext row
command. Following a SQL Select statement, rows of data are held on the server ready for
the client. With some servers, you can maximize network efficiency by adjusting the
number of rows transferred to the cligfétch next roviransfers the first row of data to the
client and reads it into the CRB. The nEgtch next roweads the next row from the local
buffer and no network traffic is generated.

You can set the batch size high for small record sizes and low for large record sizes.
Optimal values depend on the size of data packets used by the network. Sybase servers
generally perform their own batching of rows and do not need tuning.

At the time of writing, the Oracle and ODBC DAMs supp®et batch size

Set batch size {50}
Perform SQL {Select * from AUTHORS}
Fetch next row
While flag true ;; process rows
Fetch next row
End While
OK message {[sys(135)] rows processed}

Chapter 5—Commands

Commands

Set bottom margin

Reversible: NO Flag affected: NO

Parameters: Measurement
0 Measurement in cms (leave unchecked for inches)

Syntax: Set bottom margin(Measurement in crisjnumber}
This command specifies the bottom margin for the current report class. It overrides the
$bottommargin property until such time as the current report is reset.

Set report name ROrders
Yes/No message {Print on metric A4 paper?}

If flag true
Set bottom margin (Measurement in cms) {2.34}
Set top margin (Measurement in cms) {1.2}

Else

Set bottom margin {1.0}
Set top margin {1.0}
; Default measurement is inches
End If
Print report
Set report name RTOTALS
; The settings for ROrders are now deleted

Set break calculation

Reversible: NO Flag affected: NO
Parameters: Field name

Calculation
Syntax: Set break calculation dield-name {calculation}

This command stops method execution when the specified calculation evaluates to true; all
values except zero are considered true. YolBasdreak calculatioafter avVariable menu
command: Set break on calculation {field-namemand. The field used in the command
does not have to feature in the calculation but is used to "label" the break within OMNIS.

At breakpoints, a method design window is opened with the current method loaded and the
breakpoint command highlighted. You can examine field values by right button/ Ctrl-
clicking on the field or step through the remaining method.

371

372

Setting up calculated breakpoints slows down method execution considerably so you should
use them sparingly. In runtime the command does nothing.

Variable menu command: Set break on calculation {CVAR1}

Set break calculation on CVARL1 {sys(131)<<>>0}
Variable menu command: Set break on calculation {#F}
Set break calculation on #F {#F=0} ;; this monitors for flag false

Set character mapping

Reversible: NO Flag affected: YES
Parameters: Name of map file
Syntax: Set character mappifgiap-name}

This command loads a character mapping file for the current session. You may need
character translation if the data stored on the server did not originate in OMNIS, and the
data uses a different character set. The differences usually affect extended character sets
which support non-ASCII values (that is, greater than 127).

You must create two translation tables, one for characters coming IN to OMNIS, the other
for characters OUT of OMNIS to the server. They are given the same name but with
extensions .IN and .OUT, respectively. You must place them in a subdirectory/folder called
CHARMAPS under EXTERNAL (under Windows) or in the EXTERNAL folder (under
MacOS). For example, you would define the mapping for EBCDIC in files EBCDIC.IN and
EBCDIC.OUT, and you would load them with:

Set character mapping {EBCDIC}

You can load different tables for each session in use. The mapping affects the current
session only.

Set current session {Session_1}

Set character mapping {ANSIDOS}
Set current session {Session_2}
Set character mapping {EBCDIC}

Chapter 5—Commands

Set class description

Reversible: NO Flag affected: YES
Parameters: Class name/description
Syntax: Set class descriptidiclass-nam@descriptior}

This command sets the description text for the specified library class. When a class is
created, you must specify a class name and also an optional description of up to 255
characters. This command lets you set the description string for the specified library class.
The original description for the specified class is cleared if the description parameter is left
blank (or evaluates to an empty string). The flag is set if the description is changed.

New class {Search/S_My}

Modify class {S_My}

Delete class {S_User}

Rename class {S_My/S_User}

Set class description {S_User/[CVAR1]}
; Sets the description to the string value CVAR1
Set search name S_User

Print report (Use search)

Set client import file name

Reversible: NO Flag affected: YES
Parameters: File class name
Syntax: Set client import file namffile-name}

This command defines the name of the import file into which you wish to store the data
returned from a SQL transaction. It moves data from the server to a tab-delimited import
file on the local disk. The only parameter is the name of the OMNIS import file. It is
important to remember that the import file name you supply here should match the one you
have used in the OMNIS methods that import the data.

Set client import file name {xprimportFile}

Open client import file

Perform SQL {select cust_name, cust_city, credit_line from customer}
Retrieve rows to file

Close client import file

Commands 373

Set closed files

Reversible: YES Flag affected: YES
Parameters: List of files
Syntax: Set closed filegfilel1][file2]...}

This command sets the file mode of the specified file(s), other than a main file, to closed.
Closing a file prevents any data from being read or changed in that file.

If you attempt to close the main file an error occurs. If youSeteclosed filem a

reversible block, the file mode is reset when the method termisseslosed filedoes not
cancel the Prepare for update mode. In multi-user libraries, closing a file prevents OMNIS
from locking it.

Closing a parent file when editing a child has the effect of protecting the connections from
child to parent from change and saves time when locating child records because the parent
record is not loaded.

In the method editor, a list of files is displayed. You can Ctrl/Cmnd-click on the file names
to select multiple names.

Set main file {FPORDERS}

Set closed files {FINVOICES,FINVITEMS}

Set memory-only files {FCONSTANTS,FNAMES}

Set read-only files {FREADFILES}

Set current cursor

Reversible: NO Flag affected: YES
Parameters: SQL cursor name
Syntax: Set current cursofgursor-name}

Creates a cursor in the current session with the specified cursor name. If that cursor already
exists, it becomes the current cursor. The cursors in the same session are always logged ontc
the same database. Logging on or logging off any of the cursors in a session always logs on
or logs off the other cursors in the same session.

Each cursor maintains its own select table, error status, and so on, but the transactions for
all the cursors in the same session are all committed or rolled back at the same time. This
means that th8tart sessionSet hostnameet usernameet password_ogon to host

Logoff from hostCommit current sessipRRollback current sessicendAutocommit

commands act oall the cursors in the same session as the current cursor. The other SQL
commands only act on the current cursor.

If there is no current cursdBet current cursoandSet current sessicare equivalent.

374 Chapter 5—Commands

Commands

If the cursor name is left blank or a SQL command is sent beféet @urrent sessioor
Set current cursocommand is encountered, a default session called CHANNEL_1 is
automatically created and made the current session.

Once you have created a cursor, you can use &ttezurrent sessioor Set current cursor
to make it the current cursor but you cannot$isecurrent cursoto move the cursor into
another session.

Set current session {SESSION_1}

Set current cursor {Cursor_1B}
Logon to host

; Deal with errors here

Perform SQL {Select * from CLIENTS}
Set current session {SESSION_1}
Perform SQL {Select * from ORDERS}
: You now have two select tables available, to access CLIENTS
Set current session {Cursor_1B}

; process CLIENTS

Set current session {SESSION_1}

: Process ORDERS

Set current data file

Reversible: YES Flag affected: NO
Parameters: Internal name (of data file)
Syntax: Set current data filfinternal-name}

This command sets the specified data file the "current” data file. If your methods refer to
file class names without specifying the data file, it is essential to make the appropriate data
file current before setting a main file.

Open data file {Archive/DataA}

Open data file (Do not close other data) {MYDATA/DataC}
Set current data file {DataA}

Set main file {File1}

; Filel.Field1 now refers to DataA.Filel.Field1

375

376

Set current list

Reversible: YES Flag affected: NO
Parameters: List or row hame
Syntax: Set current lislist-name

This command sets the current list, that is, the list to be processed in the subsequent list
commands. You can make any type of list the current list, including local, class, and library
variables of list data type. If you use this command as part of a reversible block, the current
list reverts to its former value when the method containing the reversible block finishes.

; declare variable CLIST of List type

Set current list CLIST

Define list {ASSIGNDATE,FIRST_NAME,LAST_NAME}
Set main file {FCUSTOMERS}

Build list from file on CCODE

SeeDefine list.

Set current session

Reversible: NO Flag affected: YES
Parameters: SQL session name
Syntax: Set current sessiofsssion-namé}

This command creates a session with the specified session name. If the named session
already exists, it becomes the current session. It allows multiple simultaneous conversations
with different remote databases and multiple simultaneous select tables. Session names can
be up to 15 characters long and are case-insensitive. If the session name is left blank or a
SQL command is sent beforeSat current sessiccommand is encountered, a default

session called CHANNEL _1 is automatically created and made the current session.

The first use oBet current sessionith a particular name creates the session which

becomes the current session. All successive commands are sent to that session until another
Set current sessias issued. Each session has its own select table, import file, error status,
and so on. There is no limit to the number of sessions that you can have open at one time,
apart from the limits imposed by available memory and other resources.

Set current session {Session_0O}
Start session {ORACLE}
Set database version {ORACLES5}

Set current session {Session_S}
Start session {SYBASEDB}
Set current session {Session_0O}

; Now log on to ORACLE and so on

Chapter 5—Commands

Commands

Set database version

Reversible: YES Flag affected: NO
Parameters: Server type
Syntax: Set database versidserver-type}

This command sets the server type or version used by the current DAM. You should issue
this command after thtart sessiomnd before th&ogon to host For example

Start session {ORACLE}
Set database version {ORACLET7}

Some of the database versions you can use are:

DAM Database Version
INFORMIX INFORMIX
ODBC
ORACLE ORACLE7
SybaseDB & CT | SQLSERVER
EDA EDASERVER
Set DDE channel item name 3!
Reversible: NO Flag affected: YES
Parameters: Server data item name
Syntax: Set DDE channel item nanfserver-dataitem-name}

DDE command, OMNIS as client. This command specifies the server data item name to
which you can send the exported report. When transmittSend to DDE channeéport,
OMNIS takes the channel item name and uses it as the server item name which is to be sent.

The flag is cleared if the item name is too long, thus causing a memory allocation error to
take place.

The item names set in the command accumulate over each use of the commar@esutil a
DDE channel item namaes issued.

Within a client library, for example, a report class is created which sends the fields CIF1,
CIF2...CIF5 to the current channel. At the server end of the conversation, the fields are to be
read into five fields SVR1, SVR2...SVR5. Before you can print the report, the method must
contain the following commands:

377

378

Set report name Export_to_channel

Send to DDE channel

Set DDE channel number {1}

Open DDE channel {PROG|LIBRARY}

Send command {[[TakeControl]}

If flag true
Set DDE channel item name SVR1
Set DDE channel item name SVR2
Set DDE channel item name SVR3
Set DDE channel item name SVR4
Set DDE channel item name SVR5
Print report

End If

Set DDE channel number i’
Reversible: YES Flag affected: YES

Parameters: Channel number (can be a calculation)

Syntax: Set DDE channel numbénumber}

DDE command, OMNIS as client. This command sets the channel number to be used in
subsequent DDE commands.. Each channel number identifies a particular conversation.

The channels are numbered from 1 to 8, and the flag is cleared if an invalid channel number
is used. The channel number in a newly selected library defaults to 1. The channel number
selected can be the result of a calculation. All subsequent channel commands function on
the current channel number. To select another channel, you must us&et izE

channel numbecommand.

Set DDE channel number {2}
Open DDE channel {OMNIS|COUNTRY?}
If flag false
OK message {Country library not running}
Else
Send command {Do method Invoice}
Do method TransferData
End If

Chapter 5—Commands

Commands

Set default data file

Reversible: YES Flag affected: NO
Parameters: File or list of files
Syntax: Set default data filfilel[,file2]...}

This command sets the default data file to be the current data file. Normally, file classes are
associated with whatever the current data file is, at the time of execution. Y&atuse

current data fileto change the identity of the current data file. As the current data file
changes, the file classes are associated with the changed current data file.

Set default data filsets the data file, for the specified file class or list of file classes, to be
fixed at whatever is the current data file at the time when the command executes. In other
words, it creates an association between a list of file classes and the particular data file that
was current. For these file classes, the data file becomes fixed (that is, the "default" data
file) and does not change whenever the current data file changes. You can break the
association with either a neBet default data filer aFloating default data fileommand.

When you close the default data file for a file, that file reverts to a floating state. This means
that the default data file for that file reverts to the current data file and changes when the
current data file changes.

Set default data fildoes not change the flag but is reversible, that is, when the command is
reversed, the previous default data files are restored. A runtime error occurs if there are no
data files open when the command is executed.

Open library {MYLIB}

Open data file {D1}

Open data file (Do not close other data) {D2}

Set default data file {FCLIENTS, FINVOICES}
Set current data file {D1}

Set main file {FCLIENTS}

: this refers to the D2 data file,

; not D1 (which is the current data file)

Open window instance WCLIENT

379

380

Set event recipient ‘_

Reversible: YES Flag affected: YES
Parameters: Application name
Syntax: Set event recipient

[{(* application_nampmac_namg@zone_nani)}]

This command specifies the name of the application to which subsequent Apple events are
to be sent. The name of the application must exactly match the name in the System 7
Application menu, for example “Microsoft Excel”. This name becomes the "recipient tag"
by which you can select it from all the current event recipients.

You can access another machine by specifying its name and zone together with the
application name. Theone_namés where the Mac or PowerMac and MacOS applications
reside (when you specify the zone you must also specify the Mac or PowerMac name). If
you omitzone_namghe current zone is the default. Thac_namés the Mac or

PowerMac on which the event recipient resides. If you orait_namé&andzone_nampe

your machine (the host) receives the events by default. When you launch OMNIS, the
recipient defaults to OMNIS, that is, events are sent to itself. In the same way, if you use
this command without a parameter, the recipient reverts to OMNIS.

Theapplication_namenust exactly match the name of the application. If a match is found,
the flag is set. The application name is stored in this form as an event recipient, as seen in a
list created wittBuild list of event recipients.

The following example shows the difference betwdsa event recipientvhich is used
with a tag previously assigned by the user Witompt for event recipienandSet event
recipient which takes a local application name as a parameter, and turns it into a recipient
tag.

Prompt for event recipient {MyApp1}

; Prompt user and select application

; do something with 'MyApp1'

Set event recipient {Microsoft Excel}

; This is the name of a current application, as shown on

; the Apple Application menu

; do something in 'Microsoft Excel' for example

Use event recipient {MyApp1}

; go back to the tagged recipient, previously prompted for

; do something else. Finally go back to OMNIS by resetting

; recipient with no prompt

Use event recipient

Chapter 5—Commands

Set export format

Reversible: NO Flag affected: NO
Parameters: Export format
Syntax: Set export format{gxport-format}

export-formatis one of the followingbelimited(commas),
Delimited(tabs),One field per line, OMNIS data transfer

This command specifies the export format to be used with the current repo8eiléeport
formatcommand lets you to override the parameters stored in the report class. You should
use it after selecting a report class.

If you leave the name empty, the report is printed without an export format. An error occurs
if the name is not a valid export format name. The name specified for the command can
contain square bracket notation.

Translation

Export format names are not tokenized and therefore are not understood by foreign
language versions of OMNIS. To avoid this portability problem, you can always build a list
of export formats and use the list to select a format (see Example 2 below).

; Example 1

Send to file

Set report name Exportl

Set print file name {Output. TXT}

Set export format {Delimited (tabs)}

Print report

; Example 2

Set current list LEXP

Build export format list (Clear list)

Set export format {[LEXP(1,2)]}

; selects format on second line of column one: Delimited (tabs)

Commands 381

382

Set final line number

Reversible: NO Flag affected: YES
Parameters: Line number (can be a calculation)
Syntax: Set final line numbeKline-number}

This command explicitly sets the valueld&T.$linecounby specifying a line number or a
calculation. OMNIS expands or contracts any list as necessary and maintains the value of
the LIST.$linecount property as the last line number. If the number of lines in the list is less
than the number set for LIST.$linecount, OMNIS adds empty lines to the end. If the number
of lines is greater than LIST.$linecount, OMNIS shortens the list and reduces the memory
needed by the list.

You can us&et final line numbeto speed up list handling by setting the final line number
to shorten lists, for example. The list is effectively cleared of data when the line number
parameter is left blank (or evaluates to zero).

Calculate LVAR1 as 0

Set current list LIST1
Define list {LVAR1}

Repeat
Calculate LVAR1 as LVAR1+1
Add line to list

Until LVAR1>100

Set final line number {50}

OK message {List has [LIST.$linecount] lines}

Set hostname

Reversible: YES Flag affected: YES
Parameters: Server host name
Syntax: Set hostnaméhost-name}

This command sets the name of the remote computer you wish to access, that is, the
hostname. The content of the logon parameters set Sptidyostnames server-specific.
Set username {SA}

Set password {Lion}

Set hostname {Serve300}

Logon to host

Chapter 5—Commands

Commands

Set import file name

Reversible: YES Flag affected: YES
Parameters: Import file name
Syntax: Set import file naméimport-file-name}

This command specifies the name of the import file. The flag is set if the import file is
successfully selected. You use the current import file in any subsdmpent field from
file commands.

If you useSet import file nama a reversible block, the import file is closed when the
method containing the reversible block terminates.
Set import file name {DATA.DB1}
Repeat
Import field from file into CVAR1
Until CVARL1 = 'start_data'
Do method ImportData
Close import file

Set label width

Reversible: NO Flag affected: NO
Parameters: Measurement
0 Measurement in cms (leave unchecked for inches)
Syntax: Set label width (Measurement in cmisjhumber}
This command specifies the width of the labels when printing labels. It overrides the value

set in the report parameters dialog until the current report is next reset. The width is
measured from the edge of one label to the corresponding edge of the next.

You can set up the vertical spacing between labels @&&hgecord spacing

Set report name RLABELS

Set labels across page {4}

Set record spacing {3}

Set repeat factor {2} ;; two of each label

Set label width (Measurement in cms) {4.5}
; Default measurement is inches

Print report

or do it like this
Do $clib.$reports.MyReport.$labelwidth.$assign(4.5)

383

384

Set labels across page

Reversible: NO Flag affected: NO
Parameters: Number (of labels)
Syntax: Set labels across paf@mmber}

This command specifies the number of labels across the page for label printing. It overrides
the setting in the report parameters dialog for the current report class. The setting remains in
force until the nexSet report nameommand.

When labels are printed, the vertical spacing from the top of one label to the next is set up
using the $recordspacing property or from a method &#ngecord spacing

Set report name RLABELS

Set labels across page {4}

Set record spacing {3}

Set label width (Measurement in cms){4.5}

Print report

Chapter 5—Commands

Commands

Set left margin

Reversible: NO Flag affected: NO
Parameters: Measurement
O Measurement in cms (leave unchecked for
inches)

Syntax: Set left margin (Measurement in cmsjnumber}

This command specifies the left margin for the current report class. It overrides the left
margin setting in the report properties until such time as the current report is reset.

Set report name Rorders

Yes/No message {Print on A4 paper?}

If flag true
Set bottom margin (Measurement in cms) {2.34}
Set top margin (Measurement in cms) {1.2}

Set left margin (Measurement in cms) {1.2}
Set right margin (Measurement in cms) {1.2}
Else

Set bottom margin {0.5}

Set top margin {0.5}

Set left margin {0.5}

Set right margin {0.5}

; Default measurement is inches
End If
Print report

or do it like this
Do $clib.$reports.MyReport.$leftmargin.$assign(0.5)

Set lines per page
Reversible: NO Flag affected: NO

Parameters: Number (of lines per page)
O Send form feed

Syntax: Set lines per pagégend form feefi{number}

This command changes the number of lines per page for reports printed to file or port. You

can send any report to a port or file using the Report destination dialog. When the

destination is selected in this window, the number of lines is automatically set to the default

number for the destination, so you must 8s¢lines per pagafteryou have selected the
report destination. The default lines per page setting is stored in the configuration file.

385

386

The Send form feedoption lets you send a form feed character at the end of each page of
the report; otherwise, multiple line feeds are sent.

Set report name RTEXTOUT

Send to port

Set lines per page (Send form feed) {66}

Print report

Set main file

Reversible: YES Flag affected: NO
Parameters: File class name

Syntax: Set main file{file-name}

This command selects the "main file" claSst main filds an essential command which
you must execute before manipulating any data. You can insert or deletalgatethe file
designated as the main file. The designated file cannot be memory-only or closed.

The main file setting also determines which connected files are located when finding
records with Find/Next/Previous, and which connections are updated. As each main file
record is read, the connected records are automatically read in and made available for
editing. When the main file is edited or inserted, all connections to its parent files are
updated, unless the parent file is closed.

If OMNIS attempts to execute a command which requires a main file before the main file is
set, an error occurs. If the data file is not opened when the main file is set, OMNIS will try
to open the default data file and, if this is unsuccessful, will display the Change data file
dialog box so that the user can select or create a data file.

Changing the main file afterRrepare for.. command does not cancel Prepare for mode.
When an update is encountered, the main file set at the time of the last Prepare for is used.
(SeePrepare for edit, Prepare for inseyt

If you useSet main filén a reversible block, the main file is reset to its previous value when
the method containing the reversible block finishes.

Multiple open data files

If more than one data file is open, there is only one main file setting shared by all open data
files. If you do not qualify a file class name with a data file, the current data file is assumed
unless you have created an association between the file class and another data file using the
Set default data fileommand.

Chapter 5—Commands

; Stock_control

If COST > PRICE
Set main file {FSTOCK1}
; ... process FSTOCK1

Else If COST < PRICE
Set main file {FSTOCK2}
; ... process FSTOCK2

End If

Set main file {FMAIN}

This example uses a reversible block to return the main file to its former setting after the
method terminates

Begin reversible block

Set main file {FMINV}
End reversible block

Do method Insertinvoices
; Now quit method and put main file back

This changes main file after the Prepare for... command:

Set main file {FSTOCK1}

; FSTOCK1 is cleared

Prepare for insert

Set main file {FSTOCK2}

Enter data

Update files

; Record is inserted into FSTOCK1

; All read/write files in CRB are updated and

; parent connections to FSTOCK1 are updated.

Set memory-only files

Reversible: YES Flag affected: YES
Parameters: File or list of files
Syntax: Set memory-only filegfile1[,file2]...}

This command sets the file mode of the specified file(s), other than the main file, to
memory-only. You can use the fields from a memory-only file as global variables. To do
this:

1. Create a file class with some fields of the required type (Character, Numeric, and so on).
2. Designate the file class as a memory-only file using this command.

3. Use the fields in your methods as temporary storage for data.

Commands 387

388

When a memory-only file is changed to read/write, its fields are not cleared from the current
record buffer. Similarly, when a file is changed from read/write to memory-only, its records
are not cleared. Memory-only fields are initialized as empty when the library is launched.

If used in a reversible blocKet memory-only filds reversed when the method containing
the block finishes. This command does not clear the Prepare for update mode.

In the method editor, a list of files is displayed. You can Ctrl/Cmnd-click on the file names
to select multiple names.

Set memory-only files {fGlobals}

Set OMNIS window title =
Reversible: YES Flag affected: NO

Parameters: Text (window title)

Syntax: Set OMNIS window titlgtext}

This command changes the title on the OMNIS application window (available under
Windows only). Thaextparameter provides the new title which may contain square bracket
notation. Unless reversed as part of a reversible block, the new title will remain until
OMNIS is restarted.
Begin reversible block

Set OMNIS window title {Call Tracker} ;; for Windows only
End reversible block
Install menu MCalls

Chapter 5—Commands

Set page width

Reversible: NO Flag affected: NO
Parameters: Number (of characters across page)
Syntax: Set page widthinumber}

This command changes the width of reports printed to file or port. The default setting is
stored in the preferences file and is selected automatically when the destination is chosen.
Set page widtlverrides this setting and must be used after selecting the report destination.
Set report name ROUTEXT

Send to file

Set print file name {OUT.TXT}

Set lines per page {66}

Set page width {45}

Print report

Set palette when drawing

Reversible: NO Flag affected: NO
Parameters: [Color shared pictures
O Never
Syntax: Set palette when drawin¢{ Color shared picturdf,Nevet)]

This command controls the color drawing system used to display certain types of color
bitmap. When drawing pictures which contain more colors than can be accurately rendered
by the display adapter, you can adjust the system's palette of available colors to match the
palette stored inside the picture data. This will affect all colors used on the screen, not just
OMNIS. This command lets you selectively turn on this option for shared pictures.

Set palette when drawing (Color shared pictures)
Open window instance WPICTS
Set palette when drawing (Never)

Open window instance WNOPICTS

Commands 389

Set password

Reversible: NO Flag affected: YES
Parameters: Server password
Syntax: Set passworfpassword}

This command sets the password of the remote database server. This password should not
be confused with any passwords required by the file server or operating system software. A
simple logon sequence for a local ORACLE database is:

Start session {ORACLE}
If flag true
Set username {Scott}
Set password {Tiger}
Logon to host
If flag false
OK message {Error logging on: [sys(132)]}
End If
Else
OK message {Can't start ORACLE}
End If

390 Chapter 5—Commands

Commands

Set port name

Reversible: NO Flag affected: YES
Parameters: Port name (COMn: or LPTn:)
Syntax: Set port naméport-name}

This command specifies the name of the port to be used with subsequent input or output via
the port. The flag is set if the port is successfully selected. The command should follow
Send to portYou can set the baud rate and other parameters for the porBesipgrt

parameters

Set port namés not reversible, but if you use it in a reversible block the specified port is
closed when the method terminates.

Set report name RPORT
Send to port
Switch sys(6)="M’

Case kTrue
Set port name {1 (Modem port)}
Default ;; if Windows
Setport name {COM1:}
End Switch

Set port parameters {1200,n,7,2}
Print report

Set port parameters

Reversible: NO Flag affected: YES

Parameters: O Convert for ImageWriter (this parameter MacOS only)
Baud rate, Parity, Data bits, Stop bits,
X or H (XON/XOFF protocol or Hardware handshake), CPI,
LPI; include a comma for X|H and/or CP| parameters when not
specifying a value; see examples
Syntax: Set port parametergQonvert for ImageWritet{baud-rate,
parity, data-bits, stop-bifsX|H][,cpil[.Ipi]}

This command sets the serial port parameters. When ydielesgt porin a method, the

baud rate and other parameters are set to the Control panel settings. If you need to change
the settings you can do so with this command, which should follBend to portThe flag

is set if the command is successful.

For a baud rate of 9600, no parity, eight data bits and 1 stop bit, the command is:
Set port parameters {9600,n,8,1}

391

392

The fifth character in the parameter string can be X' (for XON/XOFF protocol) or 'H' for
hardware handshake. The 'H'/'X' can be in upper or lower case.

The CPI and LPI parameters are numbers which specify characters and lines per inch. These
are used by OMNIS to justify fields in the report - not sent as control characters to the
printer.

Under MacOS, you use tl@onvert for imagewriter option to insert control codes suitable
for an Apple ImageWriter. On the PC, you @etput translation in conjunction with the

.INI file settings to convert characters with ASCII codes greater than 128 into combinations
of backspace and other characters suitable for simple output devices with limited or
differing character sets.

; example 1

Set port parameters {9600,n,8,1,,10,6}

; extra comma indicates no change to the Handshake parameters (X/H)
Set port parameters {9600,n,7,1,X}

; Sets up XON/XOFF handshake protocol

; example 2
Set report name RPORT
Send to port
Switch sys(6)="M’
Case kTrue
Set port name {1 (Modem port)}
Default ;7 if Windows
Set port name {COML1:}
End Switch
Set port parameters {1200,n,7,2}
Print report

Set print or export file name

Reversible: YES Flag affected: YES

Parameters: File name (full path can be specified)

Syntax: Set print or export file namgrint-file-
name}

This command specifies the print file name to which printed output is to be directed. The
flag is set if the print file is successfully selected. If youSeseprint or export file namia

a reversible block, the print file is closed when the method containing the reversible block
terminates.

Once the file name has been specifieeind to filedirects the report output to the file. As
each report is printed, its output is added to the end of the last report in the file.

Chapter 5—Commands

If sys(6)="M’

Set print or export file name {HD80:Work:Output file2}
Else

Set print or export file name {C:\work\output2.prn}
End If
Send to file

Set report name r_addresses
Print report

Set publisher options ‘.

Reversible: YES Flag affected: YES

Parameters: O Publish on save
File or field list

Syntax: Set publisher optiongRublish on savé)file [field1[,file[field2]...}

This command sets up the conditions under which the editions for the published fields in the
list are updated. ThRublish on saveoption causes the field values to be published when

the current record buffer values for the fields are changed. For list fields, the value is
published when the evAfter message is sent to the field.

Set publisher optionalters the publisher options for all the published fields in the list. The
field list can take a file name (for all fields in a file) or a range of fields, which includes a
range of fields in the order listed in the Field names window. If no field list is given, the
command operates on all published fields (in the library).

The flag is set if the command alters the options for one or more fields successfully. The
flag is cleared if not running under System 7. If placed within a reversible block, the options
are returned to their former status when the method terminates.

Publish field CNAME {HD80:Public:Sales-Name}

Publish field CTOTAL {HD80:Public:Sales-Total}

Set publish options (Publish on save) {CNAME,CTOTAL}
Prepare for edit

Enter data

Update files if flag set

Commands 393

394

Set read-only files

Reversible: YES Flag affected: YES
Parameters: File or list of files
Syntax: Set read-only filegfile1[,file2]...}

This command sets the file mode of the specified file(s) to read-only. You can read but not
write to a read-only fileSet read-only filesloes not cancel the Prepare for update mode.

If you use this command in a reversible block, the file reverts to its original mode when the
method containing the command block terminates.

In multi-user systems, you uSet read-only filego prevent OMNIS from locking certain

files. When you make files read/write, they are locked and re-read. In multi-user systems,
records such as invoice numbers and totals, accessed by a humber of users, should be made
read-only to prevent delays caused by record locking. You must return the file to read/write
status momentarily while it is updated.

In the method editor, a list of files is displayed. You can Ctrl/Cmnd-click on the file names
to select multiple names.

Set read-only files {FCONSTANTS,FSUPPLIERS}

Set main file {FORDERS}

Prepare for insert

Enter data

Update files if flag set

Set read/write files

Reversible: YES Flag affected: YES
Parameters: File or list of files
Syntax: Set read/write filegfile1[,file2]...}

This command sets the file mode of the specified file(s) to read/write. The read/write file
mode is the default type of OMNIS file; you can read and write data to a read/write file. The
other three file modes are read-only, closed and memory-only. If a file is changed to
read/write mode when in Prepare for update, the data for the file class is reread from disk.
In multi-user systems, read/write files are locked whBnepare for.. command is

executed.

The file mode will revert to its former state if you use the command in a reversible block.

In the method editor, a list of files is displayed. You can Ctrl/Cmnd-click on the file names
to select multiple names.

Chapter 5—Commands

: Newlnvoice

Set read-only files {finvNumber}

Prepare for insert

Enter data

If flag true
Set read/write files {flnvNumber}
; waits for and locks finvNumber file
Calculate InvNo as cInvNum+1
Calculate clnvNum as InvNo
Update files ;; update both Invoice and Constants file

End If

Redraw winvoice

Set record spacing

Reversible: NO Flag affected: NO

Parameters: Measurement (number)
OO Measurement in cms (leave unchecked for inches)

Syntax: Set record spacingleasurement in cnisjnumber}
This command specifies the line spacing for the record section of the current report class. It

overrides the setting in the record section properties for the current report. The setting
remains in force until the ne$et report name

Set report name RLABELS

Set labels across page {3}

Set record spacing (Measurement in cms) {5.2} ;; Default is inches
Print report

or do it like this

Do $clib.$reports.MyReport.$recordspacing.$assign(5.2)

Commands 395

396

Set reference

Reversible: NO Flag affected: NO
Parameters: Variable name (of type Item reference)
Notation for an item (can be a calculation)
Syntax: Set referenceariable-nameto notation
This command sets up and stores a reference to an item in a reference variable. It assigns an
alias for an item of notation that you do not want to type each time the item is referenced in
the code. The variable can be a local, class, or task variable of type Item reference.
; Declare class variable FREF of type Item reference
Set reference FREF to LIBRARY1.$windows.SALESWINDOW.$0bjs. TOTAL
: now set the color of the TOTAL field
Do FREF.$forecolor.$assign(6) ;; set the color of the TOTAL field

Set repeat factor

Reversible: NO Flag affected: NO
Parameters: Number (that is, the repeat factor)
Syntax: Set repeat factoffiumber]

This command specifies the number of copies of the record section to be printed. It
overrides the repeat factor specified in the report properties for the current Espoepeat
factoris particularly useful when printing multiple labels. The setting remains in force until
the nextSet report namdf the repeat factor is left blank (or evaluates to zero), the printing
of the record sections of a report is suppressed completely; all heading sections, totals and
subtotals are still calculated correctly.

Set report main file {FLABELS}

Set report name RLABELS
Set labels across page {3}
Set repeat factor {2}
Set label width {3.4}

Print report

or do it like this

Do $clib.$reports.MyReport.$repeatfactor.$assign(2)

Chapter 5—Commands

Commands

Set report main file

Reversible: NO Flag affected: NO
Parameters: File name
Syntax: Set report main filgfile-name}

This command specifies the main file for the current report. When a report is printed,
OMNIS uses the main file set by the I8&tt main file Set report main fil®verrides the
main file setting by specifying a new main file specifically for the report. The setting
remains in force until the nestet report name

Printing connected files

When printing connected files, it is essential that the child file is made the main file. Only
the main file and its connected parent files are automatically read into the current record
buffer.

If no sort fields are specified in the report class, the report generator steps through the
records in the order defined by the record sequencing number for the main file. Sort fields
let you reorder the report records.

Set report name RORDERS

Set report main file {FORDERS}

Clear sort fields

Set sort field ORD_CODE

Prompt for destination

Print report

or do it like this
Do $clib.$reports.MyReport.$mainfile.$assign(FORDERS)

Set report main list

Reversible: NO Flag affected: NO
Parameters: List or row name
Syntax: Set report main lidist-name

This command specifies a list as the source for the data for the current report. When a report
is printed, OMNIS uses the main file specified either in $mainfile or the file set by the last

Set main filecommandSet report main listets you override the main file setting by

specifying a list, from which data is read for the next printed report.

A list-based report prints one record for each line in the list. The data file is not used unless
the report contains auto find fields. Sorting, searching, subtotals, and so on, continue to
work the same way as for file-based reports. All field values are taken from the list and
records are read in list order.

397

398

When aPrepare for printcommand is encountered, the current list or file setting overrides
the Main file setting used in the report parameters dialog.

Set report name RLNAMES

Set report main list LIST1
Prompt for destination

Print report

or do it like this

Do $clib.$reports.MyReport.$mainlist.$assign(LIST1)

Set report name

Reversible: YES Flag affected: NO
Parameters: Report name
Syntax: Set report nameeport-name

This command selects a report class for use with subse@uent. commands. It
terminates any report in progress.

If you useSet report name a reversible block, the previous report name will be restored
when the method terminates.

Set report name RLABEL
Set sort field CXTITLE (Upper case)
Print report

Chapter 5—Commands

Commands

Set right margin

Reversible: NO Flag affected: NO

Parameters: Measurement
O Measurement in cms (leave unchecked for
inches)

Syntax: Set right margin(Measurement in cmjsjnumber}

This command specifies the right margin for the current report class. It overrides the right
margin setting in the report properties until such time as the current report is reset.

Set report name Rorders
Yes/No message {Print on A4 paper?}
If flag true
Set bottom margin (Measurement in cms) {2.34}
Set top margin (Measurement in cms) {1.2}
Set left margin (Measurement in cms) {1.2}
Set right margin (Measurement in cms) {1.2}
Else
Set bottom margin {0.5}
Set top margin {0.5}
Set left margin {0.5}

Set right margin {0.5}
; Default measurement is inches
End If

Print report

or do it like this
Do $clib.$reports.MyReport.$rightmargin.$assign(0.5)

Set search as calculation

Reversible: NO Flag affected: NO
Parameters: Calculation
Syntax: Set search as calculatidfecglculation}]

This command sets the current search as the single line calculation specified. The
calculation replaces the current search class if one has been set. A subsequeSeaapbrt,
list or aFind command withUse searchwill use the search calculation.

Search calculations allow the index optimization routine in OMNIS to select a suitable
index, provided that such an index is available. Leaving the calculation blank has the effect
of clearing the previous search calculation.

399

400

Set main file {f_client}

Open window instance w_Address

Set search as calculation {SURNAME = 'Smith'}

Find on TOWN {'London'}(Exact match,Use search)

; Uses TOWN index, locates Londoners, and uses search to locate
; Smiths. Exact match applies to the 'London' match

Redraw w_Address

This example moves selected lines only between lists.

Set current list LIST2

Set search as calculation {#LSEL}
Merge list LIST1 (Use search)

Redraw lists

Set search name

Reversible: YES Flag affected: NO
Parameters: Search class name
Syntax: Set search namésearch-namd}

This command sets the search class to be used with repeateh lislandFind (using
search) commands. If no search class name is included, the current search is cleared. Searct
classes allow subsets of the records to be printed or worked on.

A Find first (Use searchfommand reads in the first record which matches the current
search criterion and creates a find table. Subsedexttommands print out the records in
the table.

If used within a reversible block, the search name reverts to its former setting when the
method terminates.

Chapter 5—Commands

; example 1

Set search name S_Areal
Set report name R_list

Print report (Use search)

; example 2
Set search name S_Area2
Set main file {FORDERS}
Clear main & connected
Prepare for print
Find first (Use search) ;; Creates table of records which match
While flag true
Print record

Next
End While
End print
Set server mode i!
Reversible: YES Flag affected: NO

Parameters: [Field requests
O Field values
O Advise requests
O Commands

Syntax: Set server mod€[Field request, Field value$
[,Advise requeslls Commandg]

This command sets OMNIS to act as a DDE server and specifies which DDE commands it
will accept. With one or more of tleheck box options selected OMNIS will respond to the
corresponding commands and demands from a client. If none is selected, server mode is
deselected.

All four server mode check box options have equivalent DDE commands which are
described separatelficcept field requests, Accept field values, Accept advise requnelsts
Accept commands

Irrespective of the mode selected, OMNIS will only accept field values and commands
when in enter data mode, and accept commands when no methods are running.

OMNIS will only respond to a request to act as a server if the Initiate message from the
client contains at least the name of the program, that is, OMNIS. If the client specifies a
topic, it has to be equal to the OMNIS library name without the .LBR extension. OMNIS
responds with the current library name if the client does not specify the topic.

Commands 401

402

If no options are set, OMNIS is disabled as a server except for the System Topic. If OMNIS
is already a server when the options urigletrserver modare disabled, one of two things
will happen:

1. If the options have been disabled during a reversible block, the client sending the Initiate
message will get busy acknowledgments until the reversible command method finishes.
You cannot initiate any new conversations during this time.

2. OMNIS will end the communication by sending the client a Terminate message.

All four server mode options have equivalent commands which are described separately:
Accept field requests, Accept field values, Accept advise requelgtscept commands

Set sort field

Reversible: YES Flag affected: NO

Parameters: Field name
O Descending
O Upper case
O Subtotals
O New page
Syntax: Set sort fieldield-name[([Descending
[,Upper casy, Subtotal}{, New pag®]

This command specifies a field on which a list or report is to be sorted. The report generator
systematically works through the records in the main and connected files and prints them
using the report class definition. You can use sort fields to sort the records into a specific
index order.

A report can be sorted on up to nine fields: you can specify sort fields in the report class or
by usingSet sort field Since sort fields are cumulative, @ear sort fielddirst to clear
any that already exist.

When a report name is selected, the report class sort fields are used but you can override
these sort fields by clearing them and specifying new sort oneSaeititort field For nine

sort fields, you use th®et sort fielccommand nine times in succession. Using this method,
however, can be slower than sorting on fields that are already indexed.

You can set the sort fields for lists usidgt sort field TheSort listcommand sorts the
current list in the order specified by the current sort fields. Note that lists have to be
explicitly redrawn before you can view the results of a sort.

If used within a reversible block, the sort field setting reverts when the method terminates.

Chapter 5—Commands

Commands

; to sort a report on fields AREA, DEPT and NAME
Set report name RCOMMISSION

Clear sort fields

Set sort field {AREA}

Set sort field {DEPT}

Set sort field {NAME}

Print report

The Descendingoption sorts the records in descending order.Ujyger Caseoption

converts lower case characters to upper case for the purpose of sortigglbtdials

option causes the Subtotal section in the report to be printed when the value of the sort field
changes. Thus, in the above example, when AREA changes, subtotals 1 is printed, when
DEPT changes, subtotals 2 is printed, and so onNEwePageoption starts a new page

when the field value changes.

Set SQL blob preferences

Reversible: YES Flag affected: NO
Parameters: Default, Load all, Segment, or Threshold
Chunk size/Threshold
Syntax: Set SQL blob preferencéBefault|Load al|Segmenhreshold)

{chunk-sizédthreshold}

This command controls the way pictures, large strings, and BLOBs (Binary Large Objects)
are read across the DAM interface. The capabilities of each DAM dictate how the blob is
handled Set SQL blob preferencssts the preferences for the current cursor.

Blob buffering is the ability of the API to bring a blob to or from the server in “chunks”.
Although OMNIS and many serverspgort blob sizes of up to 2 gigabytes, the size that

may be totally buffered in memory is limited. This command lets you pass a blob as a series
of smaller chunks. You can split strings, pictures, and binarie26éebytes into leunks.

Set SQL blob preferenchas four options: Default, Load all, Segment, or Threshold.
With theDefault option the DAM deals with splitting the blob.

With theLoad all option the blob is passed as one chunk. The DAM currently attached may
not be able to pass chunks of that size.

With the Segmentoption you specify the chunk size.
With theThreshold option you specify the threshold/chunk size.

403

404

Set SQL script

Reversible: NO Flag affected: YES
Parameters: Field name or variable
Syntax: Set SQL scripffield-name|variable}

This command takes a string held in a specified field and loads it directly into the SQL
statement buffer. The field can be any OMNIS character field or variable. The field value
can include square bracket notation and indirect square bracket notation. Carriage returns
are converted to spaces before being sent to the remote da&disSQL scripvill clear

the flag and leave the SQL buffer unaltered if the text contains square bracket notation with
invalid field names or calculations.

You should use the command with care since, apart from evaluating square bracket
notation, this process bypasses the normal syntax checking carried out whe3Qlsing
Perform SQL
Calculate CVARL as 'Insert publishers (pub_name,pub_id)
values (@[NAME],@IID])'

Set SQL script {CVAR1}
If flag false

OK message {Error loading SQL buffer with [CVAR1]}

Quit method
End If
Execute SQL script
: Handle errors from server

Set SQL separators

Reversible: YES Flag affected: NO
Parameters: Thousand and/or Decimal separator type
Syntax: Set SQL separatoffthousand-separatdf/ decimal-separatdi

This command sets the thousand and decimal separators for numbers that are sent to a
remote server. You can set the separators in this way for each session. You must use
different characters for each separator type. The separators revert back to their default when
the session is closed.

To enter a decimal separator only you should use the sylgeixyal-separatqrthat is,
include the forward slash.

Most SQL servers use English/American numeric separators, that is, commas representing
the thousand separator and a period representing the decimal separator. When using
European numeric separators, that is, periods representing the thousand separator and a
comma representing the decimal separator, there would be a mismatch between numbers

Chapter 5—Commands

you send to the server and what the server expects. This command lets you set the SQL
separators and remedy the mismatch.

Set SQL separators {/.}

; set to comma/period which English/American server expects

Set subscriber options ‘.

Reversible: YES Flag affected: YES

Parameters: [Subscribe automatically
File or field list

Syntax: Set subscriber optiongjubscribe automatically)
[{file[field1[,file[field2]...}]

This command controls whether the subscribed fields in the list are to be automatically
updated. WheBubscribe automaticallyhas been selected, the values are set up when the
library starts up and updated whenever OMNIS is notified that the values have been
changed. The new values are not made available to the library while there is a design
window open as the top window. When a subscriber is updated, the evSent message is sent
to any window or library $control() methods.

The command alters the subscriber options for all the subscribed fields in the list. The field
list can take a file name (for all fields in a file) or a range of fields, which includes a range
of fields in the order listed in the Field names window. If no field list is given, the
command operates on all subscribed fields within the library.

The flag is set if the command alters the options for one or more fields successfully. If
placed within a reversible block, the options are returned to their former status when the
command is reversed.

Subscribe field CNAME {HD80:Public:Sales-Name}

Subscribe field CTOTAL {HD80:Public:Sales-Total}

Set subscriber options (Subscribe automatically) {CNAME,CTOTAL}

Enter data

Set subscriber options {CNAME,CTOTAL}

Commands 405

Set timer method

Reversible: YES Flag affected: NO

Parameters: Interval in seconds (must be an integer, e.g. 300 sec)
Code class name
Method name

Syntax: Set timer methothterval sec fode-class-nandg[{method-namd}

This command calls the specified method at regular intervals while waiting for a keyboard
input; the called method should preferably be one contained in a code class. You could use
this command for automatic telephone dialing, regular checks for electronic mail, and so on.

The command specifies the timer method and the interval in seconds between calls to the
timer method. This interval can be between 1 and 30,000 in the form "n sec" where n is the
number of seconds. OMNIS will start the next timer method when the method which is
currently executing, finishes. Timer methods cannot operate in real time as OMNIS will not
execute a timer method while another method is running or when an OK or Yes/No message
is displayed on the screen.

The timer method in your code class should not cont@iniball methodsas this will
terminate an¥gnter datacommands which are running. You can also usérdger data

inside a timer method: if so and you do not clear the timer method, the timer method
continues to be active while OMNIS carries out the Enter data part of the timer method.

You can uséet timer methoah a reversible block, in which case the timer method is
cleared when the executing method terminates.

; @ menu method
Set timer method 60 sec CODECLASS/Timer
OK message {Now play the minute waltz!}

: Timer method in CODECLASS

OK message {Timer method triggered once only}
Clear timer method

406 Chapter 5—Commands

Commands

Set top margin

Reversible: NO Flag affected: NO

Parameters: Measurement
0 Measurement in cms (leave unchecked for inches)

Syntax: Set top margin(Measurement in cmisjnumber}
This command specifies the top margin for the current report class. It overrides $topmargin
until such time as the current report is reset.

Set report name Rorders
Yes/No message {Print on metric A4 paper?}

If flag true
Set bottom margin (Measurement in cms) {2.34}
Set top margin (Measurement in cms) {1.2}
Else

Set bottom margin {1.0}

Set top margin {1.0}

; Default measurement is inches
End If
Print report
or do it like this

Do $clib.$reports.MyReport.$topmargin.$assign(1.0)

Set top window title

Reversible: YES Flag affected: NO
Parameters: Window title
Syntax: Set top window title{vindow-title]]

This command specifies the title for the top window instance. You can use square bracket
notation within the window title. The title of the top window instance is cleared if you omit
the window title parameter (or it evaluates to an empty string). The title reverts to the
normal title if the window instance is closed and reopened. An error occurs if there is no
window instance.

If you useSet top window titlén a reversible block, the title reverts to its normal value
when the method containing the reversible block terminates.

407

Open window instance WACCOUNTS/waccl
Yes/No message {Do journals?}

If flag true

Set top window title {'Journals for [#D]'}
Else

Set top window title {'Invoices'}
End If

Set transaction mode

Reversible: YES Flag affected: NO
Parameters: Automatic, Generic, or Server
Syntax: Set transaction modéutomatidGeneridServer)

This command manages SQL transactions and controls when a transaction is committed to
the DBMS.Set transaction modaas three options: Automatic, Generic, and Server.

The Automatic option commits or rolls back each SQL statement automatically as soon as
the next SQL command starBegin SQL scriptPerform SQI_Reset cursqror if the
statement either did not generate a result set immediately after execution, or failed.

The Generic option implements basic transaction processing USomgmit current session
andRollback current session

With theServer option the DAM in use takes complete control and uses the server SQL
dialect.

For more information on this command and its relationshutocommitrefer toOMNIS
Studio Data Access Manager

If fDestType = 'SYBASE'

Set transaction mode (Server) ;; (autocommit off)
Perform SQL {BEGIN TRAN}
Else ;; Oracle and OMNISSQL
Reset cursor(s) (Session)
Set transaction mode (Generic) ;; (autocommit off)
End If

408 Chapter 5—Commands

Set username

Reversible: NO Flag affected: YES
Parameters: Server user name
Syntax: Set usernamfuser-name}

This command sets the username for logging onto a remote database server. A simple logon
sequence for a local ORACLE database is:

Start session {ORACLE}
If flag true
Set username {Scott}
Set password {Tiger}
Logon to host
If flag false
OK message {Error logging on: [sys(132)]}
End If
Else
OK message {Can't start ORACLE}
End If

The format for the username string when using a remote ORACLE server is:

username/password@driver_prefix:database_string

Show 'About..." window

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Show 'About..." window

This command displays the standard "About..." window which is available as an option in
theHelp menu under Windows, or tigple menu under MacOS. You can change the
standard "About..." screen with t&et 'About..." methacbmmand. For example

Show 'About..." window

; Now redefine the 'About..." method

Set 'About..." method HELP/About this demo

; Now the only way to see the original '‘About’

; is to execute another Show 'About..." window

Commands 409

410

Show fields

Reversible: YES Flag affected: NO
Parameters: Field name or list of field names
Syntax: Show fields{field1[,field2,..]}

This command shows the specified window field or list of fields. You can hide fields with
Hide fieldsor using the notation. Inactive pushbuttons withDbenot gray attribute cannot
be made visible with this or any other command.

If you useShow fieldsn a reversible block, the specified fields are hidden when the method
containing the reversible block terminates.

Hide fields { Entryld,EntryCompany,EntryTel }
Redraw CustWindow ;; Fields are hidden
If ACCESS <3
Show fields { Entryld,EntryCompany,EntryTel }
Redraw CustWindow
End If

To show a single field on the current window

Do $cwind.$objs.FieldName.$visible.$assign(kTrue)
or to show all fields on the current window

Do $cwind.$objs.$sendall($ref.$visible.$assign(kTrue))

Show OMNIS maximized 3!
Reversible: NO Flag affected: NO

Parameters: None

Syntax: Show OMNIS maximized

This command shows OMNIS at its maximum size within the application window. This
command performs the same action advlgimize option in theSystemmenu and the
Maximize button on the application window.

OK message {Printing now}
Show OMNIS minimized
Print report

Show OMNIS maximized

Chapter 5—Commands

Commands

Show OMNIS minimized A

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Show OMNIS minimized

This command minimizes OMNIS which subsequently appears as an icon at the bottom of
the screen.

OK message {Printing now}

Show OMNIS minimized

Print report

Show OMNIS maximized

Show OMNIS normal 3

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Show OMNIS normal

This command shows OMNIS at its hormal size within the application window. Icons for
other applications are visible along the bottom of the screen.

OK message {Printing now}

Show OMNIS minimized

Print report

Show OMNIS normal

411

412

Show docking area

Reversible: NO Flag affected: NO

Parameters: [Show text
Toolbar name (a constant)

Syntax: Show docking areg$how tex{)toolbar-name
This command opens the top, bottom, left, or right docking area into which toolbars may be

installed. The docking area is specified using one of the constants: kDockingAreaTop,
kDockingAreaBottom, kDockingAreal eft, kDockingAreaRight or kDockingAreaFloating.

When a toolbar is created each control may have a text label, for example, a Print button
may have the word “Print” associated with it. T3igow textoption allows these text labels
to be shown beneath the buttons.

Show docking area {kDockingAreaTop}

Install Toolbar {T_New} ;; toolbar installed on Top docking area
Alternatively you can use

Do $root.$prefs.$dockingarea.$assign(kDockingAreaTop)

Signal error
Reversible: NO Flag affected: NO
Parameters: Error number
Error text
Syntax: Signal erroferror-numbef,error-tex{}

This command reports a fatal error which can be either a user-defined error or a built-in
OMNIS error. A fatal error is any error that normally halts method execution and reports an
error (for example, syntax error, or an out of memory error).

The fatal error is reported with the specified error code and text. Any error handler for that
code will be invoked. If there is no error handler or the error handler does not make a set
error action (SEA), the debugger is invoked, if available. Otherwise, execution halts with
the error message.

This command is useful for trapping user-defined errors, and is a convenient tool for
triggering an error situation inside OMNIS for whatever condition you may want to specify.

Test for only one user
If flag false

Signal error (99, Test for one user failed’)
End If

Chapter 5—Commands

Commands

Single file find

Reversible: YES Flag affected: YES
Parameters: Field name
Calculation
O Exact match
Syntax: Single file find onfield-name[(Exact matcH)[{calculation]]

This command locates a record in a single file only. It is similar to the staritard
command but is not dependent on the main file; that is, the field uSadgie file finddoes

not have to belong to the main file and it doesread in the connected records. You can
specify a calculation faBingle file findwhich determines the value used in the Find. The
Exact match option with a blank calculation indicates that the command is to be executed
using the current value of the field, that is, the file is searched for a record whose index
value matches the current value of the specified field.

In multi-user systems, @ingle file findwhile in Prepare for... mode causes additional
semaphores to be set. If the record is already locked, the user must wait for access to the
record.

Wait for semaphores

Single file find on PRICE {PRICE <= COST*3}
If flag false

OK message {Can't find record}
End If

413

Sort list

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Sort list

This command sorts the current list in the order specified by the current sort fields. You can
useSet sort fieldo set the sort fields. Note that lists have to be explicitly redrawn before
you can view the results of a sort.

Set current list CUSTLIST

Define list (NAME, TOWN,CITY}

Set main file {FCUST}

Build list from file (Use search)

Clear sort fields

Set sort field NAME

Set sort field TOWN

Sort list

Redraw lists

; Note, Build list can also use sort fields

Or do it like this
Do LIST.$sort(SortField1,SortOrder,SortField2,SortOrder, ..)

Sound bell

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Sound bell

This command sounds the system beep. You can sound the bell at any point in a method to
draw attention to a particular method, field, message, error, and so on.

Sound bell

Open window instance FWARNING

Enter data

Close window FWARNING

414 Chapter 5—Commands

Commands

SQL:

Reversible: NO Flag affected: YES
Parameters: SQL script
Syntax: SQL: sql-script

This command adds a line of script to the SQL buffer. It loads the SQL script buffer with
lines of text ready to be sent to the remote database by a subdexpmre SQL script

TheBegin SQL scripandReset cursor()ommands clear the buffer ready for a new script.
Thesql-scriptparameter is a text field which can contain square bracket and indirect square
bracket notation (which you use to send data to the server as a "bind" variable).

EachSQL: sql-scriptine is added to the current buffer with a carriage return delimiter.

When the script is sent to the server, each carriage return is replaced by a space character.
You can split a SQL statement over more than one line but literal values must not be split
between lines. A line can contain more than one SQL statement provided you use the
appropriate delimiter.

Text loaded into the buffer must be valid SQL script and must be understood by the server.
You use square brackets to load the buffer with text obtained from OMNIS functions,
variables and calculations. Indirect notation of the form @[Field] is not evaluated in
OMNIS but is handled by the DAMs, and lets you pass field values to the server without the
need for them to be included in the text of a SQL statement.

Set current session {SY_ONE}

Begin SQL script

SQL: Insert into [TABLE]

SQL: (col1,col2)

SQL: VALUES (@[FIELD1],@[FIELD2])

End SQL script

Execute SQL script

; Deal with errors now

415

416

Start program maximized A

Reversible: NO Flag affected: YES

Parameters: Program name
Document or file name (full pathname for document or file)

Syntax: Start program maximizeghrogram-namé¢ document-nanijg
This command starts up a Windows application at its maximum screen size. The program
name must be the program's module name which is usually, but not necessarily, the same as

its executable file name. You can also specify the document or file name which must
include the full path name and a space after program-name.

The flag is set if the program is found.

You can pass other parameters such as command line switches by including them after the
document name.

Having run the program, OMNIS has no way of determining whether it is running except by
initiating a DDE conversation with it.

Test if file exists {C:\winword\winword}

If flag true
Start program maximized {winword C:\winword\work\readme.txt}
End If
Start program minimized 3!
Reversible: NO Flag affected: YES

Parameters: Program name
Document or file name (full pathname for document or file)

Syntax: Start program minimizefprogram-namé¢ document-nanig

This command starts up a Windows application as a minimized icon. The program name

must be the program's module name which is usually, but not necessarily, the same as its
executable file name. You can also specify the document or file name which must include
the full path name and a space after program-name.

The flag is set if the program is found.

You can pass other parameters such as command line switches, by including them after the
document name.

Chapter 5—Commands

Having run the program, OMNIS has no way of determining whether it is running except by
initiating a DDE conversation with it.

Test if file exists {C:\winword\winword}

If flag true
Start program minimized {winword C:\winword\work\readme.txt}
End If
Start program normal 3!
Reversible: NO Flag affected: YES

Parameters: Program name
Document or file name (full pathname for document or file)

Syntax: Start program normgprogram-namé document-nanjg

This command starts up a Windows application at its normal screen size. The program
name must be the program's module name which is usually, but not necessarily, the same as
its executable file name. You can also specify the document or file name which must

include the full path name and a space after program-name.

The flag is set if the program is found.

You can pass other parameters such as command line switches by including them after the
document name.

Having run the program, OMNIS has no way of determining whether it is running except by
initiating a DDE conversation with it.
Test if file exists {C:\winword\winword}
If flag true
Start program normal {winword C:\winword\work\readme.txt}
End If

Start session

Reversible: NO Flag affected: YES
Parameters: DAM name
Syntax: Start sessiofDAM-name}

This command loads the specified DAM and initializes communication between the current
session and the remote database. It takelSAiM-nameas the parameter. It is only
necessary to supply this command once per server, ofaftesession

All DAMs are placed in the EXTERNAL folder under the main OMNIS folder. All DAM
names begin with the letter d. Under Windows DAMs have the .dll file extension, but you
don’t need to include it in thetart sessiomommand. For example under WindoBsart
session {dORACLEill cause OMNIS to look for AdORACLE.DLL.

Commands 417

418

After a successfubtart sessionyou can us&et hosthname§et usernameset passworcgnd
Logon to hosto log on to your database.

; You need plenty of memory for these two...

Set current session {Serverl}

Start session {dORACLE}

Set current session {Server2}

Start session {dSYBASE}

; now log on to each server

Subscribe field ‘.

Reversible: YES Flag affected: YES
Parameters: Field name

Edition name
Syntax: Subscribe fieldield-name[{edition-name}

This command subscribes a field to the specified edition. When a field is subscribed in this
way, its value is read from a file called an "edition". A full path can be given for the edition,
that is, a specification for the volume and folder in which the edition is located. The volume
can be another user's public folder or a network server. For example

If sys(113) ;; thatis, if Pubs and Subs available

Subscribe field SALESTOTAL { Fred's Mac:Public Folder:OMNIS-FredsApp-
Sales Total }
End If

If no edition name is given, the existing edition name is used, or if one does not already
exist, the default "library name-field name" is used.

The flag is set if the field is already subscribed to that edition or if the field is successfully
subscribed. If the field was formerly subscribed to a different edition, that subscription is
canceled, the new subscription set up and the flag set. If the command is used within a
reversible block, the edition is canceled when the command is reversed (but any former
subscription is not recreated if the command canceled one).

When a field is newly subscribed, none of the Subscriber options are s&ikscaibe
nowcommand must be used to update the field. If you want the edition to be updated
automatically, th&et subscriber optiorommand must be used.

Subscribe field CNAME {HD80:Public:Sales-Name}

Subscribe field CTOTAL {HD80:Public:Sales-Total}

Set subscriber options (Subscribe automatically) {CNAME,CTOTAL}

Enter data

Redraw windows

Cancel subscriber {CNAME,CTOTAL}

Chapter 5—Commands

Subscribe now ‘_

Reversible: NO Flag affected: YES
Parameters: File or field list
Syntax: Subscribe nowffile [field1] file[field2]...}]

This command updates the fields in the parameter list if they have been subscribed. The
field list can take a file name (for all fields in a file) or a range of fields, which includes a
range of fields in the order listed in the Field names window. If no list is given, all
subscriptions for the library are updated.

The flag is set if the command updates one or more fields successfully.
Subscribe field CNAME {HD80:Public:Sales-Name}

Subscribe field CTOTAL {HD80:Public:Sales-Total}

Enter data

Subscribe now {CNAME,CTOTAL}

Swap lists

Reversible: NO Flag affected: YES
Parameters: List or row name
Syntax: Swap listdist-name

This command swaps the definition and contents of the specified list with that of the current
list and sets the flag. After this command, the current list contains the fields and data which
were held in the specified list, and the specified list contains the fields and data which were
in the current list.

This command cannot be used to copy lists. To do thi€akeilate LIST2 as LIST1

; declare local vars LIST1 & LIST2 of List type

Set current list LIST1

Set main file {FNUMBERS}

Define list {NUM1,NUM2,BOOL1}

Build list from file

Swap lists LIST2

; LIST2 now contains definition and data from LIST1 (current list)
; LIST1 is now empty

Commands 419

420

Swap selected and saved

Reversible: NO Flag affected: YES

Parameters: Line number (can be calculation, default is current line)
O All lines

Syntax: Swap selected and saveAl[lines)] [{line-number}

This command swaps the Saved selection state and the Current selection state and sets the
flag. To allow sophisticated manipulation of data via lists, a list can store two selection
states for each line; the "Current" and the "Saved" selection. The Current and Saved
selections have nothing to do with saving data on the disk; they are no more than labels for
two sets of selections. The lists may be held in memory and never saved to disk: they will
still have a Current and Saved selection state for each line but they will be lost if not saved.
When a list is stored in the data file, both sets of selections are stored.

Swap selected and savaltbws the Saved selection state of the specified line (or All lines)
to be swapped with the Current set. You can specify a particular line in the list by entering
either a number or a calculation. TAk lines option swaps the selection status for all lines
of the current list. The following example selects the middle line of the list:
Set current list LIST1
Define list {LVAR1}
Calculate LVAR1 as 1
Repeat
Add line to list
Calculate LVAR1 as LVAR1+1
Until LVAR1=6
Select list line(s) {3}
Save selection for line(s) (All lines)
Deselect list lines (All lines)
Swap selected and saved (All lines)
Redraw lists

Chapter 5—Commands

Commands

Switch

Reversible: NO Flag affected: NO
Parameters: Expression or calculation
Syntax: Switchexpression

This command initiates a Switch method construct. You use a Switch statement to select a
course of action from a set of options based on the value of a variable, expression or
calculation. It is similar to ali—Else Ifconstruct although the performance of a Switch
construct tends to be faster.

The first line of the construction contains Bwitchcommand. This defines the variable,
expression or calculation on which the choice of action will depend. Followirgyitieh
command, th€asecommands provide values which, if matched with the expression
supplied in theSwitchline, cause the methods between case lines to be executed.

You can nest multiple Switch statements, and embed other conditional statementdfsuch as
Elseconstructs.

421

The following example builds a dataformat list for a graphs application. It uses the graph
major and minor types to build the correct list of data formats; the data formats are added to
the list usingAdd line to list but for brevity, some have been commented out.

: Build Datalist
; Declare parameter vars MajType, MinType and Dataformat
Set current list GraphDataformatList
Switch MajType
Case kGraphPie ;; MajType is Pie chart
Add line to list {("Value',0)}
Case kGraphSpecial ;; MajType is Special
Switch MinType
Case kHistogram
Add line to list {("Value',0)}
Case kSpectralMap
Add line to list {("Value',0)}
Add line to list {('Value+Label',1)}
Case kPolar
Add line to list {('"X+Y',1)}
Case kHighLowOpenClose,kDualYHighLowOpenClose
; Add data format(s) to list...
Case kContour
; Add data format(s) to list...
Default ;; MinType must be kScatter or kScatterDualY
; Add data format(s) to list...
End Switch
Case kGraph3D ;; MajType is 3D
Switch MinType
Case k3DScatter
; Add data format(s) to list...
Default ;; any other 3D minor type
; Add data format(s) to list...
End Switch
Default ;; MajType is kGraphArea, kGraphBars, or kGraphLines
; Add data format(s) to list...
End Switch

422 Chapter 5—Commands

Commands

You can write Switch statements that contain other constructs sifeBlss If statements.

Also note that if the Switch accepts one of a fixed number of possibilities and your method
has aCasecommand for each possibility, your method does not need a Default statement.
For example

Switch LV_Data
Case kFalse ;; LV_Data is a label
If ...
; do this
Else
; do this
End If
Case kTrue ;; LV_Data is data
If ...
If ...
Else ..
End If
Else
If ...
Else ..
End If
End If
End Switch

Test check data log

Reversible: NO Flag affected: YES
Parameters: O Perform repairs
Syntax: Test check data logRerform repairs)

This command tests if there are any reports of nonrepaired damage in the check data log. If
the Perform repairs option is not specified, the flag is set if there are any reports of
nonrepaired damage.

If the Perform repairs option is specified, an attempt is made to repair the damage. There
is no need for the check data log to be open. Furthermore, OMNIS automatically tests that
only one user is logged onto the data file (if not, the command fails with flag false), and
further users are prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will
be incremented at regular intervals. The command may take a long time to execute, and it is
not possible to cancel execution even if a working message with cancel box is open.

The command sets the flag if it completes the data repair successfully and clears the flag
otherwise. The command is not reversible.

423

424

; First do a check data to obtain list of problems
Quick check
Test check data log
If flag true
OK message {Problems found in data file}
Open check data log
End If

Test clipboard

Reversible: NO
Parameters: Field name
Syntax: Test clipboardfield-namé

Flag affected:

YES

This command tests whether the data on the clipboard is suitable for pasting into the
specified field or current selection. The command sets the flag to true if and only if there is
data on the clipboard "suitable" for pasting into the specified or current field. "Suitability"
here is defined by the standard type conversion built into OMNIS, that is, a text field has to
be presented with some text, and a picture field with something that can be handled as a
picture, for example, a bitmap, metafile, PICT, OLE object, and so on.

Test clipboard CVAR1
If flag true

Paste from clipboard CVAR1 (Redraw field)
End If

Chapter 5—Commands

Commands

Test data with search class

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Test data with search class

This command tests the record in the CRB against the current search class. It sets the flag if
the record passes the test or if there is no current search class. If the data does not fit the
current search class, the flag is cleared.

Test data with search classes the current search as the condition of the test which has
been set usin§et search namer Set search as calculation
; Declare local variable SCODE of Character type
Calculate SCODE as 'RT'
Set search as calculation {len(SCODE)>2}
Test data with search class
If flag false
OK message {Test failed, [SCODE] invalid}
End If

Test for a current record

Reversible: NO Flag affected: YES
Parameters: File class name
Syntax: Test for a current recordfile-name]

This command tests for the presence of a current record from a specified file class. The flag
is set if a current record for the file is found and cleared if not. The flag is also cleared if the
selected file is a memory-only or a closed file. The test is carried out on the main file if no
other file class is specified.

Test for a current record {FCLIENTS}

If flag false
OK message {No client record, locating first}
Find first

End If

Prepare for edit

Enter data

Update files if flag set

425

426

Test for a unique index value

Reversible: NO Flag affected: YES
Parameters: Field name (must be indexed)
Syntax: Test for a unique index value field-name

This command tests the specified indexed field for a unique value. The flag is set if the
current field value is a unique index value, and cleared if the value duplicates an existing
index value. In a multi-user situation, no account is made of field values in records held by
other work stations which are not yet updated to disk.

You useTest for a unique index vallmefore storing a new value in a file. In the following
example, the proposed new part number is tested against the existing file.

Calculate PART_NUM as 'RT100
Test for a unique index value on PART_NUM
If flag true
Update files
Else
OK message {Part number already exists}
Cancel prepare for update
Quit method
End If

Test for field enabled

Reversible: NO Flag affected: YES
Parameters: Field name (of window field)
Syntax: Test for field enablefleld-name

This command tests if the specified field on the top window instance is enabled, that is, if it
is not currently disabled withisable fieldsor by setting $enabled to kFalse. The flag is
always cleared if there are no window instances open or if the field does not exist.

Test for field enabled {Entryld}
If flag true
Disable fields Entryld
Else
OK message {Field 4 is disabled}
Enable fields Entryld
End If

or do it like this
If $cwind.$objs.FieldName.$enabled = kTrue

Chapter 5—Commands

Test for field visible

Reversible: NO Flag affected: YES
Parameters: Field name (of window field)
Syntax: Test for field visibldfield-name

This command tests whether a particular field is visible. If the specified field in the top
window instance is visible, that is, $visible is kTrue and the field has not been hidden with
Hide fields the flag is set. A field under another field or beyond the edge of the screen,
may be reported as visible and the flag set. The flag is always cleared if there are no
window instances open or if the field does not exist.

Test for field visible Entryld
If flag true
Hide fields FieldName
End If
or do it like this

If $Scwind.$objs.FieldName.$visible = kTrue

Test for menu installed

Reversible: NO Flag affected: YES

Parameters: Menu instance name

Syntax: Test for menu installefinenu-instance-name}

This command tests whether the specified menu instance is installed on the menu bar. The
flag is set if the menu instance is on the menu bar and cleared if it is not, regardless of

whether the menu instance is enabled or grayed out. The command does not apply to
hierarchical and popup menus.

Test for menu installed {REP1}
If flag false

Install menu MREPORTS/REP1
End If

Commands 427

428

Test for menu line checked

Reversible: NO Flag affected: YES
Parameters: Menu instance name
Line number
Syntax: Test for menu line checkedenu-instance-name/line-number

This command tests whether the specified line of a menu instance is checked. You specify
themenu-instance-namand thdine-numberof the menu line you want to test. The flag is

set if the specified line of the menu instance is checked, and cleared if the line is not
checked. The flag is always cleared if the menu instance is not installed on the menu bar.

You can check menu lines usiipeck menu lindJncheck menu lineemoves the check.
Install menu MREPORTS/repl

Test for menu line checked repl/5
If flag true
Uncheck menu line repl1/5
Else
Check menu line repl/5
End If

or do it like this
If $clib.$imenus.MENU.$objs.LineName.$checked = kTrue

Test for menu line enabled

Reversible: NO Flag affected: YES
Parameters: Menu instance name
Line number
Syntax: Test for menu line enabledenu-instance-name/line -number

This command tests whether the specified line of a menu instance is enabled. You specify
themenu-instance-namend themethod-numbeof the menu line you want to test. It sets

the flag if the specified line of the menu instance is enabled. The flag is cleared if the menu
instance is not installed on the menu bar.

This command may still return false if the current user has no access to the menu line or if
the line is disabled because there is no current record, evekmdigle menu lindas been
executed.

Chapter 5—Commands

You can disable or enable menus udigable menu lin@ndEnable menu line
Install menu MREPORTS/repl
Test for menu line enabled repl/3
If flag true
Disable menu line rep1/3
Else
Enable menu line rep1/3
End If

or do it like this
If $clib.$imenus.MENU.$objs.LineName.$enabled = kTrue

Test for only one user

Reversible: NO Flag affected: YES
Parameters: O All data files
Syntax: Test for only one use(All data files])

This command tests whether the current data file is being used by a single user, and if so
sets the flag.

If the All data files check box option is selected, all open data files are tested for a single
user. The flag is cleared if any one data file has more than one user.

If the flag is set, further workstations are prevented from logging on to the tested data file(s)
until the method containing the test command is terminated. The workstations will see a
padlock cursor until the method terminates.

OMNIS always sets the flag if the program is running in single user mode. Under Windows,
this means that the data is on a DOS volume without the SHARE command having been
run.

Test for only one user

If flag false
OK message {Sorry, option not allowed}
Quit method kFalse

End If

Do method INVOICES/Insert New

Commands 429

430

Test for program open A

Reversible: NO Flag affected: YES
Parameters: Program name
Syntax: Test for program opefprogram-name}

This command tests whether the specified program is running under Windows. The flag is
set if the specified program is running.

The program name must be the module name which is usually, but not necessarily, the same
as its executable file name. Under Windows 95, you need to specify the full pathname for
the program. Under Windows NT, the file PSAPI.DLL must be present in the OMNIS
directory or on the Windows path for this command to work. PSAPI.DLL is supplied in the
OMNIS directory of the Windows NT version of OMNIS Studio.

Test for program open {c:\excel\excel}
If flag false

Start program minimized {c:\excel\excel}
End If

Test for valid calculation

Reversible: NO Flag affected: YES
Parameters: Calculation
Syntax: Test for valid calculatiofcalculation}

This command lets you test a calculation before it is evaluated. It is essential to test strings
to be evaluated by treval(), evalf() andfld() functions before doing the evaluation.

The flag is set True if the calculation is valid.
Calculate CVAR1 as 'SALARY >= CVAR5'

Test for valid calculation {evalf(CVAR1)}
If flag true

Set search as calculation {evalf(CVAR1)}
End If

Find first on SALARY (Use search)

See theeval() function.

Chapter 5—Commands

Commands

Test for window open

Reversible: NO Flag affected: YES
Parameters: Window instance name
Syntax: Test for window opefwindow-instance-name}

This command tests if the specified window instance is open. If the window instance is
open, OMNIS sets the flag, otherwise the flag is cleared. Window instances are opened with
Open window instancer the $open() method.

Test for window open {winst1}
If flag false

Open window instance Mywin/winst1
End If

Test if file exists

Reversible: NO Flag affected: YES
Parameters: File name (full file name and path)
Syntax: Test if file exists{file-name}

This command tests if the specified file exists. The flag is set if the file exists. Otherwise, it
is cleared. You can use this command to prevent the user from overwriting existing files
with print files, and so on.

You cannot use this command to check for the existence of a data file if the data file is in
use by another workstation. U8pen data filefor this type of checking.

431

Switch sys(6)="M'

Case kTrue ;; for MacOS
Test if file exists {HD80:Work:Output file1}
If flag false
Set print file name {HD80:Work:Output file1}
Else

OK message {Overwriting file Output file1}
Set print file name {HD80:Work:Output file1}

End If
Default :; Under Windows, NT, or 95
Test if file exists {C\WORK\OUTPUT1.TXT}
If flag false
Set print file name {C:\WORK\OUTPUTL1.TXT}
Else

OK message {Overwriting file OUTPUT1.TXT}
Set print file name {C\WORK\QUTPUTL1.TXT}
End If
End Switch

Test if list line selected

Reversible: NO Flag affected: YES
Parameters: Line number (can be calculation, default is current line)
Syntax: Test if list line selectedljne-number}

This command tests the specified line of the current list and sets the flag if it is selected.
You can specify a particular line in the list by entering either a number or a calculation. If
the number is not specified, the test is performed on the current line of the list, that is, the
line number held iLIST.$line

The following example loads the current line of the list if it has been selected:

Set current list LIST1
Test if list line selected
If flag true

Load from list
Else

Quit method
End If

or do it like this
If LIST1.$line.$selected = kTrue

432 Chapter 5—Commands

Commands

Test if running in background

Reversible: NO Flag affected: YES
Parameters: None
Syntax: Test if running in background

This command tests if OMNIS is running in the background, that is, it sets the flag if
OMNIS isnotthe top application window.

The Windows environment and MacOS Finder both provide you with multi-tasking
facilities. When another program is running, with OMNIS in the background, you can
continue with tasks such as importing data although the processor's time becomes shared
between the current tasks. You can use this test to alter the behavior of the library when it
becomes the background task.

Test if running in background
If flag false

Open window instance WMONITOR
End If

433

Text:

Reversible: NO Flag affected: NO

Parameters: Text and/or variable
O Carriage return
O Line feed
O Platform newline

Syntax: Text: text

This command adds text to the global text buffer. Tévet: command supports leading and
trailing spaces and can contain square bracket notation, that is, you can include or add the
contents of a variable to the text buffer. You build up the text block usiriggthia text

blockand one or moréext: commands. Th€arriage return, Line feed, andPlatform

newline options add the appropriate character to the cufiexit line. When you have

placed ondext: line and you press Ctrl/Cmnd-N to create a new method lin&etkte

command is selected and the current carriage return and line feed options are copied to the
new method line automatically. You should end a block of text witEtitetext block

command, and you can return the contents of the text buffer usi@gethext block

command.

Note that in some cases fhext: command will not uncomment; for examplext:
[Carriage return] will uncomment fbext: <empty text>.

; Declare var Iv_TEXT of Character type

; Declare var lv_SUBTEXT of Character type

Calculate Iv_SUBTEXT as “"EXCELLENT command or filename!™

Begin text block

Text: Why doesn't DOS ever ;; includes trailing space

Text: say [lv_SUBTEXT] ;; includes contents of lIv_SUBTEXT

End text block

Get text block Iv_TEXT

; Iv_TEXT contains
Why doesn't DOS ever say "EXCELLENT command or filename!"

434 Chapter 5—Commands

Trace off

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Trace off

This command turns off trace mode at a point in a methodl'faee onfor more
information about trace mode and using the debugger.

Trace on

; this line is sent to the trace log ..
Trace off

; .. this line is not

Trace on

Reversible: NO Flag affected: NO
Parameters: [Clear trace log

Syntax: Trace on (Clear trace log)

This command sends all subsequent commands to the trace log and displays the current
command in the method editor. It lets you turn on trace mode at a point in a method where
you suspect that there may be a problem, or some code which is difficult to follow. In trace
mode, the topmost method design window is continually changed to show the command
being executed. Also when in trace mod&aae logis maintained; this contains the class
name and method name in the Item column and the command line text in the Data column,
for all methods which are executed in trace mode or single-stepped. Error messages,
breakpoints, and so on, which occur in trace mode are also entered in the trace log. The
Clear trace logoption deletes all existing entries before new lines are added to the log.

The trace log window is opened and brought to top eith€@mdmsn trace logon the method
editorOptions menu or by th®©pen trace loggommand. This window allows the trace log

to be viewed, cleared or printed, and lets you alter the maximum number of lines in the log.
Double-clicking on a line in the trace log causes a method design window to be opened or
brought to the top with the appropriate command displayed. If Shift is pressed when double-
clicking, a new method design window is opened in preference to changing the identity of
the class displayed in the existing method design window.

If the double-clicked line in the log is a field value line, the value window for that field is
opened. The trace log is not adjusted when methods are modified. This means that trace log
lines may point to the wrong command or no command if the class containing that method
has been modified.

Commands 435

Trace on

; this line is sent to the trace log ..
Trace off

;.. this line is not

Translate input/output 3!
Reversible: YES Flag affected: NO

Parameters: O Enabled

Syntax: Translate input/output{Enabled)

This command converts text between ANSI and ASCII when you import or export/print
text, when you check tHenabled option. Windows applications such as OMNIS use the
ANSI character set which differs from the extended ASCII used by non-Windows DOS
programs and DOS hardware. This can cause text containing accented and other special
characters with ASCII values greater than 127 to be exported or printed incorrectly when
the normal Windows drivers are bypassed.

When theEnabled option is turned on, text exported or printed to port, clipboard, file or
TTY printer is converted from ANSI to extended ASCII. Conversely, imported text is
converted from ASCII to ANSI. The command has no effect when printing using the
standard Windows printer drivers except for the Generic TTY driver.

If you execute the command winabled unchecked, text conversion is turned off.

Send to file

Set print file name {OUT.TXT}

Translate input/output (Enabled)

Print report

Translate input/output

: Turns off the translation since Enabled is not checked

Transmit text to port

Reversible: NO Flag affected: YES
Parameters: Text

O Add newline
Syntax: Transmit text to port(Add newline]) {text}

This command sends text to a port; for example, you can send printer control characters. To
transmit control characters, you can usectng) function inside square brackets. For
example]chr(27,14)] sends escape 14.

The Add newline option enables you to send end of line characters after each line of text.

436 Chapter 5—Commands

An error occurs and the flag is cleared if the port has not been selected or if the user presses
Ctrl-Break/Cmnd-period while waiting for the output buffer to be emptied.

When you use a printer connected to the port, this command lets you send escape codes to
control print characteristics.

Set port name {1 (Modem port)}

Set port parameters {1200,n,7,2}

Transmit text to port {[chr(14)]}

Print report

Close port

Transmit text to print file

Reversible: NO Flag affected: YES
Parameters: Text

O Add newline
Syntax: Transmit text to print file(Add newling)) {text}

This command sends text to a print file, for example, you can send printer control
characters. To transmit control characters, you can ushtfjdunction inside square
brackets. For examplghr(27,14)] sends escape 14.

The Add newline option causes OMNIS to add end of line characters after each line of text.

An error occurs if no print file has been selected.

Set print file name {output.prn}

Transmit text to print file {[chr(27,14)]}
Print report

Close print file

Commands 437

438

Uncheck menu line

Reversible: YES Flag affected: NO
Parameters: Menu instance name
Line number
Syntax: Uncheck menu linenenu-instance-namiéine-number

This command removes the check mark on the specified line of a menu instance. No action
is taken if there is no check mark or the menu instance is not installed. You specify the
menu-instance-namend thdine-numberof the menu line you want to uncheck.

If you useUncheck menu linin a reversible block, the specified menu line is checked again
when the method terminates.

; Help menu is installed as mHelpl menu instance
Test for menu line checked mHelp1/6
If flag true
Uncheck menu line mHelp1/6
Calculate HELP as 0
Else
Check menu line mHelp1/6
Calculate HELP as 1
End If

or do it like this
Do $clib.$imenus.MENU.$objs.LINE.$checked.$assign(kFalse)

Unload error handler

Reversible: NO Flag affected: YES
Parameters: Number or name/number (of custom menu method)
Syntax: Unload error handlemjienu-naméhumber [{method-namd}

This command unloads the specified error handler (a method is taken as its parameter). If
there are multiple error handlers at that method, they are all unloaded. The flag is set if an
error handler is unloaded. Seead error handlefor more information about error

handlers.

Unload error handler Codel/HndIrl
Load error handler Codel/HndIr2

Chapter 5—Commands

Commands

Unload event handler

Reversible: NO Flag affected: NO

Parameters: Library name
Routine name
Parameters list

Syntax: Unload event handlelirary-namé]routine-name
[(parameter],parameter?...)]

This command unloads the specified event handler or, if no handler is specified, all event
handlers. If none exists, no action is taken. An event handler is always unloaded when the
library is closed or when the program quits. Sead event handleior more information

on event handlers.

Unload external routine

Reversible: NO Flag affected: YES

Parameters: Library name
Routine name
Parameters list

Syntax: Unload external routindiprary-namé]routine-name
[(parameter],parameter?...)|

This command unloads the specified external code from memory. If it is not already loaded
or is not found, the flag is cleared and no action takes place. If no external is specified, all
externals are unloaded. All loaded external routines are unloaded when the library is closed
or when the program quits. Skeead external routinéor more information on external

routines.

Unload external routine {mathslib/sqgroot}

439

Until break

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Until break

This command terminates a repeat loop if the break command (Ctrl-Break/Cmnd-period) is
detected unless the break key itself is turned off @iable cancel test at loopgntil
breakdoes not perform a test. You can terminate a repeat loopBigag to end of loop

within the loop.

Set main file {f_prices}
Disable cancel test at loops
Repeat ;; only way out of this loop is to enter a price of zero!
Open window instance W_enter_price
Enter data
If PRICE=0
Break to end of loop
End If
Until break

440 Chapter 5—Commands

Until calculation

Reversible: NO Flag affected: NO
Parameters: Calculation
Syntax: Until calculation

This command terminatesRepeat—Untikonditional loop specifying a calculation as the
condition. The calculation is evaluated at the end of the loop that continues if the derived
value is zero.

; This method prints 10 messages
Calculate LVAR1 as 1
Repeat
OK message {Loop number [LVAR1]}
Calculate LVAR1 as LVAR1+1
Until LVAR1>=11
; Loop ends when LVAR1 >=11

Until flag false

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Until flag false

This command terminates tRepeat—Untikonditional loop if the flag is false; execution
continues with the command following thiatil. If the flag is true, execution continues
with the command following thRepeat

The following method uploads data to a server, and uBepaat-Until flag falseonstruct
to select the records in turn, until there are no more records.

; FILENAME and TABLE are passed to this method
Set main file {[FILENAME]}
Find first
If flag true
Repeat
Working message (High position) {Inserting...}
Perform SQL: Insert into [TABLE] inserthnames([FILENAME])
If flag false
Do method ErrorHandler
End If
Next
Until flag false
End If

Commands 441

Until flag true

Reversible: NO Flag affected: NO
Parameters: None
Syntax: Until flag true

This command terminates tRepeat—Untikonditional loop if the flag is true; execution
continues with the command following thikatil command. If the flag is false, execution
continues with the command following tRepeatommand.

Repeat
Working message (Repeat count)
Yes/No message {End the loop?}
Until flag true

Update data dictionary

Reversible: NO Flag affected: YES

Parameters: [Test only
File or list of files (the default is all files)

Syntax: Update data dictionaryTest only) [{file1][,file2]...}]

This command updates the data dictionary for the specified file or list of files. The data
dictionary is a copy of the file class field definitions and is stored in the data file. The
command lets you write minor file class changes to the data dictionary. These minor
changes do not require data reorganization, and include changes such as adding new fields,
altering field names and altering field lengths.

Update data dictionarypdates the data dictionary for the specified list of file classes. If
you omit a file name or list of fileg|l the files with slots in the current data file are
updated.

If a specified file name does not include a data file name as part of the notation, the default
data file for that file is assumed. If the file is closed or memory-only, the command does not
execute and returns with flag false.

If the Test only option is specified, no updating is actually carried out, and the flag is set if
at least one file in the data dictionary needs updating.

442 Chapter 5—Commands

Commands

Certain changes made to a file class (that is, changes in indexes, field type changes and
changes in file connections) require data reorganization. In this caseUpsiate data
dictionaryto keep the file class and the data file "in step" will be inappropRai@ganize
datalets you test whether a data file needs reorganization as well as to reorganize it if
necessary.

Reorganize data (Test only)
If flag false
Update data dictionary
; used when only minor changes to file class(es) have been made

Else

Yes/No message {Data needs reorganizing; do it?}

If flag true

Reorganize data

End If
End If
Update files
Reversible: NO Flag affected: YES
Parameters: O Do not cancel pfu (prepare for update)
Syntax: Update files (Do not cancel pfy)

This command writes the records in the current record buffer to disk and cancels the
Prepare for... mode. You must execute the command when OMNIS is in a Prepare for
update mode otherwise an error occurs.

If a warning error codkerrUngindexor kerrNonullis returned during the execution of this
command, the Prepare for update mod®ixanceled. This means that you can check for
these errors and recover without losing the data the user has already typed in. In fact, if you
issue a newrepare for..command, OMNIS will reread records, and any data that is

already in the CRB will be lost.

Open window instance W_addresses
Prepare for edit
Enter data
If flag true
Update files
Else
OK message {Files not updated, data invalid}
End If

The Do not cancel pfuoption prevents the command from canceling Prepare for update
mode. Thus, you can make more changes to the data, the multi-user locks remain in place,
and anothetpdate filescan be executed, for example

443

444

Open window instance W_addresses

Prepare for edit

Enter data

If flag true
Update files (Do not cancel pfu)
Calculate FCODE as 'New code'
OK message {Code changed}
Update files

End If

The following example inserts an invoice (in the parent file) and a list of related invoice
items (in the child file). Th®o not cancel pfuoption ensures that the parent record
remains locked until complete.

Set main file {FINVOICE}
Prepare for insert
Enter data
Update files (Do not cancel pfu)
Set main file {FITEMS}
For each line in list from 1 to $linecount step 1
Prepare for insert
Load from list
Update files (Do not cancel pfu)
End For
Update files

TheUpdatecommand causes the indexes in the files to be re-sorted. Thus, in multi-user
mode, the files are locked whilépdate filess executing. You can control this file locking
by runningDo not wait for semaphorefor example
Wait for semaphores
Prepare for edit
Enter data
Do not wait for semaphores
If flag true
Repeat
Working message {Waiting for file locks}
Update files
Until flag true
End If

WhenDo not wait for semaphoras active Update filesreturns flag false and does nothing
if the file is locked.

Chapter 5—Commands

Commands

Update files if flag set

Reversible: NO Flag affected: YES
Parameters: [Do not cancel pfu (prepare for update)
Syntax: Update files if flag set(Do not cancel pfg)

This command writes the current values in the current record buffer to disk if the flag is set,
that is, true. This is a variation on thedate filescommand and is equivalent to:

If flag true
Update files
End If

When the command followsnter data the Prepare for update mode is canceled, and the
record is stored on disk if the user clicks OK or presses the Return/Enter key.

Use event recipient 4
Reversible: NO Flag affected: YES

Parameters: Recipient tag

Syntax: Use event recipiedtecipient-tag}

This command sets the event recipient by specifying the recipient tag. The named event
recipient must be currently available on the network; that is, its name must be on the Apple
Application menu.

When OMNIS is launched, the recipient defaults to OMNIS, that is, events are sent to itself.
Similarly if you use this command without a parameter, the recipient reverts to OMNIS.

The following example shows the difference betwden event recipientvhich is used
with a tag previously assigned by the user Witbmpt for event recipienandSet event
recipient which takes a local application name as a parameter, and turns it into a recipient
tag.

Prompt for event recipient {MyApp1}

; Prompt user and select application do something with '"MyApp1'

Set event recipient {Microsoft Excel}

; This is the name of a current application, as shown on the

; Apple Application menu

; do something in 'Microsoft Excel' for example

Use event recipient {MyApp1}

; go back to the tagged recipient,

; previously prompted to do something else.

; Finally go back to OMNIS by resetting recipient with no prompt

Use event recipient

445

446

Variable menu command

Reversible: NO Flag affected: NO

Parameters: Command option (see below)
List of file and/or field names

Syntax: Variable menu commanaption {fileffield1][,file[field2]...}

This command performs one of the Variable context menu options on the specified field or
list of fields. You can specify one of the following Variable menu options.

Set break on variable change Remove from watch variables list
Clear break on variable change Send value to trace log

Set break on calculation Send minimum to trace log

Clear break on calculation Send maximum to trace log

Store min & max Send all to trace log

Do not store min & max Open value window

Add to watch variables list Open values list

You use the Variable menu to examine the value of fields and variables. Normally, you
open the Variable menu by right-button/Ctrl-clicking on a variable name in the method
editor, the Catalog, or anywhere else in OMNIS. The list of field names is entered in any of
the following ways (including a mixture of file class and field names):

Fieldnamel,Fieldname2,Fieldname3

;or

FileName

: includes all the fields in the file class
Filel.Fieldnamel,File5

; includes Fieldnamel (from a file other than filename5)
; and all the fields in filename5.

You can select one of the following options:

Set break on variable changeets a variable change breakpoint for each variable in the
list.

Clear break on variable changeclears any variable change breakpoint for each variable in
the list. If no variable names list is specified, all current variable change breakpoints are
cleared.

Set break on calculationsets a calculation breakpoint for each variable in the list. You can
set the calculation for each variable usB®j break calculatianSetting calculation breaks
for more than a very few variables will cause methods to run very slowly.

Chapter 5—Commands

Clear break on calculationclears any variable change breakpoints for each variable in the
list. If no variable names list is specified, all current calculation breakpoints are cleared.

Store min & max causes minimum and maximum values to be stored for each variable in
the list.

Do not store min & maxclears ‘Store min and max’ mode for each variable on the list. If
no variables are specified, all current ‘Store min and max’ are cleared.

Add to watch variables listmarks each variable on the list as a watch variable.

Remove from watch variables listmarks each variable on the list as not watched. If no
variables are specified, all variables are marked as not watched. Note that variables with
breakpoints or with ‘Store min and max’ mode set always appear in the watch variables list.

Send value to trace logdds a line to the trace log for each variable on the list. If no
variables are specified, all values for all variables on the watch variables list are sent to the
trace log.

Send minimum to trace logadds a line to the trace log for each variable on the list for
which ‘Store min and max’ is set. If no variables are specified, the minimum values for all
variables for which ‘Store min and max’ is set are sent to the trace log.

Send maximum to trace logadds a line to the trace log for each variable on the list for
which ‘Store min and max’ is set. If no variables are specified, the maximum values for all
variables for which ‘Store min and max’ is set are sent to the trace log.

Send all to trace logadds a value line to the trace log for each variable on the list, and adds
minimum and maximum line(s) to the trace log for each variable on the list for which ‘Store
min and max’ is set. If no variables are specified, this is carried out for all appropriate
variables on the watch variables list.

Open value windowopens a value window for each variable on the list, or for every
variable on the watch variables list if no variables are specified. There is a limit on the
number of windows that you can open at once.

Open values listopens the values list for each of the variable types given in the command
parameters. For exampMariable menu command: open values list {LVAR1, Locall}
opens two values lists, one for Hash variables, the other for Local variables. There is one
values list for each file class, so if more than one variable name in a particular file class is
specified the values list for that file will only be opened once. There is also a limit on the
number of windows that you can open at once.

Commands 447

448

Wait for semaphores

Reversible: YES Flag affected: NO
Parameters: None
Syntax: Wait for semaphores

This command causes all the commands which set semaphores to wait with a lock cursor
until the semaphores for the required records are available.

When a library is first selected/ait for semaphoreis automatically selected to ensure
compatibility with existing libraries. It causes all the commands which set semaphores to
wait with a lock cursor until the semaphore is available then return with the flag set, or to
wait until the user cancels with a Ctrl-Break/Cmnd-period then return with a flag clear.

Semaphores

Semaphores are internal flags or indicators set in the data file to show other users that the
record has been required elsewhere for editing. Semaphores are set only when running in

multi-user mode, that is, the data file is located on a networked server, a Mac volume or on
a DOS machine on which SHARE has been run.

The commands which set semaphoresPaepare for editPrepare for insertUpdate files
andDeletg and also, if pfu mode is o8jngle file find Load connected recordblext,
PreviousandSet read/write filesAuto finds on windows always wait for semaphores.

TheEdit/Insert commands from th€Eommandsmenu always wait for a semaphore as do
automatic find entry fields.
Wait for semaphores
Prepare for edit ;; Waits for record if locked by another user
Enter data
Do not wait for semaphores
If flag true

Update files

If flag false

OK message {File was locked, update failed}

End If

End If

Chapter 5—Commands

Commands

While calculation

Reversible: NO Flag affected: NO
Parameters: Calculation
Syntax: While calculation

This command starts\While—End Whildoop that continues while a calculated condition
remains true. When the condition is not satisfied the method jumps out of the loop and the
first command after the closiriend Whileis executed. A loop that begins wittWhile

command must terminate with &md Whileotherwise an error occurs.

While PAID ='YES'
Do method DeleteOldRecords
Next

End While

While flag false

Reversible: NO Flag affected: NO
Parameters: None
Syntax: While flag false

This command starts\While—End Whildoop that continues while the flag is false. While

the condition is false, a command or a series of commands is executed until the condition
becomes true, at which time the first command after the cl&iddWhileis executed. A

loop that begins with ®hile command must terminate with Bnd While otherwise an

error occurs.

Do not wait for semaphores
If flag true
Update files
While flag false
Working message {Waiting for file locks}
Update files
End While
End If

449

While flag true

Reversible: NO Flag affected: NO
Parameters: None
Syntax: While flag true

This command starts\While—End Whildoop which continues while the flag is true. While
the condition is true, a command or a series of commands is executed until the condition
becomes false, at which time the first command after the closing End While command is
executed. A loop that begins with/#¢hile command must terminate with BEnd While
otherwise an error occurs.

While ...
While ...
[User commands]
End While
End While

In the following example, the loop continues until Mext (Exact matchjommand fails to
find a match.
Calculate LVAR1 as 0
Find on CODE (Exact match) {BR01}
While flag true
Calculate LVARL as LVAR1 +CBAL
Next (Exact match)
End While

Working message

Reversible: NO Flag affected: NO
Parameters: [High position
O Large size

O Cancel box
O Repeat count
Message (text)

Syntax: Working messageg[High positiorj[, Large siz§{, Cancel bok
[,Repeat coun)] [{messagd}

This command displays a message, usually to indicate that the computer is working or
waiting for input. An alternating icon indicates that the computer is busy. A working
message automatically closes when the method quits and control returns to the user.

For greater emphasis, you can display the working messageligfitposition, and also
increase the size of the message box by checkirigatige sizeoption.

450 Chapter 5—Commands

If a working message is placed in a loop witBancelbutton, pressing the Escape/Cmnd-
period or clicking on Cancel quits all methods. However, if you first ex&igable cancel
test at loopsyou can implement an orderly exit.

Begin reversible block
Disable cancel test at loops
End reversible block

Repeat
Working message (Cancel box)
If canceled
Break to end of loop
End If
Do LVAR1+1

Until flag true
OK Message {All done}

If Disable cancel test at loopis executed before the loop, the cancel is detected only on
executing th&Vorking message

A Repeat countoption is available withWorking messagend displays the value of an
internal counter which indicates the number of times a partieéteking messageas been
encountered. If the command is iRepealoop, the counter increments at each pass of the
loop.
Repeat

Working message (Repeat count) {FIELD = [FIELD]}

Redraw working message

Do method DeleteOldRecords
Until DONE =1

XOR selected and saved

Reversible: NO Flag affected: YES

Parameters: Line number (can be calculation, default is current line)
O All lines

Syntax: XOR selected and save@l lines)| [{line-number}

This command performs a logical XOR of the Saved selection with the Current selection.
To allow sophisticated manipulation of data via lists, a list can store two selection states for
each line; the "Current" and the "Saved" selection. The Current and Saved selections have
nothing to do with saving data on the disk; they are no more than labels for two sets of
selections. The lists may be held in memory and never saved to disk: they will still have a
Current and Saved selection state for each line but they will be lost if not saved. When a list
is stored in the data file, both sets of selections are stored.

You can specify a particular line in the list by entering either a number or a calculation.

Commands 451

452

The XOR selected and savedmmand performs a logical XOR (exclusive OR) on the

Saved and Current state and puts the result into the Current selection. Hence, if either of the
Current and Saved states is selected, the Current state becomes selected, but if both states
are equal, the resulting Current state will become deselected.

Logic Table (S=selected, D=deselected)

Saved Current Resulting Current State

S S D
D S S
S D S
D D D

TheAll lines option performs the XOR for all lines of the current list. The flag is set by this
command. The following example selects the middle line of the list:
Set current list LIST1
Define list {LVAR1}
Calculate LVAR1 as 1
Repeat
Add line to list
Calculate LVAR1 as LVAR1+1
Until LVAR1=6
Select list line(s) (All lines)
Save selection for line(s) (All lines)
Invert selection for line(s) {3}
XOR selected and saved (s) (All lines)
Redraw lists

Chapter 5—Commands

Yes/No message

Reversible: NO Flag affected: YES
Parameters: Title (for message box)

O Icon

O Sound bell

O Cancel button
Message (text)

Syntax: Yes/No messagdifle] [([Icon] [,Sound bell
[,Cancel buttof)] {message}

This command displays a message box containing the specified message and p¥®@sdes a
and aNo pushbutton. Also, you can includé€Cancelbutton, and add a shditie for the
message box. For greater emphasis, you can selbxirafor the message box (the default
“info” icon for the current operating system), and you can force the system bell to sound by
checking theSound bellcheck box.

When the message box is displayed method execution is halted temporarily; it remains open
until the user clicks on one of the buttons before continuingYEsdéutton is the default
button and can therefore be selected by pressing the Return key.

The number of lines displayed in the message box depends on your operating system, fonts
and screen size. In the message text you can force a break between lines (a line return) by
using the notation ‘//".

You can insert ¥es/No messagg any appropriate point in a method. If the user clicks the
Yes button, the flag is set; otherwise, it is cleared. You can usasthpeancelled(junction
to detect if the user pressed the Cancel button.

Yes/No message (Cancel button) {Do you want to proceed?}
If flag false
If msgcancelled()
; user chose Cancel
else
; user chose No
End If
Else
; user chose Yes
End If

Commands 453

Chapter 6—External
Commands

454

This chapter describes the external commands supplied with OMNIS. They are available for
all platforms except where indicated. All the external commands appearknttéraal
Commands. group at the bottom of the command list in the method editor. Many of them
start with an appropriate prefix which makes them easier to find; for example, the Lotus
Notes commands begin with NSF, all the FTP ones begin with FTP, and so on.

You can extend the functionality of OMNIS by adding your own externals, or external code
modules. You can implement these as external commands or functions which get called
from within OMNIS. Under Windows, they are written as DLLs or code resources under
MacOS. To use an external, you must place it in the EXTERNAL folder under the main
OMNIS folder; the commands supplied with OMNIS are placed there by default ready for
you to use.

Chapter 6—External Commands

External Commands
Call DLL 3

Reversible: NO Flag affected: NO

Parameters: Library name (the DLL)
Procedure name
Parameters list
Return field

Syntax: Call DLL (library-name, procedure-nanm{gparameterl...)
[returnsreturn-field]

This command calls the registered DLL. Tieary-nameis the name of the DLL
containing the procedure specifiedfpcedure-nameYou can add field parameters that
are pushed onto the stack before the DLL is called.

The following example opens the Windokige Manager.
Do method OpenExe (‘winfile.exe',3)

; OpenExe ;; called method
; Declare Parameter APPNAME (Character 255)
; Declare Parameter INSTRUCTS (Short integer (0 to 255))
Register DLL ('KRNL386.EXE','WinExec','ICI") returns RESULT
Call DLL ('KRNL386.EXE','WinExec',APPNAME,INSTRUCTS) returns RESULT
If RESULT < 18
Do method Errors

End If

CGIDecode

Reversible: NO Flag affected: NO
Parameters: Stream

Returns: DecodedField

Syntax: CGIDecode§trean

CGIDecode can be used to turn CGl-encoded information back into plain text. It is the
converse of CGIEncode. CGl-encoded information is sent over the HTTP protocol in a
format that preserves special characters in URLs that delimit CGls and arguments (that is,
fields on Web forms). Errors are reported via the WebDevError callback mechanism.

streamis an OMNIS Character or Binary field containing the information to decode.

External Commands 455

456

DecodedFields an OMNIS Character or Binary field that holds the resulting CGIl-decoded
representation of thetreamargument.

Note: The HTTPParse external command automatically performs CGI decoding. Results
from HTTPParse are already CGl-decoded.

CGIEncode

Reversible: NO Flag affected: NO
Parameters: stream

Returns: EncodedField

Syntax: CGIEncodegtream

CGIEncode changes text into a form acceptable as an argument to a Web server CGI. The
HTTP protocol specifies that the text of an argument must be alphanumeric plus some other
special characters, and does not allow spaces. Certain characters that separate arguments
from each other and their values must be specially quoted.

The same rules apply to some HTTP header fields that are normally hidden.

Use this call when you are creating or decoding the text of a URL involving a CGl call or a
header attribute.

Note: The HTTPHeader and HTTPPost external commands automatically encode or
decode information presented to a Web server. You need not pre-encode arguments if you
are using those external commands.

Streamis an OMNIS Character or Binary field containing the information to encode.

EncodedFields an OMNIS Character or Binary field that holds the resulting CGl-encoded
representation of thetreamargument.

Errors are reported via the WebDevError callback mechanism.

Change working directory I

Reversible: NO Flag affected: NO
Parameters: Path name

Return field
Syntax: Change Working Directorgpath-name)

returnsreturn-field

This command changes the current directory in use under Windows. Wild cards are not
allowed with this command. Change working directory only switches directories on the
same drive, not between drives. It returns any error code (shown at the end of this chapter),
or zero if none.

Change working directory ("C:\OMNIS\External")

Chapter 6—External Commands

Close file

Reversible: NO Flag affected: NO

Parameters: Reference number or DOS file handle
Return field

Syntax: Close file(refnum) returnsreturn-field

This command closes the file referred to by the file reference number or DOS file handle
specified inrefnum All open files are automatically closed when OMNIS quits, but not
when the current OMNIS library is closed. You should close files correctly.

It returns any error code (shown at the end of this chapter), or zero if none.

CMAttach

Reversible: NO Flag affected: NO

Input Parameters: content, ctntID, ctntType, encodingType, mailText
Output Parameters: MIMEcontent

Returns: Status(0 if no error, or a non-zero if error)

Syntax: CMAttachcontentMIMEContenf,ctntID,ctntType

encodingType,mailText

CMAttach creates one MIME object for the specified content. This is the quick and simple
way to compose a single-part MIME. To compose multipart MIME, use CMMCBegin,
CMMinsert, and CMMCENd.

Input Parameters
content OMNIS Binary variable

contentcontains readable text or any binary content. For example, it can be the content of a
word-processing document or the content of an image (suclyassIF).

ctntID OMNIS Character variable containing up to 255 characters

ctntID is an optional parameter describing the content that is being attached. Describe the
content in any way you want.

ctntType OMNIS Character variable containing up to 255 characters

ctntTypeis an optional parameter specifying the type of content in the file. The default
ctntTypeis application/octet-stream. See the Content Header Types section for other content
types.

encodingType OMNIS Character variable

encodingTypés an optional parameter specifying the type of encoding to use to encode the
content The default encoding type is base64. The supported encoding types are base64 and
quoted-printable. For details about using the supported encoding types, see the section

External Commands 457

458

Processing Email Content.

The base64 encoding type is generally used for encoding of all binary data. It is considered
much safer than the uuencode/uudecode format. The quoted-printable encoding type is used
for encoding non-standard ASCII text.

mailText OMNIS Binary variable

mailtextis an optional parameter containing the ASCII text of an email body only. The
default content type is text/plain. The default content transfer encoding is quoted-printable.

Output Parameters
MIMEContent OMNIS Binary variable

MIMEContentis the composed, MIME-formatted object derived from the original content.
Use the SMTPSend command to send this MIME content.

CMMCBegin

Reversible: NO Flag affected: NO

Input Parameters: ctntiD

Output Parameters: CSP

Returns: Status(0 if no error, or a non-zero if error)
Syntax: CMMCBegin(CSH,ctntID])

CMMCBegin begins MIME composition to compose a MIME object. This command is
typically used to compose multipart MIME objects. However, you can also use it to
compose single-part MIME content.

Input Parameters

ctntID OMNIS Character variable containing up to 255 characters
ctntID is an optional character string describing the content that is being composed.
Output Parameters

CSP OMNIS Character variable

CSP(Content State Property) is a handle that related commands use. You must use the same
CSP for each composition process. For example, if you use CMMCBegin, CMMInsert, and
CMMCENd to compose a given multipart message, the same CSP is used throughout. A
different message can use a different CSP.

Chapter 6—External Commands

CMMCENd

Reversible: NO Flag affected: NO

Input Parameters: CSP

Output Parameters: MIMEContent

Returns: Status (O if no error, or a non-zero if error)
Syntax: CMMCENd(CSEMIMEconten)

CMMCENd ends the MIME composition process that was started with CMMCBegin.
CMMCENd generates a completed and final MIME object.

Input Parameters
CsSP OMNIS Character variable

CSP(Content State Property) is the handle that CMMCBegin generated. You must use the
same CSP for each composition process. For example, if you use CMMCBegin,
CMMinsert, and CMMCENd to compose a given multipart message, the same CSP is used
throughout. A different message can use a different CSP.

Output Parameters
MIMEContent OMNIS Binary variable

MIMEContentis the output of the completed MIME object. You can use the Internet email
OMNIS SMTPSend command to send this MIME content.

CMMGBegin

Reversible: NO Flag affected: NO

Input Parameters: content

Output Parameters: CSP

Returns: Status(0 if no error, or a non-zero if error)
Syntax: CMMGBegin(CSP,content

CMMGBegin begins MIME decomposition by preparing content into a CSP (Content State
Property) structure that defines parts and levels. The generated CSP value is used by
CMMGet to retrieve and decode, if necessary, MIME body parts. You must use CMMGEnNd
to free up and release resources when the process is complete.

Input Parameters
content OMNIS Binary variable

contentis the MIME content object. The content object can contain either an entire email
consisting of a MIME attachment, just the MIME portion of an email, or a MIME object
that was previously generated by Content Manager.

External Commands 459

460

Output Parameters
CSsP OMNIS Character variable

CSP(Content State Property) is a handle that other related extensions use. You must use the
same CSP for each decomposition process. For example, if you use CMMGBegin and
CMMGENd to decompose a given multipart message, the same CSP is used throughout. A
different message can use a different CSP.

CMMGENd

Reversible: NO Flag affected: NO

Input Parameters: CSP

Output Parameters: [None]

Returns: Status(0 if no error, or a non-zero if error)
Syntax: CMMGENd(CSP

CMMGENd completes the decomposition process that was started by CMMGBegin.
CMMGENd cleans up all resources (such as memory) during the decomposition process.

Input Parameters
CSP OMNIS Character variable

CSP(Content State Property) is the handle that CMMGBegin generated when the current
process begarY.ou must use the same CSP for each decomposition process. For example, if
you use CMMGBegin and CMMGENd to decompose a given multipart message, the same
CSP is used throughout. A different message can use a different CSP.

CMMGet

Reversible: NO Flag affected: NO

Input Parameters: CSP, partNum, levelNum

Output Parameters: content, ctntDisposition

Returns: Status (O if no error, or a non-zero if error)

Syntax: CMMGet(CSPRcontenf, partNumlevelNumctntDispositior)

CMMGet gets and decomposes the next body part in multipart or single-part content. Prior
to this, CMMGBegin starts the decomposition process.

The body parts are retrieved sequentially (from the first part) until the last body part has
been retrieved, or you can retrieve specific body parts by specifying the part or level
numbers.

Note: When CMMGet is called after retrieving the last body part, it retrieves the last body
part again. Be sure to use CMQuery to determine the number of body part. Then keep count
during the CMMGet operation.

Chapter 6—External Commands

Input Parameters
CSsP OMNIS Character variable

CSP(Content State Property) is the handle that CMMGBegin generated when the current
process begarY.ou must use the same CSP for each decomposition process. For example, if
you use CMMGBegin and CMMGENd to decompose a given multipart message, the same
CSP is used throughout. A different message can use a different CSP.

partNum OMNIS integer variable

partNumis an optional parameter used to retrieve a specific body part within a multipart
MIME.

levelNum OMNIS integer variable

levelNumis an optional parameter specifying the specific level within a multilevel MIME.
MIME content containing embedded MIME content is also knowmaltilevel MIME
content.

Output Parameters
content OMNIS Binary variable

contentis the output of the body part retrieved with all the MIME headers removed. The
content is automatically decoded if necessary.

ctntDisposition OMNIS Character variable

ctntDispositionis an optional parameter.dbntentcontains the Content-disposition header
and a specified filename, as in:

Header Value

Content-disposition picture.jpg

this parameter returns the filename associated with the Content-disposition header. If
ctntDispositionis specified, and the content does not include the Content-disposition header
or the filename value is blangtntDispositionreturns the value #NULL#.

External Commands 461

CMMInsert

Reversible: NO Flag affected: NO

Input Parameters: CSP, content, ctntID, ctntType, encodingType, ctntDisposition

Returns: Status (O if no error, or a non-zero if error)

Syntax: CMMiInsert(CSRcontentctntID,ctntType,encodingType
ctntDisposition)

CMMiInsert inserts content to be composed as a MIME body part in a process started by
CMMCBegin. During the CMMInsert operation, the necessary MIME headers are added
and the content is encoded if specified or required.

Input Parameters

CSP OMNIS Character variable

CSP(Content State Property) is the handle that CMMCBegin generated.
content OMNIS Binary variable

contentis the content to be composed into MIME format and inserted into the current
MIME object. Content can be any readable text or binary data, such as a Microsoft Word
document or a GIF image.

ctntID OMNIS Character variable containing up to 255 characters
ctntID is an optional character string describing the content.
ctntType OMNIS Character variable containing up to 255 characters

ctntTypeis an optional parameter specifying the type of contentcirti®@ypedefault is
text/plain; charset=us-ascii, for a plain text file.

encodingType OMNIS Character variable

encodingTypés an optional parameter specifying the type of encoding. The supported
encoding types are base64 and quoted-printableefit@dingTypelefault is quoted-
printable,which is used for encoding non-standard ASCII text. The base64 encoding type is
generally used for encoding of all binary data and is considered much safer than the
uuencode/uudecode format.

ctntDisposition OMNIS Character variable containing up to 255 characters

ctntDispositionis an optional parameter describing how content should be handled by your
local email system. For example, if you specify a string containing a full pathname your
email system may attempt to save the content into the same location as the pathname
specifies.

462 Chapter 6—External Commands

CMQuery

Reversible: NO Flag affected: NO

Input Parameters: content

Output Parameters: MIMEtype, numParts, numLevel

Returns: Status (O if no error, or a non-zero if error)
Syntax: CMQuerygontentMIMEtypenumPartsnumlLeveél

CMQuery queries content to determine whether it is MIME, S/IMIME, or not MIME; it also
returns the number of parts and levels, as applicable. If the content is single-part MIME, the
number of parts and number of levels is always 1 (one).

Input Parameters
content OMNIS Binary variable

contentis the MIME content object. This is usually an entire email message with its
attachments, or an object containing MIME-formatted content that was previously generated
by Content Manager.

Output Parameters

MIMEtype OMNIS Character variable
MIMEtypespecifies one of the following: MIME, S/IMIME, or not MIME.
numParts OMNIS Integer variable

numPartsis the number of parts withgontentif contentis multipart MIME.
numLevel OMNIS Integer variable

numLeveis the number of levels within tlwententif the content is multilevel MIME
content, that is, MIME content containing embedded MIME content.

External Commands 463

464

Copy file

Reversible: NO Flag affected: NO

Parameters: From path (file to be copied)
To path (of new file)
Return field

Syntax: Copy file (from-path,to-path) returnsreturn-field

This command makes a copy of the file specifiefidm-path You specify the path of the
new file in to-path. Ito-pathincludes a file name the file is copied and the new file is
renamed. The file named fo-pathmust not already exist. If you omd-path a copy of

the file named irfirom-pathis created in the current directory using the same name with the
extension ".BAK" under Windows or followed by " copy" under MacOS.

It returns any error code (shown at the end of this chapter), or zero if none.

Create directory

Reversible: NO Flag affected: NO

Parameters: Path of new directory or folder
Return-field

Syntax: Create directorypath) returnsreturn-field

This command creates the directory or folder (under MacOS) nanpathiril he directory
must not already exisCreate directorydoes not create intervening directories. It only
creates the last directory namepath

It returns any error code (shown at the end of this chapter), or zero if none.

Chapter 6—External Commands

Create file

Reversible: NO Flag affected: NO

Parameters: Path of new file
File type (MacOS only)
Creator (MacOS only)
R parameter (specifies if a resource fork is created also,
MacOS only)
Return field

Syntax: Create file(path[,file-typd[, creato[,'R’]) returns
return-field

This command creates the file specifieghith Every directory or folder ipath must
already existCreate filedoes not create directories or folders.

Thefile-type creator,and ‘R’ parameters apply to MacOS only, and are ignored by all
other versions; ‘R’ is case-insensitivefilé-typeandcreatorare not specified, a TeachText
text file is created with type "TEXT" and creator "ttxt".

It returns any error code (shown at the end of this chapter), or zero if none.

External Commands 465

466

DB2 Audio disable

Reversible: NO Flag affected: NO

Parameters: Table name
Column name
Logon switch to remain logged on to database
Return value

Syntax: DB2 Audio disable (tgblenamy, columnnam},'/L']) returns
[return-valué

This command disables the Audio extender data type for the current DB2 database, or the
specified table or column in the current database. To disable a database you do not need to
pass any parameters, the currently connected database is used. To disable a table in the
currently logged on database, you need to pagslienameonly. To disable a column in

the current database, you need to pastatiienameandcolumnnamearameters. You can
specify the L switch to remain logged on to the current database, otherwise you are logged
off automatically. This command returns a value of 1 if it is successful, otherwise 0 is
returned.

DB2 Audio disable () returns #2

; disables the current database

DB2 Audio disable (‘tablel’) returns #2

; disables tablel in the current database

DB2 Audio disable (‘tablel’, ‘columnl’) returns #2

; disables columnl in tablel in the current database

Chapter 6—External Commands

DB2 Audio enable

Reversible: NO Flag affected: NO

Parameters: Table name
Column name
Logon switch to remain logged on to database
Return value

Syntax: DB2 Audio enable (thblenamd, columnnamg, /L']) returns
[return-valué

This command enables the Audio extender data type for the current DB2 database, or the
specified table or column in the current database. To enable a database you do not need to
pass any parameters, the currently connected database is used. To enable a table in the
currently logged on database, you need to pagsittenameonly. To enable a column in

the current database, you need to pastatiienameandcolumnnamearameters. You can
specify the L switch to remain logged on to the current database, otherwise you are logged
off automatically. This command returns a value of 1 if it is successful, otherwise 0 is
returned.

DB2 Audio enable () returns #2

; enables the current database

DB2 Audio enable (‘tablel’) returns #2

: enables tablel in the current database

DB2 Audio enable (‘tablel’, ‘columnl’) returns #2

: enables columnl in tablel in the current database

External Commands 467

468

DB2 Audio is enabled

Reversible: NO Flag affected: NO

Parameters: Table name
Column name
Status variable
Logon switch to remain logged on to database
Return value

Syntax: DB2 Audio is enabled {@ablenamg{, columnnamg statusl,'/L'])
returns feturn-valué

This command checks whether or not the Audio extender data type is enabled for the
current DB2 database, or the specified table or column in the current database. To check
whether or not a database is enabled for Audio, you need to pass the status field only. To
check whether or not a table in the current database is enabled for Audio, you need to pass
thetablenameas well as the status field. To check whether or not a column is enabled for
Audio, you need to pass tkeblenameandcolumnnamearameters, as well as the status

field. Thestatusparameter returns kTrue or 1 if the database, table, or column is enabled
for Audio. You can specify the L switch to remain logged on to the current database,
otherwise you are logged off automatically. This command returns a value of 1 if it is
successful, otherwise 0 is returned, regardless of the value returned in the status field.

DB2 Audio Is Enabled (, , #1) returns #2

; checks the current database

DB2 Audio Is Enabled (‘tablel’, , #1) returns #2

; checks tablel in the current database

DB2 Audio Is Enabled (‘tablel’, ‘columnl’, #1) returns #2
; checks columnl in tablel in the current database

Chapter 6—External Commands

DB2 Get logon info

Reversible: NO Flag affected: NO

Parameters: Database or tablespace name
Username for the specified database
Password for the specified database
Error code
Error text

Syntax: DB2 Get logon infotablespaceusername password,errorcodq
[,errortex{)

This command returns the logon info for the current DB2 database, as specified by the DB2
Register logon info command or the DB2 DAM. You must supply variables for the
databasename usernameandpasswordof the current DB2 database. You can include
variables for theerrorcodeanderrortextto return the names of the OMNIS variables where
error codes and error text are stored.

DB2 Image disable

Reversible: NO Flag affected: NO

Parameters: Table name
Column name
Logon switch to remain logged on to database
Return value

Syntax: DB2 Image disable tdblenamd,columnnamyg,'/L']) returns
[return-valug

This command disables the Image extender data type for the current DB2 database, or the
specified table or column in the current database. To disable a database you do not need to
pass any parameters, the currently connected database is used. To disable a table in the
currently logged on database, you need to pagsltenameonly. To disable a column in

the current database, you need to pastatiienamendcolumnnamearameters. You can
specify the L switch to remain logged on to the current database, otherwise you are logged
off automatically. This command returns a value of 1 if it is successful, otherwise 0 is
returned.

DB2 Image disable () returns #2

; disables the current database

DB2 Image disable (‘tablel’) returns #2

; disables tablel in the current database

DB2 Image disable (‘tablel’, ‘columnl’) returns #2

; disables columnl in tablel in the current database

External Commands 469

470

DB2 Image enable

Reversible: NO Flag affected: NO

Parameters: Table name
Column name
Logon switch to remain logged on to database
Return value

Syntax: DB2 Image enable ¢dblenamd,columnnam§g,'/L']) returns
[return-valué

This command enables the Image extender data type for the current DB2 database, or the
specified table or column in the current database. To enable a database you do not need to
pass any parameters, the currently connected database is used. To enable a table in the
currently logged on database, you need to pagsittenameonly. To enable a column in

the current database, you need to pastatiienameandcolumnnamearameters. You can
specify the L switch to remain logged on to the current database, otherwise you are logged
off automatically. This command returns a value of 1 if it is successful, otherwise 0 is
returned.

DB2 Image enable () returns #2

; enables the current database

DB2 Image enable (‘tablel’) returns #2

: enables tablel in the current database

DB2 Image enable (‘tablel’, ‘columnl’) returns #2

: enables columnl in tablel in the current database

Chapter 6—External Commands

DB2 Image is enabled

Reversible: NO Flag affected: NO

Parameters: Table name
Column name
Status variable
Logon switch to remain logged on to database
Return value

Syntax: DB2 Image is enabled tdblenamg, columnnamk status|,/L'])
returns feturn-valué

This command checks whether or not the Image extender data type is enabled for the
current DB2 database, or the specified table or column in the current database. To check
whether or not a database is enabled for Image, you need to pass the status field only. To
check whether or not a table in the current database is enabled for Image, you need to pass
thetablenameas well as the status field. To check whether or not a column is enabled for
Image, you need to pass tlablenameandcolumnnamearameters, as well as the status

field. Thestatusparameter returns kTrue or 1 if the database, table, or column is enabled

for Image. You can specify the L switch to remain logged on to the current database,
otherwise you are logged off automatically. This command returns a value of 1 if it is
successful, otherwise 0 is returned, regardless of the value returned in the status field.

DB2 Image Is Enabled (, , #1) returns #2

; checks the current database

DB2 Image Is Enabled (‘tablel’, , #1) returns #2

; checks tablel in the current database

DB2 Image Is Enabled (‘tablel’, ‘columnl’, #1) returns #2
; checks columnl in tablel in the current database

DB2 Init upload

Reversible: NO Flag affected: NO

Parameters: Path to OMNIS executable
Logon switch to remain logged on to database

Syntax: Db2 Init upload path [, '/L'])

This command prepares the current DB2 database to receid@thdpload Data

command. You must specify tipathto the OMNIS executable as the first parameter. You
can specify the L switch to remain logged on to the database, otherwise you are logged off

automatically. This command uses the upload.bnd file which must be located in the
EXTERNAL folder.

Db2 Init upload (sys(115),"/L")

External Commands 471

DB2 Reqgister error vars

Reversible: NO Flag affected: NO

Parameters: Error code fieldname
Error text fieldname

Syntax: DB2 Register error vargfrorcode, errortext
This command specifies the variables to contain any errors reported while the DB2 external

commands are in operation. You must specify suitable variablesrorodeanderrortext
to contain the code and text for any errors.

; declare errorcode of Long int type, and errortext as Character
DB2 Register error vars (errorcode, errortext)

DB2 Register logon info

Reversible: NO Flag affected: NO

Parameters: Database or tablespace name
Username for the specified database
Password for the specified database

Syntax: DB2 Register logon infotgblespaceusername passwordl
This command registers the logon info to be used when logging on to the DB2 database.
The command requires tdatabasename usernameandpasswordof the required DB2

database. The logon info specified in this command overrides the information contained in
the DB2 DAM as specified in the current session, if bound.

DB2 Unregister logon info

Reversible: NO Flag affected: NO
Parameters: None
Syntax: DB2 Unregister logon info ()

This command unregisters the logon info for the current DB2 database. In this case the
logon info contained in the DB2 DAM is used, if bound.

472 Chapter 6—External Commands

DB2 Upload data

Reversible: NO Flag affected: NO

Parameters: SQL statement containing data
Logon switch to remain logged on to database

Syntax: Db2 Upload datasgl-statement, '/L'])

This command uploads data to the current DB2 database. It takes a SQL statement
containing a user defined function (UDF) and uploads the specified data in a bind variable.
You can specify the L switch to remain logged on to the database, otherwise you are logged
off automatically.

The bind variable must be an updateable bind variable (:var) and of type binary. In addition,
the bind variable must be cast explicitly as a blob in the SQL statement. The command takes
one :var variable only and does not support @[var] bind variables.

Db2 Upload data ("INSERT INTO my_table (picture) values

(DB2Image(CURRENT SERVER, CAST(:my_bin as BLOB(2M)), 'BMP',
CAST(NULL as LONG VARCHAR), 'comment'))")

DB2 Video disable

Reversible: NO Flag affected: NO

Parameters: Table name
Column name
Logon switch to remain logged on to database
Return value

Syntax: DB2 Video disable (thblenamd, columnnamg, /L']) returns
[return-valué

This command disables the Video extender data type for the current DB2 database, or the
specified table or column in the current database. To disable a database you do not need to
pass any parameters, the currently connected database is used. To disable a table in the
currently logged on database, you need to pagsltenameonly. To disable a column in

the current database, you need to pastatiienameandcolumnnamearameters. You can
specify the L switch to remain logged on to the current database, otherwise you are logged
off automatically. This command returns a value of 1 if it is successful, otherwise 0 is
returned.

DB2 Video disable () returns #2

; disables the current database

DB2 Video disable (‘tablel’) returns #2

; disables tablel in the current database

DB2 Video disable (‘tablel’, ‘columnl’) returns #2

; disables columnl in tablel in the current database

External Commands 473

474

DB2 Video enable

Reversible: NO Flag affected: NO

Parameters: Table name
Column name
Logon switch to remain logged on to database
Return value

Syntax: DB2 Video enable (tablenamd,columnnam§g,'/L']) returns
[return-valué

This command enables the Video extender data type for the current DB2 database, or the
specified table or column in the current database. To enable a database you do not need to
pass any parameters, the currently connected database is used. To enable a table in the
currently logged on database, you need to pagsittenameonly. To enable a column in

the current database, you need to pastatiienameandcolumnnamearameters. You can
specify the L switch to remain logged on to the current database, otherwise you are logged
off automatically. This command returns a value of 1 if it is successful, otherwise 0 is
returned.

DB2 Video enable () returns #2

; enables the current database

DB2 Video enable (‘tablel’) returns #2

: enables tablel in the current database

DB2 Video enable (‘tablel’, ‘columnl’) returns #2

: enables columnl in tablel in the current database

Chapter 6—External Commands

DB2 Video is enabled

Reversible: NO Flag affected: NO

Parameters: Table name
Column name
Status variable
Logon switch to remain logged on to database
Return value

Syntax: DB2 Video is enabled tgblenamy,columnnamg status[,'/L'])
returns feturn-valué

This command checks whether or not the Video extender data type is enabled for the
current DB2 database, or the specified table or column in the current database. To check
whether or not a database is enabled for Video, you need to pass the status field only. To
check whether or not a table in the current database is enabled for Video, you need to pass
thetablenameas well as the status field. To check whether or not a column is enabled for
Video, you need to pass tteblenameandcolumnnamearameters, as well as the status

field. Thestatusparameter returns kTrue or 1 if the database, table, or column is enabled
for Video. You can specify the L switch to remain logged on to the current database,
otherwise you are logged off automatically. This command returns a value of 1 if it is
successful, otherwise 0 is returned, regardless of the value returned in the status field.

DB2 Video Is Enabled (, , #1) returns #2

; checks the current database

DB2 Video Is Enabled (‘tablel’, , #1) returns #2

; checks tablel in the current database

DB2 Video Is Enabled (‘tablel’, ‘columnl’, #1) returns #2
; checks columnl in tablel in the current database

Delete file
Reversible: NO Flag affected: NO
Parameters: Path of file to be deleted
Return field
Syntax: Delete file(path) returnsreturn-field

This command deletes the file specifieghath Under MacOS, files deleted wibbelete
file are not moved into the Trash. You cannot recover deleted files except with advanced
disk utilities such as Norton Utilities.

It returns any error code (shown at the end of this chapter), or zero if none.

External Commands 475

476

Does file exist

Reversible: NO Flag affected: NO
Parameters: File or folder name (including full path)

Return field
Syntax: Does file exis{file [folder-name)returnsreturn-field

This command returns kTrue if the specified file or folder exists, otherwise it returns kFalse.
The file or folder name must include the full path.

; Windows
Does file exist ("C:\C700\FileOps\FileOps.C") ;; test for file
If flag true

; do this
Does file exist ("C:\C700") ;; test for folder
: Macintosh
Does file exist ("HD:Desktop Folder:MyPictureFile") ;; test for file
Does file exist ("HD:Microsoft") ;; test for folder
FTPChmod
Reversible: NO Flag affected: NO
Parameters: Socket, Filename, Mode
Returns: Statug(0 if no error, -1 or other negative number if error)
Syntax: FTPChmod§ocketFilename Mode

FTPChmod changes the protection mode of a remote file on the connected FTP server.

Sockets an OMNIS Integer field containing the socket previously opened to an FTP server
with FTPConnect.

Filenameis an OMNIS Character field containing the name of the remote file, by default in
the current directory. If the server permits, he filename can be a fully qualified pathname in
another directory.

Modeis an OMNIS Character field containing the system-dependent file-protection
specifier to apply to the named file. Many FTP daemons accept the Unix-style
Owner/Group/World 3-digit Read/Write/Execute scheme (for exaripke = Owner
Read/Write/Execute, Group Read/Execute World Read-Only). Consult the documentation
for the remote system to determine the acceptable syntax for this argument.

Statusis an OMNIS Long Integer field that contains 0 (zero) if no error occurs. To handle
an error, use the FTPGetLastStatus command to get the code.

Using WebDevError, one or more callback methods return error messages and codes.

Chapter 6—External Commands

FTPConnect

Reversible: NO Flag affected: NO

Parameters: ServerAddr, Username, Password

Returns: Socket

Syntax: FTPConnecterverAddiUsernamePassword ReturnsSocket

FTPConnect creates a new socket open to the FTP service or port on a named server or IP
address.

ServerAddiis an OMNIS Character field containing the hostname or IP address of the FTP
server to which the socket connects.

Usernamds an OMNIS Character field containing the user ID of the account that will be
used for access on the server.

Passwords an OMNIS Character field containing the password of the account that will be
used for access on the server.

Socketis an OMNIS Long Integer field containing the number of the allocated socket. Error
codes are socket numbers less than 0 (zero), shown at the end of this chapter. To get the
actual error code, call FTPGetLastStatus.

A WebDevError callback method returns error messages and codes.

FTPCwd

Reversible: NO Flag affected: NO

Parameters: Socket, Directory

Returns: Statug(0 if no error, -1 or other negative number if error)
Syntax: FTPCwdGocket,NewDjr

FTPCwd changes the working directory on the connected FTP server. The working
directory is the one for which the FTPList command shows a directory listing. Files are
transferred to and from this remote directory.

Socketis an OMNIS Integer field containing the number of a socket open to an FTP server.

NewDiris an OMNIS Character field containing the directory specification to change the
remote server’s current directory. The contents of this string are system-dependent.
FTPCwd accepts anything for this argument, but the remote FTP daemon may not. Most
FTP daemons accept Unix-style path and file specifications with path and file separated by
slashes, such as

/drive/user/subdirectory/filename.extension

External Commands 477

Most FTP daemons accept the Unix conventions for abbreviations for special directory

specifications, that is, “..” for the next higher sub-directory, and “~userid” for the home
directory of a particular user ID.

Some FTP daemons also accept system-specific directory path formats, that is, Macintosh
colon-separated as Macintosh HD:My Folder:My File or VMS-style path and file
specifications, am SOME$DISK:[USER.SUBDIRECTORY]FILENAME.EXTENSION;1.

Consult the documentation for the server to determine the authoritative acceptable directory
path specifications. When in doubt, try the Unix style.

Statusis an OMNIS Long Integer field that returns a negative number if an error is
encountered, or 0 (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.

FTPDelete

Reversible: NO Flag affected: NO

Parameters: Socket, Filename

Returns: Statug(0 if no error, -1 or other negative number if error)
Syntax: FTPDeleteSocketFilenamg ReturnsStatus

FTPDelete deletes a remote file on the connected FTP server.

Sockets an OMNIS Integer field containing the number of a socket that is open to an FTP
server.

Filenameis an OMNIS Character field containing the name of the remote file to delete, by
default in the current directory. If the server permits, the filename can be a fully qualified
pathname in another directory.

Statusis an OMNIS Long Integer field that returns a negative number if an error is
encountered, or 0 (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.

478 Chapter 6—External Commands

FTPDisconnect

Reversible: NO Flag affected: NO

Parameters: Socket

Returns: Statug(0 if no error, -1 or other negative number if error)
Syntax: FTPDisconnecgocket)

FTPDisconnect disconnects a socket from the remote FTP daemon.

Socketis an OMNIS Integer field containing the number of a socket that is open on an FTP
server.

Statusis an OMNIS Long Integer field that returns a negative number if an error is
encountered, or O (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.

FTPGet

Reversible: NO Flag affected: NO

Parameters: Socket, RemoteFile, LocalFile

Returns: Statug(0 if no error, -1 or other negative number if error)
Syntax: FTPGetGocket,RemoteFile,LocalFjle

FTPGet initiates transfer of a file from an FTP server to a file on the local client. The file is
transferred according to the currently set transfer type of ASCII or binary as specified by
the FTPType command.

Socketis an OMNIS Integer field containing the number of a socket that is open on the
server.

RemoteFilas an OMNIS Character field containing the name of the file on the remote
system to transfer to the local client.

Note: The remote filename may not be acceptable to the local system. The file is transferred
according to the current transfer type of ASCII or binary, as specified by the FTPType
external command. Binary files such as executables, pictures, and archives are not
transferred properly in ASCII mode.

LocalFileis an OMNIS Character field containing the specification of the file on the local
machine to receive the contents of the remote file.

Statusis an OMNIS Long Integer field that returns a negative number if an error is
encountered, or 0 (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.

External Commands 479

FTPGetBinary

Reversible: NO Flag affected: NO

Parameters: Socket, RemoteFile, BinField

Returns: Statug(0 if no error, -1 or other negative number if error)
Syntax: FTPGetBinarySocket,RemoteFile,BinFigld

FTPGetBinary initiates transfer of a file from an FTP server directly to an OMNIS binary
variable. The file is transferred according to the currently set transfer type of ASCII or
binary as specified by the FTPType command.

Socketis an OMNIS Integer field containing the number of a socket that is open on a
remote FTP server.

RemoteFilas an OMNIS Character field containing the name of the file on the remote
system to transfer to the local client.

BinField is an OMNIS Binary field that will receive the contents of the remote file.

Statusis an OMNIS Long Integer field that returns a negative number if an error is
encountered, or O (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.

Note: The file is transferred according to the current transfer type of ASCII or binary as
specified by the FTPType external command. Binary files such as executables, pictures, and
archives are not transferred properly in ASCIl mode.

480 Chapter 6—External Commands

FTPGetLastStatus

Reversible: NO Flag affected: NO
Parameters: Socket

Returns: Status(error code)

Syntax: FTPGetLastStatuSpckex

Because FTP commands return a negative number (usually -1), rather than an error code
and message, you can call FTPGetLastStatus to return one of the error codes listed below.
FTPGetLastStatus indicates the most recent status from an FTP operation. It is generally
used during development, while WebDevError is used in applications.

Note: FTPGetLastStatus errors are redundant with those returned by WebDevError.
However, Web Enabler release 2.0 retains the FTPGetLastStatus function so that release 1.0
applications will not require modification.

Code | Meaning

1 Attempt to connect to server failed (FTPConnect, FTPGet, FTPPut,
FTPGetBinary, FTPPutBinary, FTPList)

Connection lost

Invalid username or password

No such file

Invalid argument

No free sockets (too many connections)

No such server (DNS failed)

Client configuration error (can't get local IP address)

Server protocol error - server response unexpected

Client file I/O error (disk full, network volume dismounted, and so on)
Out of memory error (common in FTPGetBinary/FTPPutBinary)

12 User cancel (progress method returned flag false)

Ol |IN[ojfo]|bh|wW([N

(=Y
o

[
=

Socketis an OMNIS Integer field containing the number of a socket that is open for the
operation.

Using WebDevError, one or more callback methods return these and other error messages
and codes. FTPGetlLastStatus returns errors after the callback method.

External Commands 481

482

FTPList

Reversible: NO Flag affected: NO

Parameters: Socket, List, Pathname, Mode

Returns: Statug(0 if no error, -1 or other negative number if error)
Syntax: FTPListSocket,LigtPathnamgModd])

FTPList gets an OMNIS list of file information from the current directory on the remote
server.

Sockeis an OMNIS Integer field containing the number of a socket that is open on a
remote FTP server.

List is an OMNIS List field containing a single column of type Character. This list receives

the file listing information, one line per file, returned by the remote FTP daemon. The list is
dependent on the type of the remote server and may be a long or short format, depending on
the setting.

Note: Very often, FTP daemons return long-format listings in a Unix file listing format. At

a minimum, this file information contains the filename, but usually includes other
information. The OMNIS method must parse this information to find the filename and other
information. For example

Listltem

total 123

drwxr-xr-x 4 | userid mygroup | Jan 11999

drwxr-xr-x 6 | root root Jan 11999 "

-rW------- 1 | userid mygroup | Jan 18998 myfile
-rW-r—r— 2 | userid mygroup | Jan 16 1998 myotherfile

Where the columns in the character string correspond to protection, file size, username and
group of the file owner, the date last modified and the name of the file. The files “.” and “..”
represent the current and parent directories, respectively, which may neither be retrieved nor

changed.

The file information may not be neatly spaced into columns as in this example. Columns are
separated with one or more spacing characters (space, tab, and so on).

Pathnamds an optional parameter specifying an OMNIS Character field that contains a
pathname or wildcard specification for the files to include in the listing.

Modeis an optional parameter specifying an OMNIS Integer field containing a code that
indicates whether the server should return a short or long format listing:

Chapter 6—External Commands

Code | Meaning

0 Filename-only listing

1 Long-format listing

Statusis an OMNIS Long Integer field that returns a negative number if an error is
encountered, or O (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.

FTPMkdir

Reversible: NO Flag affected: NO

Parameters: Socket, DirName

Returns: Statug(0 if no error, -1 or other negative number if error)
Syntax: FTPMkdir(Socket,DirName

FTPMkdir creates a new subdirectory on the remote system.
Sockets an OMNIS Integer field containing a socket open to a remote FTP server.

DirNameis an OMNIS Character field containing the name of the new directory to create
on the server in the current directory. By default, the current directory is as specified by the
external command FTPConnect or FTPCwd and may be determined by the FTPPwd
external command.

Note: The name of the new directory must follow the convention and file-naming rules of
the remote system. Not all users will have permissions to create new subdirectories on
arbitrary directories on the remote system. Default file-access permissions apply to the new
directory. You may need to use the FTPCwd external command so that files are
subsequently transferred to the new directory.

Statusis an OMNIS Integer field that returns a negative number if an error is encountered,
or 0 (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDeVError, one or more callback methods return error messages and codes.

External Commands 483

FTPPut

Reversible: NO Flag affected: NO

Parameters: Socket, RemoteFile, LocalFile

Returns: Statug(0 if no error, -1 or other negative number if error)
Syntax: FTPPutGocket,RemoteFile,LocalF)le

FTPPut initiates transfer of a file to an FTP server from a file on the local client. The file is
transferred according to the currently set transfer type of ASCII or binary as specified by
the FTPType external command.

Socketis an OMNIS Integer field containing the number of a socket that is open on a
remote FTP server.

RemoteFilés an OMNIS Character field containing the name of the file on the remote
machine to receive the contents of the local file.

LocalFileis an OMNIS Character field containing the name of the file on the local machine
to send the contents of the remote file.

Statusis an OMNIS Long Integer field that returns a negative number if an error is
encountered, or O (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDeVError, one or more callback methods return error messages and codes.

Note: The local filename may not be acceptable to the remote system. The file is transferred
according to the currently set transfer type of ASCII or binary as specified by the FTPType
external command. Binary files such as executables, pictures, archives are not transferred
properly in ASCIl mode. The permission mode of the current remote directory may not
allow the creation of files by the username used in FTPConnect. You may not overwrite a
read-only or read/execute file, or a directory.

FTPPutBinary

Reversible: NO Flag affected: NO

Parameters: Socket, BinField, RemoteFile

Returns: Statug(0 if no error, -1 or other negative number if error)
Syntax: FTPPutBinary$ocket,BinField,RemoteFjle

FTPPutBinary initiates transfer of a file to an FTP server from an OMNIS binary variable.
The file is transferred according to the currently set transfer type of ASCII or binary as
specified by the FTPType external command.

Sockets an OMNIS Character field containing the number of a socket that is open on a
remote FTP server.

BinField is an OMNIS Binary field to be sent to the remote file.

484 Chapter 6—External Commands

RemoteFilés an OMNIS Character field containing the name of the file on the remote
system to receive the contents of the OMNIS Binary field.

Statusis an OMNIS Long Integer field that returns a negative number if an error is
encountered, or O (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.

Note: The local filename may not be acceptable to the remote system. The file is transferred
according to the currently set transfer type of ASCII or binary as specified by the FTPType
external command. Binary files such as executables, pictures, archives are not transferred
properly in ASCIl mode. The permission mode of the current remote directory may not
allow the creation of files by the username used in FTPConnect. You may not overwrite a
read-only or read/execute file, or a directory.

FTPPwd

Reversible: NO Flag affected: NO

Parameters: Socket

Returns: ServerDir (pathname if no error, -1 or other negative number if
error)

Syntax: FTPPwdSockex

FTPPwd gets the name of the remote server’s current directory.

Sockeis an OMNIS Integer field containing the number of a socket that is open on a
remote FTP server.

ServerDiris an OMNIS Character field that returns the path specification of the current
remote directory on the server. A NULL string indicates that an error occurred. Call
FTPGetLastStatus for the error code.

Using WebDevError, one or more callback methods return error messages and codes.

Note: The value returned depends upon the operating system of the remote server. Many
FTP daemons return a Unix-style path specification, but do not assume that this is the case.

External Commands 485

486

FTPReceiveCommandReplyLine

Reversible: NO Flag affected: NO
Parameters: Socket number

Returns: Reply

Syntax: FTPReceiveCommandReplyLirggcke} ReturnsReply

FTPReceiveCommandReplyLine returns the next line of the reply following an
FTPSendCommand. You have to determine if the reply is multi-line, and if so issue further
receive commands to get the remainder of the reply. FTPReceiveCommandReplyLine will
timeout after 60 seconds if it does not receive a reply.

Sockets an OMNIS Integer variable containing a socket open to a remote FTP server.

Replyis an OMNIS Character variable containing the reply from the server.

FTPSendCommand(lvSocket,'pwd') Returns #1
FTPReceiveCommandReplyLine (lvSocket) Returns IvReply
; might return the string

257 "Ivoll/ftp/omnis/" is current directory

FTPRename

Reversible: NO Flag affected: NO

Parameters: Socket, OldName, NewName

Returns: Statug(0 if no error, -1 or other negative number if error)
Syntax: FTPRenamefocket,OldName,NewName

FTPRename renames a remote file.

Sockets an OMNIS Integer field containing the number of a socket that is open on a
remote FTP server.

OldNameis an OMNIS Character field containing the name of the file to change on the
remote server. By default, the file is assumed to be in the current remote directory as set at
connection or by the external command FTPCwd. You may specify a path in a different
directory, as long as it is correct and you have permissions in that directory.

NewNamads an OMNIS Character field containing the new name for the file on the remote
server. By default, the file is renamed in place in the current remote directory as set at
connection or by the external command FTPCwd. You may specify a path and filename in a
different directory. In such a case on many systems, the file is moved to the new directory
path, as long as the path name is correct and you have permissions in the other directory.

Statusis an OMNIS Long Integer field that returns a negative number if an error is
encountered, or O (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDeVError, one or more callback methods return error messages and codes.

Chapter 6—External Commands

Note: Local filename conventions may not be acceptable to the remote system. The
permission mode of the current remote directory may not allow files to be renamed. You
may not change a read-only or read/execute file, or rename a file to the same name as a

directory.
FTPSendCommand
Reversible: NO Flag affected: NO
Parameters: Socket number

Command
Returns: Statug(0 if no error, -1 or other negative number if error)
Syntax: FTPSendComman8pckefCommand ReturnsStatus

FTPSendCommand sends a command to the remote server.
Sockets an OMNIS Integer variable containing a socket open to a remote FTP server.

Commands an OMNIS Character variable or quoted literal containing the command and
its parameters.

Statusis an OMNIS Long Integer variable that returns a negative number if an error is
encountered, or O (zero) otherwise. Using WebDeVError, one or more callback methods
return error messages and codes.

FTPSendCommandvSocket,'pwd’) Returns #1
FTPReceiveCommandReply(lvSocket) Returns IvReply
; might return the string

257 "Ivoll/ftp/omnis/" is current directory

External Commands 487

488

FTPSetProgressProc

Reversible: NO Flag affected: NO

Parameters: Proc

Returns: Invokes method if no error or returns -1 or other negative number if
error

Syntax: FTPSetProgressPrdaoc)

FTPSetProgressProc provides a mechanism to provide progress messages during an FTP
operation (FTPGet, for example).

Procis an OMNIS Character field containing an address for an OMNIS method to be called
with progress status messages. The method can be used to display the message, log it, or
otherwise change normal execution. For example: MYCODE, MYCODE/MYPROC,
MYLIBRARY.MYCODE. You should use the method name qualified by the library if your
applications are in a multi-library environment.

An example method might look like this:

; Parameter messageText (Character 10000000)
; Display a working message while FTP operation is in progress.
Working message (High position,Large size) {{messageText]}

Using WebDevError, one or more callback methods return error messages and codes.

FTPSite

Reversible: NO Flag affected: NO

Parameters: Socket number
Command parameters
Returns: Statug(0 if no error, -1 or other negative number if error)

Syntax: FTPSiteGocketParameter} ReturnsStatus
FTPSite issues a host specific command to the remote server.
Socketis an OMNIS Integer variable containing a socket open to a remote FTP server.

Parameterds an OMNIS Character variable or quoted literal containing the host specific
command and its parameters.

Statusis an OMNIS Long Integer variable that returns a negative number if an error is
encountered, or O (zero) otherwise.

Using WebDevError, one or more callback methods return error messages and codes.

FTPSite (IvSocketNum,"FILETYPE=JES") Returns IvStatus
; issues the FTP command SITE FILETYPE=JES

Chapter 6—External Commands

FTPType

Reversible: NO Flag affected: NO

Parameters: Socket, FileType

Returns: Statug(0 if no error, -1 or other negative number if error)
Syntax: FTPTypeGockefFileTypg

FTPType specifies the type of transfer as ASCII or binary. In ASCIl mode, line separators
and other text formatting characters can be changed to the characters required by the local
or remote system. In binary mode, line separators and other text formatting characters are
not changed. If the information to be transferred is not text, use FTPType to change the
transfer mode to binary. Otherwise, binary files such as archives, images, OMNIS Libraries,
and executable files may be corrupted by the processing of bytes that coincide with text-
formatting characters.

Sockeis an OMNIS Integer field containing a socket open to a remote FTP server.

FileTypeis an OMNIS Boolean field indicating the type of subsequent transfers on this

socket.

Value Transfer Mode
kFalse/Zero ASCII

kTrue/One Binary

Statusis an OMNIS Long Integer field that returns a negative number if an error is
encountered, or O (zero) otherwise. To get the actual error code, call FTPGetLastStatus.

Using WebDevError, one or more callback methods return error messages and codes.

External Commands 489

490

Get file info

Reversible: NO Flag affected: NO

Parameters: Path
File type (the file extension under Windows)
Creator (the pathname of the executable under Windows,
provided the extension is registered with Windows)
Logical size (number of bytes in file)
Physical size (number of bytes file occupies on disk; same as
logical size under Windows)
Creation date (not stored under Windows)
Creation time (not stored under Windows)
Modified date
Modified time
Return field

Syntax: Get file info(path, type, creator, logical-size, physical-size,
creation-date, creation-time, modified-date, modified-time)
returnsreturn-field

This command returns information about the file specifiguhai

A file may occupy more physical disk space than is necessary, because disk space is usually
allocated in blocks of some fixed size. This is why the logical and physical sizes can be
different.

Windows (DOS) does not store the creation date and time. These are therefore the same as
the modified date and time. Almost all Windows FileOps commands will take wild-cards as
arguments, where the MacOS will not.

It returns any error code (shown at the end of this chapter), or zero if none.

Chapter 6—External Commands

Get file name

Reversible: NO Flag affected: NO
Parameters: Path of file selected

Dialog title

File type or list of file types

Return field
Syntax: Get file namgpath|,dialog-titlg][, file-typd...)

returnsreturn-field

This command prompts the user to open a file with the spefiléetypeandpath; it opens

the standard Open dialog for the current Operating System. Also you can spukaifga

title for the Open dialog. The optiorfile-type parameter limits the choice of file types
available. It returns the full pathname of the file the user seleptglinor remains empty if

no file is selected (that is, the Cancel button was clicked). The selected file is not opened.

It returns any error code (shown at the end of this chapter), or zero if none.

Windows file types

Under Windows (DOS) files do not have type codes, but they do have extensions which
serve the same purpose. You can specify one or more extensions (using wildcard patterns
like those used in many DOS commands) separated by semicolons. For example, "*TXT"
would specify text files only.

MacOS file types

Under MacOS file types are four-character codes defined by convention (OMNIS library
files are type "O73$A", for example). You can use ResEdit, DiskTop, or other such tools to
discover file types. For example, "TEXT" would specify text files only.
Switch sys(6) = ‘M’
Case kTrue ;; if MacOS
Get file name (PATH, 'Select a file', "TEXT ttro")
Default
Get file name (PATH, 'Select a file', . TXT;*.DOC’)
End Switch

External Commands 491

Get file read-only attribute

Reversible: NO Flag affected: NO

Parameters: Path of the file
Read-flag setting returned
Return field

Syntax: Get file read-only attributep@th, read-flag returns feturn-field|

This command returns the current read-only attribute of the file specifpedtinlf the
read-flagparameter returns kTrue the file is read-only, otherwise if kFalse is returned the
file is read/write. Note that read-only status is the same as locked under MacOS.

It returns any error code (shown at the end of this chapter), or zero if none.

Get files

Reversible: NO Flag affected: NO

Parameters: List name
First column of list
Path name
File type
Creator type (MacOS only)
Return field

Syntax: Get files(list-name, first-column, path-name, file-tyjpereator-typé)
returnsreturn-field

This command lists all the files of a specified type in a directory or folder. The list is
specified bylist-namewhich must have at least one column definefitét-column This
column will hold the file name of the files with the speciffdettypefound under the
specifiedpath-nameincluding the extension for DOS machines. flertypeyou can use
wildcards, such as *.LBR’. Under MacOS theeator-typecan be specified.

It returns any error code (shown at the end of this chapter), or zero if none.

The following example uséSet filesto build a list of all the libraries in the folder returned
by sys(10). Under MacOS, you can select libraries using the file type OO$A, and *.LBR’
for Windows.

492 Chapter 6—External Commands

; Declare local vars LVFILELIST, LVPATHNAME, LVDRIVE, LVDIR,
; LVFILENAME, LVEXT, LVFILETYPE, LVCREATORTYPE
Set current list LVFILELIST
Define list {LVFILENAME}
Calculate LVPATHNAME as sys(10) ;; path of current library
Split path name(LVPATHNAME,LVDRIVE,LVDIR,LVFILENAME,LVEXT)
Calculate LVPATHNAME as con(LVDRIVE,LVDIR)
If sys(6)='M" ;; under MacOS
Calculate LVFILETYPE as ‘O0$A’

Else ;; else, if on any other platform
Calculate LVFILETYPE as “*.LBR’
End If

Get files (LVFILELIST,LVFILENAME,LVPATHNAME,LVFILETYPE)

Get folders

Reversible: NO Flag affected: NO

Parameters: List name
Column name
Path
Return field

Syntax: Get folderglist,column,’path’) returnsreturn-field

This command creates a list of folders for the speciit, and places the list in the
specifiedcolumnof the specifiedist (you can use any column in the list).

It returns any error code (shown at the end of this chapter), or zero if none.

For example, to get a list of the folders in the root of your Mac or PC use the following

method
Do LIST1.$define(COL1,COL2,COL3)
If sys(6) = ‘M’
Get folders (LIST1,COL2,’Macintosh HD")
Else
Get folders (LIST1,COL2,C\)
End If
Do LIST1.$sort(COL2)
Redraw lists ;if LIST1 is a window list

External Commands 493

494

HTTPClose

Reversible: NO Flag affected: NO

Parameters: Socket

Returns: Statug(0 if no error, -1 or other negative number if error)
Syntax: HTTPCloseSockex ReturnsStatus

HTTPClose is a client or server command that closes a socket that OMNIS is using for
communication with a Web server or client, functionally equivalent to TCPClose. You must
use HTTPClose when you have finished using a socket.

Socketis an OMNIS Long Integer field containing a socket previously opened. It can close
any socket, not just HTTP-related sockets.

WinSOCK error codes are returned as negative values, shown at the end of this chapter.
Using WebDevError, one or more callback methods return error messages and codes.

HTTPGet

Reversible: NO Flag affected: NO

Parameters: Hostname, URI, CGIList, HeaderList, Port

Returns: ConnectedSocket

Syntax: HTTPGetHostname,UR],CGlILis{,HeaderList,Port]]])

HTTPGet is a client command that submits a GET-method CGI request to a Web server.

Note: HTTPPage allows you to get HTML text source through a server, transparently and
without additional coding. If you need to customize the process for a proxy server, you can
use a combination of HTTPGet and TCPReceive. For this technique, see the sample code in
“Accessing a Proxy Server”.

Hostnames a Character field containing the hostname of a Web server to which to connect.

URIis a Character field containing the path and the name of the CGlI to be run on the Web
server. Often this can be determined by looking at the source to an HTML page that
requests the CGI.

Chapter 6—External Commands

CGlListis an optional parameter specifying an OMNIS list defined to have two character
columns. The list contains information to be sent as the arguments of the CGI. There is one
row for each field passed to the GET CGI method. In this way, an OMNIS method can send
OMNIS field values to a Web server. For example

Attribute Value

Name John Smith
City Podunk
Alive On

Submit Please

Note: Before the values are sent to the Web server, HTTPGet automatically performs any
CGI encoding required to pass special characters in the arguments. There is no need to call
the CGIEncode external command to encode the value entries in the list.

HeaderListis an optional parameter specifying an OMNIS list field defined to have two
character columns. The list contains information added to the HTTP message header as
attribute/value pairs on each row of the list. There is one row for each item found on the
header.

For example, after the call, the list might contain entries such as:

Attribute Value

Accept /
Content-type text/html

Portis an optional field that includes the port number of the server.

The return value is a positive integer socket number opened to the Web server as a result of
the GET CGI. This allows OMNIS to read the results of the CGI request on this socket. In
the case of an error, a value of -1 (minus one) is returned for the socket number.

Colons are added to the attributes when HTTPGet constructs the header. Do not end
attribute names with a colon. HTTPGet adds the following header fields by default:

Attribute Value

Date The current GMT date and time in HTTP header format
Server OMNIS7/3.5

MIME-Version | 1.0

Errors in parsing the message header are reported through the standard WebDevError
mechanism.

External Commands 495

496

HTTPHeader

Reversible: NO Flag affected: NO
Parameters: Socket, Status, HeaderList

Returns: Length

Syntax: HTTPHeader$ocket,Status,HeaderL)ist

HTTPHeader is a server command that sends an HTTP standard header back to an HTTP
client, for example, an OMNIS application or a Web browser. HTTP headers are normally
hidden from Web clients, but convey very useful information regarding the status and
contents of the Web page. An OMNIS method must send a header back to a connected Web
browser in order to have results properly displayed.

Sockeis an OMNIS Long Integer field containing the number of a socket that has already
been opened for a TCP/IP client, usually a Web browser or OMNIS application that
requires and can understand an HTTP header message.

Statusis an OMNIS Long Integer field containing an HTTP status code. The status code
may change the way in which any following HTML or other information displays on the
Web browser. Some common codes:

Code Meaning

200 The request was completed successfully

201 The request was a POST method and was completed successfully. Data was sent
to the server, and a new resource was created as a result of the request.

202 A GET method returned only partial results.

204 The request was completed successfully, but there is no new information. The
browser will continue to display the document from which the request originated.

304 The GET request included a header with an If-Modified-Since field. Howevgr,

the server found that the data requested had not been modified since the date in
this field. The document was not resent (the Web browser will probably display
it from cache).

400 The request syntax was wrong

401 The request requires an Authorization field but the client did not specify ong.
Usually results in a username and password to be displayed

404 The request URL could not be found.

500 The server has encountered an internal error and cannot continue with the
request.

501 The server does not support this method

Chapter 6—External Commands

HeaderListis an OMNIS list defined to have two character columns. The list contains
information to be included in the HTTP message header as attribute/value pairs on each row
of the list. There is one row for each item in the header.

At a minimum, for OMNIS to return normal Web-page HTML text to the client, you should
send a header containing the line:

Attribute Value

Content-type | text/html

HTTPHeader automatically includes the following lines in all HTTP response headers:

Attribute Value

Date The current GMT date and time in HTTP header format
Server OMNIS7/3.5

MIME-version | 1.0

Lengthis an OMNIS Long Integer field containing the number of characters sent.

Standard WinSOCK and Web Enabler errors are reported using WebDevError.

HTTPOpen

Reversible: NO Flag affected: NO
Parameters: Hostname, Port

Returns: Socket

Syntax: HTTPOpenHostnamgPort])

HTTPOpen is a client or server command that opens a socket to a Web server.

Hostnames a Character field containing the IP address or domain name of an HTTP server
that accepts HTTP requests from an OMNIS client. For example:

host.myhost.com or 255.255.255.254
Portis an optional field that specifies the local port to use for the socket.

Socketeturns a positive number indicating the socket number to which the command
attached. If an error is raised, a negative error number is returSedket WinSOCK

error codes are returned instead of a valid socket number. Error codes are numbers less than
0 (zero), shown at the end of this chapter.

Using WebDevError, one or more callback methods return error messages and codes.

External Commands 497

498

HTTPPage

Reversible: NO Flag affected: NO
Parameters: URL, Port

Returns: -1 if there is an error

Syntax: HTTPPage(RL],Port])

A client command that retrieves the HTML text of the Web page specified by URL into an
OMNIS character variable.

Note: HTTPPage allows you to get HTML text source through a server, transparently and
without additional coding. If you need to customize the process for a proxy server, you can
use a combination of HTTPGet and TCPReceive. For this technique, see the sample code in
“Accessing a Proxy Server”.

URL is an OMNIS Character field containing a standard Web page URL of the form
http://domaininfo.xxx/path/webpagepage

Portis an optional parameter that includes the port number to use on the server.

The primary role of HTTPPage is to grab, simply and quickly, the HTML text source of the
page specified by the URL. The URL may also specify a CGl name and arguments, but it is
simpler to access CGls by using the HTTPPost or HTTPGet functions.

The command returns -1 (one) if there is an error.

Using WebDevError, one or more callback methods return WinSOCK errors.

HTTPParse

Reversible: NO Flag affected: NO

Parameters: Message, HeaderList, Method, HTTPVersion, URL, CGIList
Syntax: HTTPParsd(lessage,HeaderList,Method,HTTPVersion,URL,CGJList

HTTPParse is a server utility command to parse HTTP header information from an
incoming request message.

Errors in parsing the message header are reported through the standard WebDevError
mechanism. One or more callback methods return error messages and codes.

Messagds an OMNIS Character field containing the full text of an HTTP request message.

HeaderListis an OMNIS list defined to have two character columns. The list contains
information culled from the HTTP message header as attribute/value pairs on each row.
There is one row for each item found on the header.

Chapter 6—External Commands

For example, after the call, the list might contain entries such as:

Attribute Value

Date The current GMT date and time in HTTP header

format

User-Agent NCSA Mosaic for the X Window System/2.4 libwww/2.12 modified
Accept /

Content-type application/x-www-form-urlencoded

Content-length | 1234

Note: HTTPParse automatically strips the colons after the attribute names.

Methodis an OMNIS character field that receives the type of HTTP method being
requested: GET, POST, or HEAD.

HTTPVersions an OMNIS Character field containing the version of HTTP. Currently this
is the constart.0.

URL is an OMNIS Character field that receives the name of the URL to be processed for the
GET, POST, or HEAD. This contains the name of the URL, possibly preceded by a path. At
a minimum, the path is a single slash, so every URL returned from HTTPParse is of the
form /JURLName.

Note: Due to the presence of the leading slash, a simple OMNIS equality string comparison
to the name of the URL fails. Use the pos() function or similar parsing mechanism to find
the URL name. The trailing question mark of a GET-method CGl, which separates the URL
path from the CGI arguments, is stripped by HTTPParse.

CGiListis an OMNIS list field defined to have two character columns. The list contains
information culled from the arguments (if any) that are passed to a CGI. There is one row
for each field by the CGI method. In this way, an OMNIS method can acquire the values
from a Web form. For example, if the following HTML form is the submitted from a
browser to the OMNIS Web listener server:

Name:

City:

Are you alive?

External Commands 499

and the user types fohn Smith, Podurdénd checks the City field, then after HTTPParse,
CGilListcontains:

Attribute Value

Name John Smith
City Podunk
Alive Yes

Submit Please

Note: Before the values are placed in the list, HTTPParse automatically decodes any CGl
encoding required to pass special characters in the entry. There is no need to call the
CGIDecode command to decode the value entries in the list.

HTTPPost

Reversible: NO Flag affected: NO

Parameters: Hostname, URI, CGlList, HeaderList, Port

Returns: ReturnsSocket

Syntax: HTTPPostHostname,URICGIList,HeaderLisf, Port]]])

HTTPPost is a client command that submits a POST-method CGI request to a Web server.
HTTPPost returns a positive integer socket number opened to the Web server as a result of
the POST CGl irsocket This allows OMNIS to read the results of the CGI request on this
socket. In the case of an error, a value of -1 (minus one) is returned for the socket number.
Errors in parsing the message header are reported through the standard WebDevError
mechanism.

Hostnameés an OMNIS character field containing the hostname of a Web server to which
to connect.

URI is an OMNIS Character field containing the path and the name of the CGI to be run on
the Web server. Often this value can be determined by looking at the source to an HTML
page that requests the CGl.

CGlListis an optional parameter that specifies a 2-column OMNIS list. The list contains
information to be sent as the arguments of the CGI. There is one row for each field passed
to the POST CGI method. In this way, an OMNIS method can send OMNIS field values to
a Web server. For example:

500 Chapter 6—External Commands

Attribute Value

Name John Smith
City Podunk
Alive Yes

Submit Please

Note: Before the values are sent to the Web server, HTTPPost performs any CGI encoding
required to pass special characters in the arguments. There is no need to call the CGIEncode
external command to encode the value entries in the list.

HeaderListis an optional parameter specifying an OMNIS list defined to have two
character columns. The list contains information added to the HTTP message header as
attribute/value pairs on each row. There is one row for each item found on the header. For
example, after the call, the list might contain HTTP Header entries such as:

Attribute Value
Accept *

/*

Content-type | text/html

Portis an optional parameter that designates a local client port for the return of data.

HTTPPost adds colons to the attributes when it constructs the header. Do not end attribute
names with a colon. HTTPPost adds the following header fields by default:

Attribute Value

Date The current GMT date and time in HTTP header format
Server OMNIS7/3.5

MIME-version | 1.0

External Commands 501

502

HTTPRead

Reversible: NO Flag affected: NO
Parameters: Socket, Message

Returns: Length

Syntax: HTTPRead$ocket,Messaje

HTTPRead is a server command that reads a character stream from a socket, functionally
equivalent to TCPReceive.

Socketis an OMNIS Integer field containing the number of a socket previously opened.
Streamis an OMNIS Character field used to receive the characters waiting on the socket.

Lengthis an OMNIS Long Integer field containing the number of characters read, if greater
than or equal to O (zero).

If an error occursl.engthcontains a WinSOCK error code in the form of a number less than
0 (zero), shown at the end of this chapter. If the socket is set to non-blocking, an error of -
10035 is returned to indicate that there is nothing to read. Otherwise, the socket blocks
indefinitely. Using WebDevError, one or more callback methods return error messages and
codes.

HTTPSend

Reversible: NO Flag affected: NO
Parameters: Socket, HTML

Returns: Length

Syntax: HTTPSendBockeHTML)

HTTPSend is a server command that sends a character stream to a socket, functionally
equivalent to TCPSend.

Socketis an OMNIS Integer field containing the number of a socket previously opened.
HTML is an OMNIS Character field containing the characters to send through the socket.

Lengthis an OMNIS Long Integer field containing the number of characters sent if greater
than or equal to O (zero). If an error occurasngthcontains a WinSOCK error code in the

form of a number less than 0 (zero), shown at the end of this chapter. If the socket is set to
non-blocking, an error of -10035 is returned, indicating that the socket is blocked and the
send has failed or is incomplete.

Chapter 6—External Commands

HTTPServer

Reversible: NO Flag affected: NO
Parameters: WebProc, Port
Syntax: HTTPServerVebProg,Port])

HTTPServer invokes a listening socket on port 80, or a user-specified port, to receive
incoming HTTP Web requests. This function shows an OMNIS working message with the
count of accepted connections. HTTPServer calls back into a user-specified OMNIS

method when a connection is accepted on port 80 or on the specified port. The user function
receives the socket number connected to the client. Even though HTTPServer is meant to
allow OMNIS to accept incoming HTTP connections, it can serve any other purpose
requiring a fast accept loop on a user-specified port.

Standard WinSOCK and command argument errors are reported using WebDevError.

WebProcdis an OMNIS Character field containing an address for an OMNIS method to be
called when a connection is accepted. The method receives one parameter, the number of
the socket on which the connection has been accepted. For example: MYCODE or
MYLIBRARY.MYCODE. You should use the method name qualified by the library name

if your applications are in a multi-library environment.

;Parameter ConnectedSocket (Long integer)

You may read and write to the parameter socket with HTTPRead, HTTPSend, or
HTTPHeader external commands or a TCP equivalent (TCPSend; for example). All
sockets are created equal.

Portis an OMNIS Integer field that is optionally used to indicate a default port number
other than 80.

Caution: You must close the connected socket with HTTPClose before quitting the
OMNIS method.

Stopping the Server Listener
Once initiated, the server runs indefinitely until it is stopped. There are two ways to stop
HTTPServer listeners:

1. Press the Cancel button on the working dialog displayed by the external command.
HTTPServer is in a very tight listening loop. Sometimes you may have to click on the
Cancel button more than once to get the external command’s attention.

2. You may set the OMNIS flag variable to false before returning from the
AcceptCallback method. The HTTPServer checks the flag and stops, continuing
execution from the next method after the original call to HTTPServer.

External Commands 503

HTTPSplitHTML

Reversible: NO Flag affected: NO
Parameters: Message, TagTextList
Syntax: HTTPSplitHTML(MessageragTextList

HTTPSplitHTML is a client utility function to parse the HTML from a Web page into an
OMNIS list. The HTML tags are parsed out of the text, so that it easy to write a program
that grabs the Web page content or interprets the tags from a form.

Messagds an OMNIS Character field containing the text of the content portion of a Web
page, including HTML tags.

TagTextLisis an OMNIS list defined to have three columns, all character. Column 1
contains the opening HTML tag, column 2 the actual page text, and column 3 the closing
HTML tag.

Using WebDevError, one or more callback methods return error messages and codes.

HTTPSplitURL

Reversible: NO Flag affected: NO
Parameters: URL, Hostname, URI
Syntax: HTTPSplitURLURLHostnamgJRI)

HTTPSplitURL is a server or client utility function to split a full URL into a hostname
name and a path (that is, a URI). Useful for following HREF links on pages. Errors in
parsing the URL are reported through the standard WebDevError mechanism.

URL is an OMNIS Character field containing a standard Web page URL of the form
http://host.mydomain.com/path/webpage.html

Hostnamés an OMNIS character field that receives the domain name parsed out of the
URL argument. For example, given the URL, above, the domain portion would be
host.mydomain.com

URIis an OMNIS Character field that receives the path and page name spec parsed out of
the URL argument. For example, given the URL, above, the URI would be
path/webpage.html.

504 Chapter 6—External Commands

MAILSplit

Reversible: NO Flag affected: NO
Parameters: Message, HeaderList, Body

Returns: Statusl (one) if successful and a O (zero) if error
Syntax: MAILSplit(Message,HeaderList,Bogy

MAILSplit is a utility command to parse RFC 822 mail headers. It strips the mail header
from the body of a mail message.

Messagds an OMNIS Character field containing the complete text of an Internet e-mail
message, including the header. These are returned in the MailList argument of the
POP3Recv external command. For example

Received: by omnis-software.com with SMTP; 12 Aug 1996 11:49:59 -0700
Received: (from someone@Iocalhost) by netcom8.netcom.com (8.6.13/Netcom)
id LAA09789; Mon, 12 Aug 1996 11:46:45 -0700

Date: Mon, 12 Aug 1996 11:46:45 -0700

From: someone@somedomain.com (PersonalName here)

Message-ld: <199608121846.LAA09789@netcom8.netcom.com>

To: someoneelse@somedomain.com

Subject: This is an e-mail subject

Hello from OMNIS Software, Inc.

HeaderListis an OMNIS list defined to have two character columns. The list receives the
information from the e-mail message header as attribute/value pairs on a row of the list.
There is one row for each item in the header. This function can format the message for
simpler display or to find when a message has been sent for filing and other purposes. For
example, assuming the e-mail message above:

Attribute Value
Received by omnis-software.com with SMTP; 12 AUG 1996 11:49:59 -

netcom8.netcom.com0700 (from someone@localhost) by
netcom8.netcom.com

Received (8 .6 .13/Netcom) id LAA09789 ; MON, 12 AUG
1996 11:46:45 -0700

Date Mon, 12 Aug 1996 11:46:45 -0700

From someone@somedomain.com (Personal Name here)

<199608121846.LAA09789@
Message-Id netcom8.netcom.com>

To someoneelse@somedomain.com

Subject This is an e-mail subject

External Commands 505

506

Note: Two header lines may have the same attribute name. This is within the RFC822
message header specification. In this case, the HeaderList has two lines with the same
Attribute name, as witReceived in the above example. Long header lines that are split and
continued in the message header are concatenated into one line in the list, as with the seconc
Received attribute in the above example. The colon at the end of the attribute is stripped.

Bodyis an OMNIS character field. The body of the e-mail message is returned into this
variable, minus the header. For examplello from OMNIS Software, Inc.
Errors are reported using the WebDevError callback mechanism.

Move file

Reversible: NO Flag affected: NO

Parameters: From path (file to be moved)
To path (the new location)
Return field

Syntax: Move file (from-path, to-path)returnsreturn-field

This command moves the file specifiediiom-pathto the directory named to-path It
returns any error code, shown at the end of this chapter, or zero if ntmpathis a
directory only, the file is moved to that directorytdfpathincludes a filename and
directory name the file is moved and renamed. This may fail tbtpathdirectory
contains a file with the same namefrasn-pathfilename.

Move filecannot move a file across volumes (disks). Ospy fileandDelete fileinstead.
The Windows version dflove filecannot move directories; the MacOS version can.

Chapter 6—External Commands

NSF Add fields

Reversible: NO Flag affected: NO

Parameters: Note ID
Commit/NoCommit flag
Field list
Status return field

Syntax: NSF Add fields(note-id, commit-flag, field]Lfield2]...)
returnsstatus-field

This command writes new field values to the Note specified by the Note ID. For example
NSF Add fields (Note_ID,'"Commit) Returns R

In this formNSF Add fieldsloes the following:

1. Opens the Note

2. For each field in the current 'map’ table it adds a field to the Note

3. Writes the Note to disk

4. Returns the number of fields updated

The calls used to add the fields will delete and replace any fields that are already there.

You can specify a list of fields in which case the map table is ignored and the value of the
field or fields is added, for example

NSF Add fields (Note_ID,'NoCommit','Field1','Field2' Returns R

The Commit/NoCommistring controls the flushing of the note from the disk cache on the

server.
NSF Attach file
Reversible: NO Flag affected: NO
Parameters: Note 1D
File path
File name
Status return field
Syntax: NSF Attach file(note-id, file-path, file-nameyeturns
status-field

This command attaches a file attachment to a Note. The file path and name are separate
parameters, the file name being the name of the file as stored in the attachment and the path
being the location of the file on the local hard disk.

External Commands 507

508

NSF Build view

Reversible: NO Flag affected: NO
Parameters: View name
List name
Text key
Partial
Number return field
Syntax: NSF Build view(view-name, list-namfgtextkey[,'Partial'])
returnsnumber

This command moves data from a view into an OMNIS list. You can also search the
primary index with a text key, either using a partial or full match on the index. The search is
insensitive to diacritical marks. Théew-nameandlist-nameparameters are compulsory.

As each note is opened, its fields are read into the OMNIS record buffer and added to the
list. Thus, the last Note found in the view is always loaded into the "mapped" variables.
There is no way to prevent the values from being added to the list unless you were to
redefine the columns of the list to be different to the "map".

Set current list LIST2

Define list {Note_ID,LastName,FirstName,PhoneNumber}

NSF Map Fields ('LIST2') Returns R

NSF Build View ('People','LIST2") Returns R

Redraw windows NotesWindow

NSF Build viewdoes the following:

Opens the view note

Creates a collection of notes from the view
For each note, it uses its ID to open the view

For each field in the OMNIS map it tries to read the named field from the note

SRR ST A

If a matching field is found, it reads the value into OMNIS
6. When all the "mapped" fields have been processed, it adds a line to the specified list.

If you use a list with no mapped fields a blank line will be added for each not&lSIFhe
Build Viewcommand returns the number of notes found in the view.

If you add theext-keyparameter a search is carried out for a matching value in the primary
index for that view. For example

NSF Build View (‘People’,'LIST2','Pon') Returns R

The Partial' parameter will search for a partial match beginning with the text value
supplied in parameteext-key For example

Chapter 6—External Commands

; Beginning with 'P'
NSF Build View (‘People','LIST2','P','Partial’) Returns R

NSF Close all files

Reversible: NO Flag affected: NO
Parameters: Status return field
Syntax: NSF Close all files returrstatus-field

This command closes all open Notes database files.

NSF Close file

Reversible: NO Flag affected: NO

Parameters: Pathname or Mail_File
Status return field

Syntax: NSF Close filgpath-namdmail_file")
returnsstatus-field

This command closes the specified file and writes any data to disk. A database remains
open until it is closed with this command.

NSF Close file (‘Mail_file")

NSF Copy Note

Reversible: NO Flag affected: NO
Parameters: Note 1D

Return field
Syntax: NSF Copy Noténote-id) returnsreturn-field

This command copies a Note from the current database to a specified database. If the target
database is not open, it will be opened, but not made current.

External Commands 509

NSF Delete Note

Reversible: NO Flag affected: NO

Parameters: Note ID
Status return field

Syntax: NSF Delete Noténote-id) returnsstatus-field

This command deletes the specified Note from the currently open file. For example

NSF Delete Note (Note_ID) Returns #F
If flag false

OK message {Error}
End If

NSF Describe fields on form

Reversible: NO Flag affected: NO

Parameters: Form name
List name
Field name
Field type
Status return field

Syntax: NSF Describe fields on forfform-name, list-name, field-name,
field-type)returnsstatus-field

This command builds a list of objects on the specified form. Forms in Notes contain a
certain amount of data relating to the fields and their data types. This command describes
the field names and types of the form and places the description in the named list.

This method builds a list of fields on "Myform":

NSF Describe fields on form (MyForm,'FieldsList','Field', Type")
Returns #F

510 Chapter 6—External Commands

NSF Find forms

Reversible: NO Flag affected: NO
Parameters: List name
Field name
Status return field
Syntax: NSF Find formglist-name, field)returnsstatus-field

This command builds a list of forms in the current Notes database. Forms in Notes contain a
certain amount of data relating to the fields and their data types. The following example
builds a list of forms, stripping out any aliases in the names.

Set current list FormList
Clear list
NSF Find forms (‘FormList','Form’) Returns R
For each line in list from 1 to $linecount step 1
If pos(';',Ist(Form))

Calculate FormList('Form',LIST.$line) as
mid(Ist(Form),1,pos(’;',Ist(Form))-1)

End If
End For
NSF Get info
Reversible: NO Flag affected: NO
Parameters: Info string return field
Syntax: NSF Get info returnsfo-string

This command gets the file info for the current open Notes database file.

NSF List open NSF files

Reversible: NO Flag affected: NO

Parameters: List name
Status return field

Syntax: NSF List open NSF fileflist-name)
returnsstatus-field

This command builds a list of open NSF files. The list is built in the specified list for which
a single column must have been defined.

External Commands 511

NSF Mail Note

Reversible: NO Flag affected: NO

Parameters: Note ID
Note ID return field

Syntax: NSF Mail Note(note-id) returnsnote-id

This command sends a Note to the mail file. The Notes DLL uses the API call

OSPathNetConstruct(NULL,szMailServerName,"MAIL.BOX",
szMailBoxPath);

to create the path to the file. After writing to the Mail file, the data is not flushed to disk
until the file is closed wittlNSF Close file

NSF Make Note

Reversible: NO Flag affected: NO

Parameters: Form name
Note ID return field

Syntax: NSF Make Notdorm-namereturnsnote-id
This command inserts a new note in the currently open file, sets its default form and returns
the Note_ID. For example

NSF Make Note (‘SimpleDataForm') returns Note_ID
OK message {Made [Note_ID]}

NSF Make response

Reversible: NO Flag affected: NO

Parameters: NotelD
Response flag
Return field

Syntax: NSF Make respong@ote-id, response-flagieturnsnumber-field

This command creates a “response” document to a note specifiedrimtehid You can
then add fields to the new note usM§F Add fields

Set current list LIST2

Define list {PLAIN_TEXT,NUMBER,TIME_DATE,TEXT_LIST,Note_ID}

NSF Map fields ('LIST2'") Returns R

NSF Make response (Note_ID,'Response’) Returns R

Calculate Note_ID as R ;; now points to the new note

OK message (High position,Large size) {Made reponse [R]}

512 Chapter 6—External Commands

NSF Make server path

Reversible: NO Flag affected: NO
Parameters: Server

NSF file

Path return field
Syntax: NSF Make server paflserver, nsf-file)returnspath

This command returns the path to the specified server and NSF file. To access a database or
a server and open a mail file, the user must have access to the server itself. Otherwise an
error is returned when the API program attempts to open the database.

NSF Make server path (LANSERVE','Specs') Returns NPATH

NSF Open Notes file (NPATH) Returns #F

If flag false
Ok message {Error opening note file Specs}
End If
NSF Map fields
Reversible: NO Flag affected: NO

Parameters: List name
Status return field

Syntax: NSF Map fieldglist-name)returnsstatus-field

This command maps Notes fields onto OMNIS field names and field types; you can map up
to 32 fields. Once the map has been set up, an array of field references and associated
OMNIS field types is held in RAM by the DLL interface that you can use with subsequent
NSF SelecandNSF Build viewcommands. The OMNIS field names have to exactly match
the Notes field names for Notes to return any information.

; set up variables for list

Set current list LIST2

Define list {Note_ID,LastName,FirstName,PhoneNumber}
NSF Map fields ('LIST2") Returns R

NSF Build view (‘People’,'LIST2") Returns R

Redraw windows NotesWindow

External Commands 513

514

NSF Open file

Reversible: NO Flag affected: NO

Parameters: Pathname
Status return field

Syntax: NSF Open filgpath-name)returnsstatus-field

This command opens the database file with the specified pathname. To determine the
correct path for the file, open the file in Notes and us&ymopsis...option to read the

path to that database. When the path is not spebtifs#elOpen filewill look in the Notes
directory for the named file. A return value 1 indicates that the file was already open and
was made the 'current' file, return value 2 indicates that the file was opened for the first
time.

The number of simultaneous open databases is set to 8. The last opened database is the
"current” one and reopening an open database simply makes it the "current" one. You must
give thesamepath to the database file each time it is opened.

NSF Open file ('Names') returns Statusfield
NSF Make Note ('SimpleDataForm') Returns #F

If flag false
; OK message {Error}
End if
; continue
NSF Select
Reversible: NO Flag affected: NO

Parameters: Listname
Select macro
Date
View title
Status return field

Syntax: NSF Selecflist-name, select-macro, date, view-title)
returnsstatus-field

This command uses the API call "NSFSearch". This function carries out a sequential search
of the current Notes database. It scans all the notes in a database or files in a directory.
Based on several search criteria, the function calls a user-supplied routine that fills the
OMNIS list for every note or file that matches the criteria. NSFSearch is a powerful

function that provides the general search mechanism for tasks that process all or some of the
documents in a database or all or some of the databases in a directory.

Thedateargument limits the search to notes created or modified since a certain time or
date.

Chapter 6—External Commands

Theview-title string contains the view name. If the selection formula specified by the

second argument contains the @ViewTitle function, Notes uses the view name specified by
this argument to resolve this @ViewTitle function. If the selection formula does not contain
the @ViewTitle function do not include thvéew-title parameter.

Set current list LIST1

Define list
{PLAIN_TEXT ,NUMBER, TIME_DATE, TEXT_LIST,RichStuff,Note_ID}

Clear list (All lists)
Set current list TEXT_LIST
Define list {CVAR3}
NSF Select ('LIST1',@All') Returns R
For each line in list
: Process list
End for
Redraw NotesWindow

NSF Servers

Reversible: NO Flag affected: NO
Parameters: List name, Status return field
Syntax: NSF Serverglist-name)returnsstatus-field
This command returns a list of servers visible on the network. The list is built in the
specified list for which you must have defined a single column. For example,

Set current list slist
Define list {FV_Server}
NSF Servers (‘slist’) Returns R

External Commands 515

516

NSF Set error field

Reversible: NO Flag affected: NO

Parameters: Error field name
Status return field

Syntax: NSF Set error fielderror-field -name)returnsstatus-field
This command defines an error field which reports errors during method execution. Once

the error is reported to the error field execution continues. Most Notes commands return an
integer value where 0 indicates an error.

NSF Set error field ('Error")
NSF Build view (‘'VIEW','LIST') Returns #F
If flag false
Ok message {Error [Error]} ;; or call error routine to log it
End if
NSF Unpack file
Reversible: NO Flag affected: NO
Parameters: Note ID
File name
File path
Status return field
Syntax: NSF Unpack file(note-id, file-name, file-pathyeturns
status-field

This command unpacks any files attached to the Note. The file name and path are separate
parameters, thfle-namebeing the name of the file attachment andfiteepath being the
location of the file on the local hard disk.

NSF Where’s my mail?

Reversible: NO Flag affected: NO
Parameters: Info string return field
Syntax: NSF Where’s my mail? returisfo-string

This command returns the server name where the current mail file resides.

; Declare variable SERVERNAME (Character 1000)
NSF Where’'s my mail? Returns SERVERNAME

Chapter 6—External Commands

NSF Who am |

Reversible: NO Flag affected: NO
Parameters: Info string return field
Syntax: NSF Who am | returnsifo-string

This command returns your user name for the current mail file.

NSF Who am | Returns Username

NSF Write composite

Reversible: NO Flag affected: NO
Parameters: Note ID
Commit
Field list
Status return field
Syntax: NSF Write compositénote-id, commit-flag, field]Lfield?]...)

returnsstatus-field

This command writes a composite field (or RTF) to a Notes field. The current
implementation limits the size of text fields written to Notes as the size limit on the Notes
summary buffer of 15K. However, tiNSF Write compositeommand can appenelxt to

an existing RTF field no matter how big it is and you can read fields of any size into
OMNIS.

When reading composite or RTF fields into OMNIS, they are converted to plain text via the
NSFltemConvert routines in the APIl. To append a text value to an existing RTF field you
issue the following command:

NSF Write Composite (Note_ID,'Commit','RichStuff') Returns R

This command never uses the 'map' table and always appends the text in the OMNIS field to
the composite field in Notes with the same name. The text is converted using the API
convert to composite call, using the default fonts and styles. You have no control over the
style of the composite field. There are no size constraints imposed by the OMNIS interface,
thus the Notes API calls to convert an RTF to text and the NSFSetText would be the only
constraints when dealing with large fields.

External Commands 517

518

Open file

Reversible: NO Flag affected: NO

Parameters: Path of file to be opened
Reference number or DOS file handle
R parameter (specifies read-only, otherwise read/write)
Return field

Syntax: Open file(path, refnuni,'R1) returnsreturn-field

This command opens the file namegbath The file reference number is returned in
refnum(under Windows, this is a DOS file-handle). You use this reference number to refer
to the open file when callinglose file, Read file as character, Read file as binary, Write

file as characterandWrite file as binaryTheR parameter is optional and is case-

insensitive. When included this ensures the file opens as read-only, otherwise the file is
opened as read/write.

It returns any error code (shown at the end of this chapter), or zero if none.

Open resource fork ‘_

Reversible: NO Flag affected: NO

Parameters: Path (of file)
Reference number
R parameter (specifies read-only, otherwise read/write)
Return field

Syntax: Open resource forlpath, refnum(,' RY) returnsreturn-field

This command, available under MacOS only, opens the resource fork of the file specified in
path The file reference number is returnedéfmum.If you include theR parameter the
file opens as read-only, otherwise the file is opened as read/write.

It returns any error code (shown at the end of this chapter), or zero if none.

Chapter 6—External Commands

POP3Recv

Reversible: NO Flag affected: NO
Parameters: Server, Username, Password, List, Delete, Status
Syntax: POP3Rec\%erver,Username,Password,Maill[jBteleteStatug)

POP3Recyv retrieves Internet e-mail messages from a POP3 server into an OMNIS list. If an
error is raised, th8tatusfield returns a string containing the wa@BROR. When an error
occurs, all mail may not have been received, and all sockets are closed.

Serveris an OMNIS Character field containing the IP address or host name of a POP3 (Post
Office Protocol Level 3) server that will serve e-mail to the client running OMNIS.
Examplespop3.mydomain.com or 255.255.255.254.

Usernamas an OMNIS Character field containing the account that receives the mail on the
designated server. Usually an account username, for exafgiimaster.

Passwords an OMNIS Character field containing the password for the account specified in
the Username parameter, for examplkgret.

List is an OMNIS list field defined to contain a single column of typed characters. The
column receives the Internet e-mail messages, one per line. The column variable should be
large enough to receive the e-mail message, including the header. The list should be defined
with store long data option selected.

Deleteis an OMNIS Boolean field which, if set, indicates that the message will be deleted
from the server once it has been downloaded into the row in MailList. The default is false,
S0 messages remain on the server if the argument is omitted.

Statusis an optional parameter specifying an OMNIS Character field that contains an
OMNIS method to be called with mail receive status messages. This parameter overrides
WebDevVError settings. The method can display a status message in a window or status line
of a window while the SMTP process proceeds, for exarp{€ODE or

MYLIBRARY.MYCODE

Note: Use the method name qualified by the library name if your applications are in a
multi-library environment.

External Commands 519

520

POP3Stat

Reversible: NO Flag affected: NO
Parameters: Server, Username, Password
Returns: WaitingMsgs

Syntax: POP3Statberver,Username,Passwrd

The POP3Stat command retrieves the number of Internet e-mail messages waiting for a
particular username on a specified POP3 server. If an error is raised, the command returns a
string containing the worRROR. When an error occurs, not all mail may have been

received and all sockets are closed.

Serveris an OMNIS Character field containing the IP address or hostname of a POP3

server that will serve e-mail to the client running OMNIS. For example:

pop3.mydomain.com or 255.255.255.254,

Usernamds an OMNIS Character field containing the account that receives the mail on the
designated server (usually an account username, for exatghmaster).

Passwords an OMNIS character field containing the password for the account specified in
the Username parameter, for examplgret.

WaitingMsgss an OMNIS Long Integer field containing number of e-mail messages
waiting to be collected on the specified server for the specified account.

Chapter 6—External Commands

Put file name

Reversible: NO Flag affected: NO

Parameters: Path of output file
Dialog title
Prompt (ignored under Windows)
Default
Return field

Syntax: Put file namédpath[,dialog-title][, prompi[, defauli)
returnsreturn-field

This command prompts the user to enter a file name and path; it opens the standard Save
as... dialog. You can enter the title of the dialog. The optimmethptis put above the name

of the file the user enters. The default filename is displayed in the dialog. It returns the full
pathname of the file the user enteregédith, or empty if no file was entered (that is, the
Cancel button was clicked). The named file is not opened or created.

It returns any error code (shown at the end of this chapter), or zero if none.

Thepromptparameter is ignored under Windows. If no default name is specified, MacOS
uses "Untitled" and under Windows the field is left empty.
Switch sys(6) = ‘M’
Case kTrue ;o if MacOS
Put file name (PATH, 'Save your file',
'Save as’,'My file') returns ERROR
Default ;; if anything else

Put file name (PATH, 'Save your file',
'MYFILE.TXT'") returns ERROR

End Switch

External Commands 521

522

ReadBinFile

Reversible: NO Flag affected: NO
Parameters: Pathname, Binfld, Start, Length

Returns: Numbytes

Syntax: ReadBinFilePathname,BinflStar{,LengtH])

ReadBinFile reads binary data from the file system or data fork (not the resource fork).

Note for Macintosh Users:ReadBinFile and WriteBinFile are useful for reading and
writing documents but not system and application files.

Pathnamds an OMNIS Character field containing the full path of the file to read.
Binfld is an OMNIS Binary field in which the data is stored.

Startis an optional parameter specifying an OMNIS Integer field that contains the byte
position in the file where the command should start reading. Defaults to 0 (zero), that is, the
beginning of the file.

Lengthis an optional parameter specifying an OMNIS Integer field containing the number
of bytes to read. If the parameter is not used, the value defaults to the length of the file.

NumBytess an OMNIS Long Integer field that is the number of bytes read, if no error
occurs. Otherwise, an error code is returned, shown at the end of this chapter.

A WebDevVError callback method returns error messages and codes.

Chapter 6—External Commands

Read entire file

Reversible: NO Flag affected: NO

Parameters: Path of file to be read
Binary variable (for the returned data)
R parameter (specifies read-only, otherwise read/write)
Return field
Syntax: Write entire file(path, binary-variabld,'R’]) returnsreturn-
field

This command reads an entire file into a binary field. It returns any error code (shown at the
end of this chapter), or zero if none. The Binary value is in the following format:

1. 12 byte header containing the Type (4 bytes), Creator (4 bytes), and Data fork size (4
bytes).

2. Data fork information.

3. Resource fork information.

The size of the data fork determines where the resource fork data is stored, as shown below.
Under Windows, the Type defaults to ‘TEXT’, the Creator to ‘mdos’, and the resource fork
is not stored.

Type Ctreator Drata Size

Dhata

Eesource

External Commands 523

524

Read file as binary

Reversible: NO Flag affected: NO

Parameters: Reference number or DOS file handle
Binary variable (for the returned data)
Start position
Number of bytes
Return field

Syntax: Read file as binargrefnum, binary-variable
[,start-positiof[,num-bytep returnsreturn-field

This command reads a file, or part of a file, into a binary variable. You specify the file
reference number or DOS file handle of the filesfmnum The binary data read from the
file is returned irbinary-variable

If you specify thestart-position the file is read at that absolute byte position (O is the first
byte in the file, 1 is the second byte in the file, and so on), otherwise it begins at the current
position (0 when the file is first opened).If you specify the numbeuof-bytesonly that

many bytes are read, otherwise the file is read until the end of the file is reached.

If you specify astart-positionof 0 andnum-bytesequal to 0, the file pointer is reset to byte
position O in the file. If start-positionof -1 is given, the file pointer is reset to the end of
the file. For both cases an empipary-variablebuffer is returned.

It returns any error code (shown at the end of this chapter), or zero if none.

Chapter 6—External Commands

Read file as character

Reversible: NO Flag affected: NO

Parameters: Reference number or DOS file handle
Character variable for the returned text
Start position
Number of characters
Return field

Syntax: Read file as charactérefnum, character-variable
[,start-positiofj[, num-charactery returnsreturn-field

This command returns a file, or part of a file, into a character variable. You specify the file
reference number or DOS file handle of the fileegfnum The text read from the file is
returned incharacter-variable

If you specify thestart-position the file is read at that absolute character position (0 is the
first character in the file, 1 is the second, and so on), otherwise it begins at the current
position (the first character when the file is first opened). If you speuaify-characters

only that many characters are read, otherwise the file is read until the end of the file is
reached.

If you specify astart-positionof 0 andnum-charactergqual to 0, the file pointer is reset to
character position 0 in the file. Ifsdart-positionof -1 is given, the file pointer is reset to
the end of the file. For both cases an enapigracter-variablebuffer is returned.

It returns any error code (shown at the end of this chapter), or zero if none.

Register DLL i!

Reversible: NO Flag affected: NO

Parameters: Library name (of the DLL)
Procedure name
Type definition string
Return field

Syntax: Register DLL(library-name, procedure-name, type-definition)
[returnsreturn-field]

This command registers a DLL and its parameterslibray-nameis a text string

specifying the name of the DLL that contains the procedure specifipbbgdure-name
Thetype-definitionis a text string specifying the data type of the return value and the data
type of all arguments to the DLL. The first lettetygbe-definitionspecifies the return

value. The following table contains the codes to be usggardefinitionincluding a
description of how the argument or return value is passed and a typical declaration for the
data type in the C programming language.

External Commands 525

Code Description Pass By C declaration

A Logical Value short int

B IEEE 8-byte floating point Value double

C Null-terminated string Reference char *

D Pascal string Reference unsigned char *
E IEEE 8-byte floating point Reference double *

H Unsigned 2-byte integer Value unsigned short int
I Signed 2-byte integer Value short int

J Signed 4 byte integer Value long int

L Logical Reference shortint *

M Signed 2-byte integer Reference shortint *

N Signed 4-byte integer Reference long int *

\Y, void void

All procedures in the DLL are called using the Pascal calling convention.

The following example opens the Windo@hkaracter Map Editor.

Do method OpenExe (‘charmap.exe',1)

; OpenExe
; Declare Parameter APPNAME (Character 255)
; Declare Parameter INSTRUCTS (Short integer (0 to 255))
Register DLL ~ ('KRNL386.EXE','WinExec','ICI") Returns RESULT
Call DLL (KRNL386.EXE','WinExec',APPNAME,INSTRUCTS) Returns RESULT
If RESULT < 18
Do method Errors
End If

526 Chapter 6—External Commands

Set creator type ‘_

Reversible: NO Flag affected: NO
Parameters: File name (including full path)

New file type

New creator

Return field
Syntax: Set creator typ€ile-namd,file-typd|, creator])

returnsreturn-field

This command changes the creator and/or file type of a MacOS fiethamemust
include the full path. If either tHde-typeor creatoris left empty, the old file type or
creator is used.

Set creator type (‘HD:PicFile’,’PICT'SPNT’)
Set creator type (‘HD:OMNIS:SimpSql.LBR’, TEXT','ttxt’)

It returns any error code (shown at the end of this chapter), or zero if none.

Set file read-only attribute

Reversible: NO Flag affected: NO

Parameters: Path of the file
Read-flag setting
Return field

Syntax: Set file read only attributgéth, read-flag returns feturn-field

This command lets you set the read-only attribute of the file speciffgthnIf you set the
read-flagparameter to kTrue the file is set to read-only, or if kFalse the file is set to
read/write. Note that read-only status is the same as locked under MacOS.

It returns any error code (shown at the end of this chapter), or zero if none.

External Commands 527

528

SMTPSend

Reversible: NO Flag affected: NO
Parameters: Server, From, To, Subj, Body, CC, BCC, FromName, StatCall, Priority
Syntax: SMTPSendGerver,From,To,Subj,Body

[,CC,BCC,FromName,StatCall,Priorily

SMTPSend sends Internet e-mail messages via an SMTP server.

Serveris an OMNIS Character field containing the IP address or hostname of an SMTP
server that will accept e-mail requests from the client running OMNIS, for example,
smtp.mydomain.com or 255.255.255.254.

Fromis an OMNIS Character field containing the RFC 822 Internet e-mail address that will
be placed in the header to identify the sender. Recipients can reply to this address, for
examplewebmaster@www.omnis-software.com.

Tois either an OMNIS Character field or an OMNIS list field. If the field is character, it
contains the RFC 822 Internet e-mail address to which the e-mail will be sefib:Tine

of the message header, for examplehmaster@www.omnis-software.com. If the field is a

list, it is defined to contain a single character column, which contains one RFC 822 Internet
e-mail addressee per row. The addresses appearTin:tliee of the message header. For
example:

ToAddresslist
webmaster@www.omnis-software.com
info@omnis-software.com

Subjis an OMNIS character field containing the subject of the e-mail message. The text
appears on th8ubject: line of the message header, for exampégarding use of
MAILSend ...

Bodyis an OMNIS Character field containing the body of the e-mail message. The text
appears as the actual e-mail message.

CCis either an OMNIS Character field or an OMNIS list field. If the field is character, it
contains the RFC 822 Internet e-mail address to which the e-mail will be sefib:Tine

of the message header might be, for exampemaster@www.omnis-software.com. If the

field is a list, it is defined to contain a single character column, which contains one RFC 822
Internet e-mail addressee per row. The addresses appeaCi®: iree of the message

header. For example:

CCAddresslist
webmaster@www.omnis-software.com
info@omnis-software.com

BCCis either an OMNIS Character field or an OMNIS list field. If the field is a Character
field, it contains the RFC 822 Internet e-mail address to which the e-mail will be sent (the
To: line of the message header, for exampébmaster@www.omnis-software.com). If the

Chapter 6—External Commands

field is a list, it is defined to contain a single character column, which contains one RFC 822
Internet e-mail addressee per row. The addresses appeaBitGhkne of the message
header. For example:

BCCAddresslist
webmaster@www.omnis-software.com
info@omnis-software.com

FromNames an OMNIS Character field containing a personal name that will appear in the
header to identify the user by a more descriptive name than just the e-mail address, for
example OMNIS Webmaster

StatCallis an OMNIS character field containing an OMNIS method that will be called with
status messages about the mail-sending operation. The method can display a status message
in a window or status line of a window while the SMTP process proceeds, for example,
MYCODEor MYLIBRARY.MYCODE.

Note: Use the method name qualified by the library name if your applications are in a multi-
library environment.

Priority is on OMNIS Short Integer field that sets the priority of the e-mail. It accepts a
single value in the range of 1 through 5, a 1 (one) indicating the highest priority.

External Commands 529

Split path name

Reversible: NO Flag affected: NO

Parameters: Path (to be split)
Drive name
Directory
File name
File extension
Return field

Syntax: Split path namépath, drive-name, directory, file-name,
file-extension)returnsreturn-field

This command splits a full path name into its component parts: the drive name, directory
and file name, and file extension. It returns any error code (shown at the end of this
chapter), or zero if none. The following examples show Split path nam®perates.

Mac

Path Dr Directory Filename Extn
HD:TESTDIR:TESTSDIR:TESTFILE HD :TESTDIR:TESTSDIR: TESTFILE
HD:TESTDIR:TESTFILE.EXT HD :TESTDIR: TESTFILE EXT
HD:TESTFILE HD : TESTFILE
Non-Mac

Path Dr Directory Filename Extn
CA\TESTDIR\TESTSDIR\TESTFILE C: \TESTDIR\TESTSDIR\ TESTFILE
CA\TESTDIR\TESTFILE.EXT C: \TESTDIR\ TESTFILE EXT
CA\TESTFILE C: \ TESTFILE

530 Chapter 6—External Commands

TCPAccept

Reversible: NO Flag affected: NO
Parameters: Socket

Returns: Socket

Syntax: TCPAcceptSockel

TCPAccept accepts the first connection on the queue of pending connections on a socket,
creates a new accept socket with the same properties, and returns the number of the new
socket. If no pending connections are present on the queue, and the listenable socket is
marked as blocking, TCPAccept blocks the caller until a connection is present. If the socket
is marked non-blocking and no pending connections are present on the queue, TCPAccept
returns an error as described below. The accept socket is used for all further communication
with that client. The original socket remains open and can accept additional connections.

Sockeis an OMNIS Long Integer field containing a socket number for a new socket
connection to the client if there is no error.

A negative value indicates an error. Check the error status in the WinSOCK error table.

TCPAddr2Name

Reversible: NO Flag affected: NO
Parameters: Address

Returns: Hostname

Syntax: TCPAddr2Namefddres$

TCPAddr2Name is a domain name service external command to resolve the hostname for a
given IP address.

Addresss an OMNIS Character field containing the IP address to convert to a hostname.
The IP address is of the for285.255.255.254

Hostnamds an OMNIS Character field containing a hostname converted from the given IP
address. The hostname is of the fonathine[.domainame.dom]

WinSOCK error codes are returned. Error codes are numbers less than 0 (zero), shown at
the end of this chapter.

Note: This command fails if the address of a Domain Name Server has not been defined in
your computer. Not all host IP Addresses may be known to the Domain Name Server. If the
Domain Name Server is busy or unavailable, the command times out and returns an error.
Defining often -used servers to a local host's file or using a caching Domain Name Server
increases performance of this command.

External Commands 531

532

TCPBiInd

Reversible: NO Flag affected: NO
Parameters: Socket, Service/Port

Returns: Status

Syntax: TCPBindGocke{Service/Pori)

TCPBInd binds a socket created with TCPSocket() to a particular local port.
Socketis an OMNIS Long Integer field, containing the number of the socket.

Service/Poris an optional parameter, either an OMNIS integer field containing either the
number of the port to which the socket should be bound or an OMNIS character field
containing a name from the Windows Services file.

Statusis an OMNIS Long Integer field containing a O (zero) if the bind was successful, or a
standard WinSOCK error code, shown at the end of this chapter, if the bind was
unsuccessful.

TCPBlock 1|

Reversible: NO Flag affected: NO
Parameters: Socket, option

Returns: Status

Syntax: TCPBlockSocket,option

The TCPBlock command makes a socket blocking or non-blocking. If a socket is blocking,
an Accept, Receive, Send, or Connect stops processing, that is, “blocks” until satisfied. A
receive waits until the remote machine has performed a send. For example, a non-blocking
socket returns -10035 if no information is available to read or if the socket is not ready to
send information. WinSOCK error codes are returned, shown at the end of this chapter.

Please note that this i3/indows command onl¥herefore, before issuing this command,
test sys(6) for ‘W’ or ‘N'. This prevents the following dialog from appearing to a Macintosh
end userTCPBlock not implemented yet.

Non-blocking sockets are usually preferable, although more coding is necessary. WinSOCK
defaults to non-blocking. The Mac is non-blocking only. If you attempt to use a blocking-
type socket on the Windows 16-bit platform, the machine hangs while the socket is waiting
for a message.

Sockeis an OMNIS Long Integer field containing a number identifying a valid socket.

optionis an OMNIS field with the value of 1 (one) or 0 (zero). One (1) is for non-blocking
and 0 (zero) is for blocking.

Statusis an OMNIS Long Integer field that, if no error occurs, returns a 0 (zero). If an error
occurs, a negative value indicates an error.

Chapter 6—External Commands

TCPClose

Reversible: NO Flag affected: NO
Parameters: Socket

Returns: Status

Syntax: TCPCloseBockel

TCPClose closes and releases a socket.

Socketis an OMNIS Integer field containing a number representing a previously opened
socket.

Statusis an OMNIS Long Integer field that, if no error occurs, returns a socket number for
the new socket connected to the client. If an error occurs, a standard WinSOCK error code
is return, shown at the end of this chapter.

Note: Non-blocking sockets may return an error code of -10035 if the socket is busy and
cannot be closed.

TCPConnect

Reversible: NO Flag affected: NO
Parameters: Server, Service

Returns: Socket

Syntax: TCPConnectherver,Service

TCPConnect creates a new socket open to a particular service or port on a named server or
IP address.

Serveris an OMNIS Character field containing the domain name or IP address of the server
to which the socket is to connect.

Serviceis an OMNIS Character field containing either a port number or a name (from the
Services file on a Windows system) of the port to connect with on the named server.

Sockets an OMNIS Long Integer field that returns the number of the allocated socket. If an
error occurs, a standard WinSOCK error code, shown at the end of this chapter, is returned
in Socket

Note: This differs from the more standard implementation of the connect-sockets call.
Instead of creating a socket with one command (such as TCPSocket), then sending the
socket number to a connect command, TCPConnect creates the socket and returns the
socket number in one step.

External Commands 533

TCPGetMyAddr

Reversible: NO Flag affected: NO
Parameters: None

Returns: Address

Syntax: TCPGetMyAddr()

TCPGetMyAddr is a domain hame service external command to resolve the IP address of
the local computer running OMNIS.

Addresss an OMNIS Character field containing an IP Address of the local host. The IP
address is of the for@b5.255.255.254

WinSOCK error codes are returned. Error codes are numbers less than 0 (zero), shown at
the end of this chapter.

TCPGetMyPort

Reversible: NO Flag affected: NO
Parameters: Socket

Returns: Port

Syntax: TCPGetMyPortGockel

TCPGetMyPort is a command to return the number of the TCP port to which a given socket
is connected.

Sockeis an OMNIS Long Integer field containing a socket connected to a peer or bound to
a port.

Portis an OMNIS Long Integer field containing the number of the port to which the socket
is bound.

WinSOCK error codes are returned. Error codes are numbers less than 0 (zero), shown at
the end of this chapter.

Note: This command fails if the socket is not connected or bound to a port. Some
implementations of WinSOCK return a number that is offset from the actual port number.

534 Chapter 6—External Commands

TCPGetRemoteAddr

Reversible: NO Flag affected: NO
Parameters: Socket

Returns: Address

Syntax: TCPGetRemoteAdd8gockex

TCPGetRemoteAddr is a command to return the IP address of the remote computer to
which a given socket is connected.

Socketis an OMNIS Long Integer field containing a socket connected to a peer.

Addresss an OMNIS Character field containing the IP Address host to which the socket is
connected. The IP address is of the f@f%.255.255.254

WinSOCK error codes are returned. Error codes are numbers less than 0 (zero), shown at
the end of this chapter.

Note: This command fails if the socket is not connected.

TCPListen

Reversible: NO Flag affected: NO
Parameters: Socket

Returns: Status

Syntax: TCPListenSockex

TCPListen puts a socket created with TCPSocket into passive mode. Incoming connections
are acknowledged and placed in a queue pending acceptance via TCPAccept.

Sockeis an OMNIS Long Integer field containing the number of a socket that has been
bound to a port.

Statusis an OMNIS Long Integer field that, if no error occurs, TCPListen returns a 0 (zero).
If there is an error, a value of -1 (one) is returned.

External Commands 535

536

TCPName2Addr

Reversible: NO Flag affected: NO
Parameters: Hostname

Returns: Address

Syntax: TCPName2Addilostnamg

TCPName2Addr is a domain name service external command that resolves the IP address
for a given hostname.

Hostnames an OMNIS Character field containing a hostname to convert to an IP address.
The hostname is of the forriachine[.domainame.dom]

Addresss an OMNIS Character field containing the IP Address corresponding to the given
hostname. The IP address is of the f@f%.255.255.254

WinSOCK error codes are returned. Error codes are numbers less than 0 (zero), shown at
the end of this chapter.

Note: This command fails if the address of a Domain Name Server has not been defined in
your computer. Not all host IP Addresses may be known to the Domain Name Server. If the
Domain Name Server is busy or unavailable, the command times out and returns an error.
Defining often-used servers to a local host's file or using a caching Domain Name Server
increases performance of this command.

TCPPing

Reversible: NO Flag affected: NO
Parameters: server, size, timeout

Returns: Milliseconds

Syntax: TCPPingG&ervef,Siz¢, Timeou]])

TCPPing sends an ICMP request packet to a specified IP address or named host. It returns
the round-trip packet time in milliseconds. If the host is unreachable or not available, the
command will returns a negative number and an error message.

Serveris an OMNIS Character field containing the IP address or domain name of the host
to ping.

Sizeis an optional parameter specifying an OMNIS Long Integer field containing the size,
in bytes, of the packet to ping the specified host. Typical values are from 512 to 2,048
bytes.

Timeoutis an optional parameter specifying an OMNIS Long Integer field containing the
number of milliseconds to use as a timeout value for the ping request. If the host is
unavailable or does not respond in the specified number of milliseconds, the TCPPing
function cancels the ping request and returns an error.

Chapter 6—External Commands

Millisecondsis an OMNIS Long Integer field. When no error occur, TCPPing returns the
number of milliseconds that it took to receive the ping response from the host. On very fast
LANSs, it is possible that the ping can complete so quickly that the value may be 0 (zero). A
negative number indicates a WinSOCK error code, shown at the end of this chapter.

A value of -1 (one) is returned if the ping times out. Error messages are returned using the
standard WebDevError mechanism.

TCPReceive

Reversible: NO Flag affected: NO
Parameters: Socket, Buffer

Returns: receivedCharCount

Syntax: TCPReceivebocket,Buffer

TCPReceive receives a message on a socket.

HTTPPage allows you to get HTML text source through a server, transparently and without
additional coding. If you need to customize the process for a proxy server, you can use a
combination of HTTPGet and TCPReceive. For this technique, see the sample code in
“Accessing a Proxy Server” .

Socketis an OMNIS Long Integer field containing the number of a socket previously
opened.

Bufferis an OMNIS Character field containing a character variable to receive the characters
waiting on the socket.

receivedCharCouns an OMNIS Long Integer field containing the number of characters
received into the message.

WinSOCK error codes are returned when error codes are values less than 0 (zero), shown at
the end of this chapter.

Note: Non-blocking sockets may return an error code of -10035 if the socket is not ready or
able to read the characters. Some implementations of socket libraries may have limits on the
number of characters you can receive at one time. Consult the documentation for your
installed sockets libraries. You may have to read the message of characters in multiple
chunks and assemble the entire message. Always check the number of characters returned tc
make sure there was no error.

External Commands 537

TCPSend

Reversible: NO Flag affected: NO
Parameters: Socket, Message

Returns: sentCharCount

Syntax: TCPSendfocket,Message

TCPSend sends a message on a socket.
Socketis an OMNIS Long Integer field containing a socket previously opened.
Messagds an OMNIS Character field containing characters to send on the socket.

receivedCharCouris an OMNIS Long Integer field containing the number of characters
sent.

WinSOCK error codes are returned when error codes are values less than 0 (zero), shown at
the end of this chapter.

Note: Non-blocking sockets may return an error code of -10035 if the socket is not ready or
able to send the characters. Some implementations of socket libraries may have limits on the
number of characters you can send at one time. Consult the documentation for your installed
sockets libraries. You may have to read the message of characters in multiple chunks in
order to send a very long message. Always check the number of characters returned to make
sure it matches the length of the message argument.

TCPSocket

Reversible: NO Flag affected: NO
Parameters: None

Returns: Socket

Syntax: TCPSocket()

TCPSocket creates a hew socket.
Sockeis an OMNIS Long Integer field containing the number of the allocated socket.

WinSOCK error codes are returned when error codes are socket numbers less than 0 (zero),
shown at the end of this chapter.

538 Chapter 6—External Commands

Truncate file

Reversible: NO Flag affected: NO
Parameters: Reference number or DOS file handle
End position
Return field
Syntax: Truncate file (refnum[,end-position]) returns return-field

This command truncates a file. You specify the file reference number or DOS file handle of
the file in therefnum The file is truncated at the current position of the file pointer or the
specifiedend-positionf given.

It returns any error code (shown at the end of this chapter), or zero if none.

UUDecode

Reversible: NO Flag affected: NO
Parameters: stream

Returns: DecodedField

Syntax: UUDecodesgtrean)

UUDecode turns Uuencoded information back into text or binary information. It is the
converse of UUEncode. Uuencoded information is commonly sent over the Internet in a
manner that preserves binary information. Errors are reported via the WebDevError
callback mechanism.

Streamis an OMNIS Character or Binary field containing the information to UUDecode.

DecodedFields an OMNIS Character or Binary field that holds the resulting Uudecoded
representation of thetreamargument. Because Uuencoding is generally used for binary
information, a Binary field is the norm.

External Commands 539

540

UUEncode

Reversible: NO Flag affected: NO
Parameters: stream

Returns: EncodedField

Syntax: UUEnNcodegtrean)

UUEncode can send binary information via e-mail or other Internet facilities that might
otherwise not transfer binary data correctly. UUEncoding turns a file into a stream of
64-character lines of print-only ASCII characters. The encoded version is approximately
1.25 times larger than the original. Errors are reported via the WebDeVError callback
mechanism.

Streamis an OMNIS Character or Binary field containing the information to UUEncode.

EncodedFields an OMNIS Character or Binary field that hold the resulting Uuencoded
representation of thetreamparameter.

WebDeVError

Reversible: NO Flag affected: NO
Parameters: Proc

Returns: Error

Syntax: WebDevErrorProc)

The WebDevError external command provides for the specification for an OMNIS method
to be called when an error occurs in any of the Web Enabler external commands. The
methodis called with the mehtod name. Generally, when one of the external commands
encounters an error while processing, the WebDevError callback mehtod ispcalied
returning to the caller of the original function.

Note: The Web Enabler commands cannot determine whether a particular command is
being executed on a machine acting as a server or a client. If you do not use WebDevError
to set up a mehtod for receiving errors, Web Enabler external commands report errors by
displaying a modal OK message containing the text of the error. This stops processing until
the dialog is dismissed. If Web Enabler is being used as a server, having processing stop is
highly undesirable.

Procis an OMNIS Character field containing an address for an OMNIS mehtod to be
called with error status messages. The mehtod can be used to display or log the error
message or otherwise change normal execution. For example: MYCODE,
MYCODE/MYPROC, MYLIBRARY.MYCODE. You should use the method name
qualified by the library if your applications are in a multi-library environment.

In the example, MYCODE would invoke a method defined as:
;Parameter ErrorMsg (Character 1000000)

Chapter 6—External Commands

;Parameter ErrorID (Short Integer)
;Parameter CommandName (Character)
OK {Web Enabler Error raised: ErrorMsg]}
Quit method

In the method, the parameters are as follows:
ErrorMsgis an OMNIS Character field containing the text of the error message.

ErrorID is an OMNIS Short Integer field containing the error code for the error message,
shown at the end of this chapter.

CommandNamis an OMNIS Character field containing the name of the command that
generated the error.

ProtocolErrorID is an optional OMNIS Character field containing the WinSOCK protocol
error that was generated by a socket operation (for example, one of the TCP sockets
external commands).

Note: See the WinSOCK and Web command error codes at the end of this chapter. Code
1011 means an Error setting callback method: %s, where ‘%s’ is at least the beginning of
the error callback method specification.

WriteBinFile

Reversible: NO Flag affected: NO
Parameters: Pathname, Binfld, Start, Length

Returns: Numbytes

Syntax: WriteBinFile(Pathname,BinflgStart[,LengtH])

WriteBinFile writes binary data to the file system or data fork (not the resource fork).

Note for Macintosh Users:ReadBinFile and WriteBinFile are useful for reading and
writing documents but not system and application files.

Pathnamds an OMNIS Character field containing the full path of the file to which to write.
If the output file does not already exist, WriteBinFile() creates it.

Binfld is an OMNIS Binary field from which to write the data.

Startis an OMNIS Integer field specifying the byte position in the file where writing should
begin. If the parameter is not used, the command defaults to 0 (zero), that is, the beginning
of the file. To append data to an existing file,S&irtto -1 (minus one).

Lengthis an OMNIS Integer field containing the number of bytes to write. If the parameter
is not used, the value defaults to the length of the Binary field.

NumBytess an OMNIS Long Integer field that is the number of bytes written if no error
code is returned.

Using WebDevError, one or more callback methods return error messages and codes.

External Commands 541

542

Write entire file

Reversible: NO Flag affected: NO

Parameters: Path of file to be written to
Binary variable containing data
Return field

Syntax: Write entire file(path, binary-variable)eturns
return-field

This command writes an entire file from a binary field, previously populated by using Read
entire file. It returns any error code (shown at the end of this chapter), or zero if none. The
Binary value is in the following format:

1. 12 byte header containing the Type (4 bytes), Creator (4 bytes), and Data fork size (4
bytes).

2. Data fork information.
3. Resource fork information.

The size of the data fork determines where the resource fork data is stored, as shown below.
Under Windows, the Type defaults to ‘TEXT’, the Creator to ‘mdos’, and the resource fork
is not written.

Type Ctreator Drata Size

Dhata

Eesource

Chapter 6—External Commands

Write file as binary

Reversible: NO Flag affected: NO

Parameters: Reference number or DOS file handle
Binary variable containing data
Start position
Return field

Syntax: Write file as binaryrefnum, binary-variable[,start-
positior]) returnsreturn-field

This command writes the contents of the speclii@ary-variableto a file. You specify the
file reference number or DOS file handle of the fileafnum

If you specify thestart-position writing begins at that byte (0 is the first byte in the file, 1 is
the second byte, and so on), otherwise it begins at the current position (the first byte when
the file is first opened).

It returns any error code (shown at the end of this chapter), or zero if none.

Write file as character

Reversible: NO Flag affected: NO

Parameters: Reference number or DOS file handle
Character variable containing text
Start position
Return field

Syntax: Write file as charactgrefnum, character-variable
[,start-positio}) returnsreturn-field

This command writes the contents of the specifiearacter-variableto a file. You specify
the file reference number or DOS file handle of the fileeinum

If you specify thestart-position writing begins at that absolute character position (O is the
first character in the file, 1 is the second character, and so on), otherwise it begins at the
current position (the first character when the file is first opened).

It returns any error code (shown at the end of this chapter), or zero if none.

External Commands 543

FileOps External Command Error

Codes

The following errors are returned from the FileOps external commands.

Error Codes returned under Windows

Error
Code

Description

Too few parameters passed on the command line

Out of memory error

Undefined error

No operation on this platform

Unable to delete directory or file

Disk 1O error (or error during operation)

File not found

File or directory already exists

Bad file reference number

Problem during rename

Error Codes returned under MacOS

Error
Code

Description

1

Too few parameters passed on the command line

998

Undefined error

No operation on this platform

File or directory full

All Allocation blocks on the volume are full

Specified volume doesn't exist

Disk 10 error

Bad file name or volume name (perhaps zero-length)

File not open

Logical end-of-file reached during read operation

544

=

Chapter 6—External Commands

Description

Attempt to position before start of file

Too many files open

File not found

Volume is locked by a hardware setting

File is locked

Volume is locked by a software flag

One or more files are open

A file with the specified name already exists

Only one access path to a file can allow writing

No default volume

Bad file reference number

Volume not on-line

Read/write permission doesn't allow writing

Specified volume is already mounted and on-line

No such drive number

Volume lacks MacOS-format directory

External file system error

Problem during rename

Master directory block is bad; must re-initialize volume

Read/write permission doesn't allow writing

-120

Directory not found

-121

Too many working directories open

-122

Attempted to move into offspring

-123

Attempt to do HFS operation on a non-HFS volume

-127

Internal file system error

FileOps External Command Error Codes

545

Web Command Error Codes

546

The Web commands return two types of error as negative values: WinSOCK protocol error
codes, and Web command error codes. With the exception of the FTPGetLastStatus errors,
the error message, error code, and the name of the Web command causing the error are
reported by the WebDevError callback mechanism. Macintosh TCP/IP error codes are not
used. You can specify an OMNIS method to handle errors usirigritie Bookmark not
defined.command.

WinSOCK Error Codes

The following WinSOCK Error Codes are returned by Web commands as negative values,
together with a brief explanation.

Error Error Explanation

Code
WSAEINTR -10004 | Interrupted system call
WSAEBADF -10009 | Bad socket number
WSAEACCES -10013| Permission denied
WSAEFAULT -10014 | Bad address
WSAEINVAL -10022 | Invalid argument
WSAEMFILE -10024 | Too many sockets open
WSAEFBIG -10027 | Data too large
WSAWOULDBLOCK -10035 | Operation would block
WSAEINPROGRESS -10034 Operation now in progress
WSAEALREADY -10037 | Operation already in progress
WSAENOTSOCK -10038| Socket operation on invalid socket
WSAEDESTADDRREQ -10039| Destination address required
WSAEMSGSIZE -10040| Message too long
WSAEPROTOTYPE -10041| Protocol wrong type for socket
WSAENOPROTOOPT -10042 Protocol not available
WSAEPROTONOSUPPORT -10043 Protocol not supported
WSAESOCKTNOSUPPORT -10044 Socket type not supported
WSAEOPNOTSUPP -10045 riknown service or bad port number
WSAEADDRINUSE -10048 | Address already in use
WSAEADDRNOTAVAIL -10049 | Cannot assign requested address

Chapter 6—External Commands

Error Error Explanation

Code
WSAENETDOWN -10050 | Network is down
WSAENETUNREACH -10051| Network is unreachable
WSAENETRESET -10052(Network dropped the connection on resgt
WSAECONNABORTED -10053| Software caused connection abort
WSAECONNRESET -10054| Connection reset by peer
WSAENOBUFS -10055| No buffer space available
WSAEISCONN -10056 | Socket is already connected (in use)
WSAENOTCONN -10057 | Socket is not connected
WSAESHUTDOWN -10058 | Cannot send after socket shutdown
WSAETOOMANYREFS -10059| Too many references: cannot splice
WSAETIMEDOUT -10060 | Connection timed out
WSAECONNREFUSED -10061f Connection refused
WSAELOOP -10062| Too many levels of symbolic links
WSAENAMETOOLONG -10063 | File name too long
WSAEHOSTDOWN -10064| Hostis down
WSAEHOSTUNREACH -10065| No route to host
WSAENOTEMPTY -10066 | Directory not empty
WSAEPROCLIM -10067 | Too many processes
WSAEUSERS -10068| Too many users
WSAEDQUOT -10069 | Disk quota exceeded
WSAESTALE -10070 | Stale NFS file handle
WSAEREMOTE -10071| Too many levels of remote in path
WSASYSTEMNOTREADY -10091| Network subsysternuisusable
WSAVERNOTSUPPORTED -10092 WInSOCK DLL cannot support this app|
WSANOTINITIALISED -10093 | WinSOCK not initialized
WSAEDISCON -10101| Disconnected
WSAHOST_NOT_FOUND -11001| Host not found
WSATRY_AGAIN -11002 | Nonauthoritative host not found
WSANO_RECOVERY -11003| Nonrecoverable DNS error
WSANO_DATA -11004 | Valid name no data record of request type
WSAEHOSTUNREACH -11065(Connect failed (DNS)

Web Command Error Codes

547

548

Web Command Error Codes

The following errors are returned by the Web commands as negative values, together with a
brief explanation. To avoid collisions and provide an easy way to test for a message type,
certain error codes are reserved for Web errors.

With the exception of the FTPGetLastStatus error codes, the following scheme applies to
error-code numbering:

Code Description

0 to -999 Programming error

-1000 and | Runtime error caused by a programming error or by an occurrence
higher outside the application’s control, such as a network error, non-responding
server, and so on

The error message, error code, and command causing the error are reported by the
WebDevError callback mechanism, and handled by the OMNIS method specified in the
Error! Bookmark not defined.command.

Note: The TCP commands return socket errors only. See the WinSOCK Errors.

Chapter 6—External Commands

Reserved Codes

or

)

Class/Subclass Range Type
Common caused by | -500to -599 | Programming error
more than one Web
command
FTP -600 to -649 | FTP programming error. Reported by
WebDevError callback mechanism.
HTTP -650t0 -699 | HTTP programming error. Reported by
WebDevError callback mechanism.
E-mail -700to -749 | E-mail programming error. Reported by
WebDevError callback mechanism.
Common caused by -1000 to - Runtime error caused by programming or b
more than one Web 1099 events outside application control
command
FTP -1100 to - FTP runtime error caused by programming
1149 by events outside the control of the application
HTTP -1150 to - HTTP runtime error caused by programmin
1199 or by events outside the control of the
application
E-mail -1200 to - E-mail runtime error caused by programmin
1249 or by events outside the control of the
application
Web Errors

The following Web Error Codes are returned by Web commands as negative values,
together with a brief explanation.

U Common errors are generated by more than one command set.

U FTP runtime client errors are generated by FTP commands.

U HTTP runtime errors are generated by HTTP commands.

U E-mail runtime errors are generated by e-mail commands.

Where a number or name is returned within the message, the following abbreviations are

used in citing the error below:

%u

Numerics (for example, a column number)

%s

Text (for example, a fieldname)

Web Command Error Codes

549

Common Programming errors

Error Error Text
Code

-501 Invalid argument type for: %s (arg %u)
-502 Problem obtaining argument (arg %u)

-503 Incorrect number of arguments
-504 Must supply a %s (arg %u)
-505 Invalid value for %s (arg %u)

-520 %s list must contain %u columns (arg %u)

Common Runtime errors

Error Error Text
Code

-1010 | Insufficient memory to satisfy the request

-1011 | Error setting callback method: %s
-1012 | Invalid %s (arg %u)
-1051 | Unable to locate the required service on the server: %s

-1052 | Error establishing communications with server

-1053 | Error establishing a connection with the server

-1054 | Error while receiving response from server

-1055 | Error while sending data to server

-1056 | Error while responding to the client

-1057 The current command failed because it timed out on the server

550 Chapter 6—External Commands

FTP Errors

Error codes returned by FTPGetLastStatus command or reported by WebDevError callback
mechanism. FTPGetLastStatus returns only codes -1 to -12. The command is redundant but
is retained for backward compatibility. WebDeVvError callback returns codes -500 to -599, -
600 to -649, and -1101 to -1140. FTP errors are client runtime errors.

Error Error Text

Code

-1 Attempt to connect to server failed

-2 Connection lost

-3 Invalid username or password

-4 No such file

-5 Invalid argument

-6 No free sockets (too many connections)

-7 No such server (DNS failed)

-8 Client configuration error (i.e., can’t get local IP address)

-9 Server protocol error - server response unexpected

-10 Client file I/O error (disk full, network volume dismounted, etc.)
-11 Out of memory error (common in FTPGetBinary/FTPPutBinary)
-12 User cancel (progress method returned flag false)

-501 Invalid argument type for: %s (arg %u)
-502 Problem obtaining argument (arg %u)

-503 Incorrect number of arguments
-504 Must supply a %s (arg %u)
-505 Invalid value for %s (arg %u)

-1010 | Insufficient memory to satisfy the request

-1011 | Error setting callback method: %s

-1012 | Invalid %s (arg %u)

-1051 | Unable to locate the required service on the server: %s
-1052 | Error establishing communications with server

-1053 | Error establishing a connection with the server

-1054 | Error while receiving response from server

-1055 | Error while sending data to server

-1056 | Error while responding to the client

-1057 | The current command failed because it timed out on the server

Web Command Error Codes 551

Error Error Text
Code

-1101 | Error while setting FTP mode on server

-1102 | Error establishing a connection with server

-1103 | The connection with the FTP server was lost

-1104 | A severe error occurred while retrieving data from the server
-1110 | The specified file was not found: ‘%s’

-1111 | Unable to open the specified file: ‘%s’

-1112 | Error while writing to file: ‘%s’

-1140 | Operation cancelled by user

HTTP Errors
All HTTP errors are runtime errors reported by the WebDevError command

Error Error Text
Code

-1150 | Uhknown header type. Must be GET, POST, or HEAD.
-1151 | Invalid HTML content header received from server
-1152 | Badly formed header fields (arg 1)

-1153 | Badly formed header, no POST fields found

-1154 | Unable to determine end of header

-1160 | Missing value for %s in %s list
-1161 | Mismatched tag brackets
-1170 | Error sending the response header from the server, the failing tag was ‘%s’.

-1171 | Error sending the request header to the server, the failing tag was ‘%s’.

-1172 | Error occurred while sending content data.

-1173 | Error occurred while reading the HTML content header from the client

552 Chapter 6—External Commands

E-mail Errors

E-mail errors are runtime errors reported by the WebDevError command.

Error Error Text
Code

-1200 | Badly formed message header (arg %u)
-1201 | Recipient list or name is empty

-1210 | Error sending the mail header to the server, the failed tag was ‘%s’. Mail{was
not sent.

-1211 | Error sending the mail text to the server. Mail was not sent.

-1212 | Error completing the sending of the mail text to the server. Mail may not have
been properly delivered.

Web Command Error Codes 553

Index

554

variablesSee alsddash variables

#???,72

#1, #2,..,#60, 72
#ALT, 73
#CLIST, 73
#COLORMAP, 44
#COMMAND, 73
#CT, 73

#CTRL, 73

#D, 73

#ENTER, 74
#ERRCODE, 16, 74
#ERRTEXT, 16, 74
#F, 74

#FD, 31, 75
#FDP, 31, 75
#FDT, 32, 33, 76
#FT, 32, 33, 54, 77
#L, 77

#L1,..#L8, 78
#LM, 78

#LN, 78

#LSEL, 79

#MU, 79

#NULL, 79
#OPTION, 79

#P, 79

#PI, 80

#R, 80

#RAD, 80
#RATE, 80
#RETURN, 80
#S1,..,#S5, 80
#SHIFT, 80
#SUBFLD, 80

#T, 81

#UL, 81

$ money sign

jst() function, 31
$accumulate(), 115
$add(), 99, 110, 120
$addafter(), 99, 111
$addbefore(), 99, 110

$appendlist(), 98
$assign(), 96
$assigncols(), 112
$assignrow(), 112
$att(), 96
$average(), 111
$bringtofront(), 119
$canassign, 95
$canassign(), 96
$canclose(), 101, 114
$canomit, 95
$canomit(), 96
$chain(), 96

$changeworkingdir() external function, 59

$checkbreak(), 115

$clear(), 109, 111, 112, 122

$clearallnodes(), 120
$close(), 101, 114
$cmd(), 113
$collapse(), 121
$copydefinition(), 108

$copyfile() external function, 59

$count(), 98, 111, 120

$createdir() external function, 60

$createnames(), 117
$currentnode(), 120
$define(), 108
$definefromtable(), 108
$delete(), 119

$deletefile() external function, 60

$dodelete(), 119
$dodeletes(), 118

$doesfileexist() external function, 61

$doinsert(), 118
$doinserts(), 118
$dotoolmethod(), 100
$doupdate(), 118
$doupdates(), 118
$dowork(), 118
$edittext(), 121
$ejectpage(), 116
$enablepane(), 122
$endpage(), 116
$endprint(), 116

Index

Index

$exechelp(), 97

$expand(), 121

$fetch(), 117

$filelist() external function, 61
$filter(), 110

$findident(), 98, 121

$findname(), 98, 121
$findnodeident(), 120
$findnodename(), 120

$first(), 98, 110, 120

$flush(), 101

$getcolumnalign(), 121
$getfileinfo() external function, 63
$getfilename() external function, 64
$getnodelist(), 120

$getparam(), 101
$getvisiblenode(), 121
$getworkingdir() external function, 64
$includelines(), 110

$insert(), 119

$insertlist(), 98

$insertnames(), 117

$isa(), 102, 103, 104, 105, 106, 107
$ispaneenabled(), 122
$ispaneshown(), 122

$loadcols(), 112

$makelist(), 98

$makesubclass(), 102, 103, 104, 105, 106,

107
$maximize(), 119
$maximum(), 111
$merge(), 109
$minimize(), 119
$minimum(), 111
$modify(), 114
$movefile() external function, 64
$new(), 107
$next(), 98, 110
$nextnode(), 121
$open(), 101, 102, 103, 104, 105, 106
$openjobsetup(), 115
$openonce(), 102, 103, 104, 105, 106
$pagesetup(), 122
$prevnode(), 121
$print(), 116, 122
$printpage(), 122
$printrecord(), 115
$printsection(), 115
$printtotals(), 115

$putfilename() external function, 64
$redefine(), 108

$redirect(), 122

$redraw(), 97, 119, 120

$refilter(), 110

$remove(), 99, 110, 121
$removeduplicates(), 111
$rename() external function, 65
$replistfonts() external function, 68
$reptextheight() external function, 69
$reptextwidth() external function, 69
$revertlistdeletes(), 109
$revertlistinserts(), 110
$revertlistupdates(), 110
$revertlistwork(), 110

$root, 97

$root methods, 97
$savelistdeletes(), 109
$savelistinserts(), 109
$savelistupdates(), 109
$savelistwork(), 109

$search(), 109

$select(), 117

$selectdirectory() external function, 65
$selectdisticnt(), 117
$selectnames(), 117

$sendall(), 98

$senddata(), 101

$sendtext(), 101

$serialize(), 100

$setcolumnalign(), 121
$setcurrentnode(), 121
$setfileinfo() external function, 66
$setnodelist(), 120

$setparam(), 101

$showpane(), 122

$skipsection(), 115

$sort(), 109

$sortfields(), 122

$splitpathname() external function, 66
$sqlerror(), 117

$startpage(), 116

$total(), 111

$undodeletes(), 118
$undoinserts(), 118
$undoupdates(), 118

$undowork(), 118

$unfilter(), 110

$update(), 119

555

556

$updatenames(), 118

$welcome(), 100

$wherenames(), 118

$winlistfonts() external function, 70
$wintextheight() external function, 70
$wintextwidth() external function, 71
$zoom(), 122

£ money sign
jst() function, 31

About the Commands, 123
abs() function, 8
Absolute value
abs() function, 8
Accept advise requests command, 124
Accept commands command, 124
Accept field requests command, 125
Accept field values command, 125
acos() function, 8
Add line to list command, 126
Advise on find/next/previous command, 127
Advise on OK command, 127
Advise on redraw command, 128
AND selected and saved command, 128
ann() function, 8
anna() function, 9
Annuity
ann() function, 8
ansichar() external function, 9
ansicode() external function, 9
asc() function, 9
ASCII conversion
chr() function, 18
asin() function, 10
atan() function, 10
atan2() function, 10
Autocommit command, 129
Average value
avgc() function, 10
avgc() external function, 10

bdif() function, 10

Begin print job command, 130

Begin reversible block command, 131
Begin SQL script, 408

Begin SQL script command, 133
Begin text block command, 133
binchecksum() function, 11

bincompare() function, 11
binfromhex() function, 11
binfromlong() function, 11
binlength() function, 11
bintohex() function, 12
bintolong() function, 12
bitand() function, 12
bitclear() function, 12
bitfirst() function, 12
bitmid() function, 13
bitnot() function, 13
bitor() function, 13
bitrotatel() function, 13
bitrotater() function, 14
bitset() function, 14
bitshiftl() function, 14
bitshiftr() function, 14
bittest() function, 15
bitxor() function, 15
Boolean values

not() function, 40
Break to end of loop command, 134
Break to end of switch command, 135
Breakpoint command, 135
Bring window instance to front command,

136
Build export format list command, 136
Build externals list command, 137
Build field names list command, 138
Build file list command, 139
Build indexes command, 139
Build installed menu list command, 140
Build list columns list command, 141
Build list from file command, 142
Build list from select table command, 143
Build list of event recipients command, 144
Build menu list command, 145
Build open window list command, 145
Build report list command, 146
Build search list command, 147
Build window list command, 148
bundif() function, 15
bytecon() function, 15
bytemid() function, 15
byteset() function, 16

Calculate command, 148
Calculations
Evaluating, 25

Index

Index

Call DLL external command, 455
Call external routine command, 150
Cancel advises command, 150
Cancel event recipient command, 151
Cancel prepare for update command, 152
Cancel publisher command, 153
Cancel subscriber command, 153
cap() function, 16
Capitalization

cap() function, 16

jst() function, 31
Case command, 154
cdif() function, 16
CGIDecode external command, 455
CGIEncode external command, 456
Change user password command, 155

Change working directory external command,

456
Check data command, 155
Check menu line command, 157
chk() function, 17
chr() function, 18
Clear all files command, 157
Clear check data log command, 158
Clear class variables command, 158
Clear data command, 159
Clear DDE channel item names command,
159
Clear find table command, 160
Clear line in list command, 161
Clear list command, 162
Clear main & connected command, 162
Clear main file command, 163
Clear method stack command, 163
Clear range of fields, 80
Clear range of fields command, 164
Clear search class command, 164
Clear selected files command, 165
Clear sort fields command, 165
Clear timer method command, 166
Close all designs command, 166
Close all windows command, 166
Close check data log command, 167
Close client import file command, 168
Close cursor command, 168
Close data file command, 169
Close DDE channel command, 169
Close design command, 170
Close file external command, 457

Close import file command, 170
Close library command, 170
Close lookup file command, 171
Close other windows command, 171
Close port command, 172
Close print file command, 172
Close task instance command, 172
Close top window command, 173
Close window command, 173
Close working message command, 174
CMAttach external command, 457
CMMCBegin external command, 458
CMMCERNd external command, 459
CMMGBegin external command, 459
CMMGEnNd external command, 460
CMMGet external command, 460
CMMiInsert external command, 462
cmp() function, 18
CMQuery external command, 463
Commands, 123

About the commands, 123
Comment command, 174
Commit current session, 408
Commit current session command, 175
Common methods, 96
Comparison

chk() function, 17
Compound interest

cmp() function, 18
con() function, 18
Concatenation

con() function, 18
Copy file external command, 464
Copy list definition command, 177
Copy to clipboard command, 177
cos() function, 19
CPU type

sys(110), 53
Create data file command, 178
Create directory external command, 464
Create file external command, 465
Create library command, 179
Create statement, 19
createnames() function, 19
cundif() function, 21
Current session

sys(137), 54
Cut to clipboard command, 180

557

558

dadd() external function, 21
dat() function, 22
Data file pathname
sys(11), 52
DB2 Audio disable external command, 466
DB2 Audio enable external command, 467
DB2 Audio is enabled external command,
468
DB2 Get logon info external command, 469
DB2 Image disable external command, 469
DB2 Image enable external command, 470
DB2 Image is enabled external command,
471
DB2 Init upload external command, 471
DB2 Register error vars external command,
472

DB2 Register logon info external command,

472

DB2 Unregister logon info external
command, 472

DB2 Upload data external command, 473

DB2 Video disable external command, 473

DB2 Video enable external command, 474

DB2 Video is enabled external command,
475

ddiff() external function, 22

Declare cursor command, 180

Default command, 181

Define list command, 182

Define list from SQL class command, 183

Delete class command, 184

Delete client import file command, 185

Delete command, 183

Delete data command, 185

Delete file external command, 475

Delete line in list command, 186

Delete selected lines command, 187

Delete with confirmation command, 187

Describe cursors command, 188

Describe database command, 189

Describe results command, 190

Describe server table command, 191

Describe sessions command, 193

Deselect list line(s) command, 194

dim() function, 23

Disable all menus and toolbars command,
194

Disable automatic publications command,
195

Disable automatic subscriptions command,
196

Disable cancel test at loops command, 196

Disable enter & escape keys command, 197

Disable fields command, 197

Disable menu line command, 198

Disable receiving of Apple events command,
199

Disable relational finds command, 200

dname() external function, 23

Do code method command, 201

Do command, 200

Do default command, 202

Do inherited command, 203

Do method command, 204

Do not close others option, 272, 303

Do not flush data command, 206

Do not open startup task option, 272, 303

Do not wait for semaphores command, 207

Do redirect command, 208

Does file exist external command, 476

dpart() external function, 23

Drop indexes command, 208

dtcy() function, 23

dtd() function, 24

dtm() function, 24

dtw() function, 24

dty() function, 24

Duplicate class command, 209

Else command, 210

Else If calculation command, 210

Else If flag false command, 211

Else If flag true command, 211

E-mail errors, 553

Enable all menus and toolbars command, 212

Enable automatic publications command, 213

Enable automatic subscriptions command,
214

Enable cancel test at loops command, 215

Enable enter & escape keys command, 215

Enable fields command, 216

Enable menu line command, 216

Enable receiving of Apple events command,
217

Enable relational finds command, 218

Enclose exported text in quotes command,
219

End export command, 219

Index

End For command, 220
End If command, 220
End import command, 221
End print command, 221
End print job command, 222
End reversible block command, 222
End SQL script command, 223
End Switch command, 224
End text block command, 223
End While command, 224
Enter data command, 225
Error codes
FileOps external commands, 544
Web commands, 546, 548
WinSOCK, 546
evAfter, 85
eval() function, 25
evalf() function, 25
evBefore, 85
evCancel, 93
evCanDrop, 90
evCellChanged, 86
evCellChanging, 86
evClick, 85
evClose, 93
evCloseBox, 93
evCustomMenu, 93
evDisabled, 91
evDoubleClick, 85
evDrag, 90
evDrop, 90
evEnabled, 91
Event codes, 82
Event parameters, 84
sys(86), 52
Events, 82
Event parameters, 84
field events, 85
key events, 89
Modify report field, 89
mouse events, 90
scroll events, 91
status events, 91
Tab pane and Tab strip events, 91
Tree list events, 92
window events, 93
evExtend, 86
evHeadedListEditFinished, 87
evHeadedListEditFinishing, 87

evHeadedListEditStarting, 87
evHeaderClick, 87
evHidden, 91
evHScrolled, 91
evilconDelete, 88
evilconDeleteStarting, 88
evlconEditFinished, 88
evlconEditFinishing, 88
evlconEditStarting, 88
evKey, 89
evMaximized, 93
evMinimized, 93
evMouseDouble, 90
evMouseDown, 90
evMouseEnter, 90
evMouseleave, 90
evMouseUp, 90
evMoved, 93
evOK, 93
evOpenContextMenu, 85, 94
evResized, 94
evRestored, 94
evRMouseDouble, 90
evRMouseDown, 90
evRMouseUp, 90
evRowChange, 86
evScrollTip, 86
evSelectionChanged, 89
evSent, 85
evShiftTab, 89
evShown, 91
evStandardMenu, 94
evTab, 89
evTabSelected, 91
evToTop, 94
evTreeCollapse, 92
evTreeExpand, 92
evTreeExpandCollapseFinished, 92
evTreeNodelconClicked, 92
evTreeNodeNameFinished, 92
evTreeNodeNameFinishing, 92
evVScrolled, 91
evWillDrop, 90
evWindowClick, 94
Execute SQL script command, 226
exp() function, 26
Exponential

exp() function, 26
Export data command, 227

559

560

External commands, 123, 454
External components
Methods, 113
External functions
FileOps, 59
FontOps, 68

fact() function, 26
Factorial

fact() function, 26
fday() external function, 26
Fetch current row command, 227
Fetch first row command, 227
Fetch last row command, 228
Fetch next row command, 228
Fetch previous row command, 229
Field events, 85
FileOps external commands

Error codes, 544
FileOps external function error codes, 67
FileOps external functions, 59
Find command, 230
Find first command, 232
Find last command, 233
fld() function, 26
Floating default data file command, 234
Flush data command, 235
Flush data now command, 236
fontlist() external function, 26
FontOps external functions, 68
For each line in list command, 236
For field value command, 237
Formatting strings

jst() function, 30
FTP errors, 551
FTPChmod external command, 476
FTPConnect external command, 477
FTPCwd external command, 477
FTPDelete external command, 478
FTPDisconnect external command, 479
FTPGet external command, 479
FTPGetBinary external command, 480
FTPGetLastStatus external command, 481
FTPList external command, 482
FTPMkdir external command, 483
FTPPut external command, 484
FTPPutBinary external command, 484
FTPPwd external command, 485

FTPReceiveCommandReplyLine external
command, 486
FTPRename external command, 486

FTPSendCommand external command, 487
FTPSetProgressProc external command, 488

FTPSite external command, 488
FTPType external command, 489
Functions, 7

syntax, 7

Get file info external command, 490

Get file name external command, 491

Get file read-only attribute external
command, 492

Get files external command, 492

Get folders external command, 493

Get SQL script command, 238

Get text block command, 239

getfye() external function, 27

getseed() external function, 27

getws() external function, 27

Go to next selected line command, 239

Group methods, 98

Hash variables, 72
Headed list boxes

Methods, 121
Hide fields command, 241
Hide Toolbar command, 240
HTTP errors, 552
HTTPClose external command, 494
HTTPGet external command, 494
HTTPHeader external command, 496
HTTPOpen external command, 497
HTTPPage external command, 498
HTTPParse external command, 498
HTTPPost external command, 500
HTTPRead external command, 502
HTTPSend external command, 502
HTTPServer external command, 503
HTTPSplitHTML external command, 504
HTTPSplitURL external command, 504

Icon arrays

Methods, 121
If calculation command, 241
If canceled command, 242
If flag false command, 242
If flag true command, 243

Index

Index

Import data command, 243
Import field from file command, 244
Import field from port command, 245
Insert line in list command, 246
Insert statement, 27
insertnames() function, 27
Install menu command, 247
Install Toolgroup command, 248
Instance properties and methods, 114
int() function, 29
Integers

int() function, 29
Invert selection for line(s) command, 248
isfontinstalled() external function, 29
isnull() function, 29
isnumber() function, 29
isoweek() function, 29

jst() function, 30
Jump to start of loop command, 249

Key events, 89

Launch program command, 250
Iday() external function, 34
len() function, 34
Library pathname

sys(10), 52
List column properties and methods, 111
List Row properties and methods, 112
List variable methods, 108
list() function, 34
Lists

Current list #CLIST, 73
In() function, 35
Load connected records command, 251
Load error handler command, 252
Load event handler command, 254
Load external routine command, 255
Load from list command, 256
log() function, 35
Logical Not

not() function, 40
Logoff from host command, 257
Logon to host command, 257
lookup() function, 35
low() function, 35
Lower case

jst() function, 31

low() function, 35
Ist() function, 36

MAILSplit external command, 505
Main file
Set main file, 386
Make schema from server table command,
258
max() function, 36
maxc() external function, 37
Maximize window instance command, 259
Maximum value
max() function, 36
Menu Classes
Methods, 103
Merge list command, 260
Message timeout command, 261
Messages
Events, 82
Method lines
Methods, 114
Methods, 95
$root, 97
Common, 96
External components, 113
Group methods, 98
List variables, 108
Menu Classes, 103
Method lines, 114
Object classes, 107
OMNIS modes, 100
OMNIS preferences, 100
Printing devices, 101
Report Classes, 105
Table classes, 106
Table instance, 117
Task Classes, 106
Toolbar Classes, 104
Window Classes, 102
Window instance, 119
Window instance object methods, 120
mid() function, 37
min() function, 37
minc() external function, 37
Minimize window instance command, 261
Minimum value
min() function, 37
mod() function, 38
Modes, 100

561

562

Modify class command, 262
Modify methods command, 262
Modify report field events, 89
Modify report fields

Methods, 122
Mouse events, 90
mousedn() function, 38
mouseover() function, 38
mouseup() function, 39
Move file external command, 506
msgcancelled(), 265, 453
msgcancelled() function, 39

nam() function, 39

natcmp() function, 39

nday() external function, 40

New class command, 263

Next command, 263

No/Yes message command, 264

not() function, 40

Notation
Methods, 95

NSF Add fields external command, 507

NSF Attach file external command, 507

NSF Build view external command, 508

NSF Close all files external command, 509

NSF Close file external command, 509

NSF Copy Note external command, 509

NSF Delete Note external command, 510

NSF Describe fields on form external
command, 510

NSF Find forms external command, 511

NSF Get info external command, 511

NSF List open NSF files external command,
511

NSF Mail Note external command, 512

NSF Make Note external command, 512

NSF Make response external command, 512

NSF Make server path external command,
513

NSF Map fields external command, 513

NSF Open file external command, 514

NSF Select external command, 514

NSF Servers external command, 515

NSF Set error field external command, 516

NSF Unpack file external command, 516

NSF Where's my mail? external command,
516

NSF Who am | external command, 517

NSF Write composite external command, 517
Null values, 29

#NULL, 79

jst() function, 32

Object classes
Methods, 107
Object methods, 120
oemchar() external function, 40
oemcode() external function, 41
OK message command, 265
OMNIS folder
sys(115), 53
OMNIS modes
Methods, 100
OMNIS preferences
Methods, 100
OMNIS version number
sys(1), 51
omnischar() external function, 41
omniscode() external function, 41
On command, 266
On default command, 267
Open check data log command, 267
Open client import file command, 268
Open cursor command, 268
Open data file command, 269
Open DDE channel command, 270
Open desk accessory command, 271
Open file external command, 518
Open library command, 272
Open lookup file command, 273
Open resource fork external command, 518
Open runtime data file browser command,
275
Open task instance command, 276
Open trace log command, 276
Open window instance command, 277
Optimize method command, 279
OR selected and saved command, 280

Paste from clipboard command, 281
pCellData, 84

pChannelNumber, 84
pClickedField, 84

pClickedWindow, 84
pCommandNumber, 84
pContextMenu, 84

pday() external function, 41

Index

Index

pDdeltemName, 84
pDdeValue, 84
pDragField, 84
pDragType, 84
pDragValue, 84
pDropField, 84
Perform SQL, 408
Perform SQL command, 282
pEventCode, 84
pHorzCell, 84
Pi, value of, 80
pick() function, 42
plsVertScroll, 84
pKey, 84
Platform code
sys(6), 51
pLineNumber, 84
pMenuLine, 84
pNextCode, 84
pNodeltem, 84
POP3Recv external command, 519
POP3Stat external command, 520
Popup menu command, 282
Popup menu from list command, 283
pos() function, 42
Prepare current cursor command, 283
Prepare for edit command, 284
Prepare for export to file, 287
Prepare for export to port, 287
Prepare for import from client command, 288
Prepare for import from file command, 288
Prepare for import from port command, 289
Prepare for insert command, 290
Prepare for insert with current values
command, 291
Prepare for print command, 291
Previous command, 293
Print check data log command, 294
Print class command, 295
Print record command, 295
Print report command, 296
Print report from disk command, 297
Print report from memory command, 298
Print top window command, 298
Printing devices
Methods, 101
Process event and continue command, 298
Program type
sys(2), 51

Prompt for data file command, 299
Prompt for destination command, 300
Prompt for event recipient command, 300
Prompt for import file command, 301
Prompt for input command, 302
Prompt for library command, 303
Prompt for page setup command, 304
Prompt for port name command, 304
Prompt for print file command, 305
Prompt for word server command, 305
Prompted find command, 306
Properties and methods

Report instance, 115
Propeties and methods

Instance, 114
pRow, 84
pScrollPos, 84
pScrollTip, 84
pSelectionCount, 84
pSystemKey, 84
pTabNumber, 84
Publish field command, 307
Publish now command, 308
Put file name external command, 521
pVertCell, 84
pwr() function, 42

Qualified field names, 20, 28, 46, 57
Queue bring to top command, 308
Queue cancel command, 309

Queue click command, 309

Queue close command, 311

Queue double-click command, 312
Queue keyboard event command, 313
Queue OK command, 315

Queue quit command, 316

Queue scroll command, 316

Queue set current field command, 317
Queue tab command, 317

Quick check command, 318

Quit all if canceled command, 319
Quit all methods command, 319

Quit cursor(s) command, 320

Quit event handler command, 321
Quit method command, 322

Quit OMNIS command, 322

rand() external function, 43
randintrng() external function, 43

563

564

randrealrng() external function, 43
Read entire file external command, 523
Read file as binary external command, 524
Read file as character external command, 525
ReadBinFile external command, 522
Redefine list command, 323
Redraw command, 324
Redraw lists command, 324
Redraw menus command, 325
Redraw Toolgroup command, 325
Redraw working message command, 326
Register DLL external command, 525
Reinitialize search class command, 327
Remainder

mod() function, 38
Remove all menus command, 327
Remove final menu command, 328
Remove menu command, 328
Remove Toolgroup command, 329
Rename class command, 329
Rename data command, 330
Reorganize data command, 331
Repeat command, 332
Replace line in list command, 334
Replace standard Edit menu command, 335
Replace standard File menu command, 335
replace() function, 43
replaceall() function, 43
Report Classes

Methods, 105
Report instance object properties, 116
Report Instance properties and methods, 115
Request advises command, 336
Request field command, 337
Reset cursor(s) command, 337
Reset cursorsession, 408
Restore selection for line(s) command, 338
Retrieve rows to file command, 339
Revert class command, 339
rgb() function, 44
Right justification

jst() function, 30
rmousedn() function, 44
rmouseup() function, 44
rnd() function, 44
Rollback current session, 408
Rollback current session command, 340
rolldice() external function, 45
rollstring() external function, 45

row() function, 45

Save class command, 341
Save selection for line(s) command, 341
Screen height

sys(105), 53
Screen report fields

Methods, 122
Screen width

sys(104), 52
Scroll events, 91
SEA continue execution command, 342
SEA repeat command command, 343
SEA report fatal error command, 343
Search list command, 344
Select list line(s) command, 346
Select printer command, 347
Select statement, 45
selectnames() function, 45
Send advises now command, 348
Send command command, 348
Send Core event command, 349
Send Core event returns command, 351
Send Database event command, 353
Send field command, 359
Send Finder event command, 360
Send to a window field command, 361
Send to clipboard command, 362
Send to DDE channel command, 362
Send to file command, 363
Send to page preview command, 364
Send to port command, 365
Send to printer command, 365
Send to screen command, 366
Send to trace log command, 367
Send Word Services event command, 367
Server specific keyword command, 368
server() function, 46
Set 'About..." method command, 368
Set advise options command, 369
Set batch size command, 370
Set bottom margin command, 371
Set break calculation command, 371
Set character mapping command, 372
Set class description command, 373
Set client import file name command, 373
Set closed files command, 374
Set creator type external command, 527
Set current cursor command, 374

Index

Index

Set current data file command, 375
Set current list command, 376

Set current session command, 376
Set database version command, 377

Set DDE channel item name command, 377

Set DDE channel number command, 378
Set default data file command, 379

Set event recipient command, 380

Set export format command, 381

Set file read-only attribute external command,

527
Set final line number command, 382
Set hosthame command, 382
Set import file name command, 383
Set label width command, 383
Set labels across page command, 384
Set left margin command, 385
Set lines per page command, 385
Set main file command, 386
Set memory-only files command, 387
Set OMNIS window title command, 388
Set page width command, 389
Set palette when drawing command, 389
Set password command, 390
Set port name command, 391
Set port parameters command, 391
Set print file name command, 392
Set publisher options command, 393
Set read/write files command, 394
Set read-only files command, 394
Set record spacing command, 395
Set reference command, 396
Set repeat factor command, 396
Set report main file command, 397
Set report main list command, 397
Set report name command, 398
Set right margin command, 399
Set search as calculation command, 399
Set search name command, 400
Set server mode command, 401
Set sort field command, 402
Set SQL blob preferences command, 403
Set SQL script command, 404
Set SQL separators command, 404
Set subscriber options command, 405
Set timer method command, 406
Set top margin command, 407
Set top window title command, 407
Set transaction mode command, 408

Set username command, 409
setfye() external function, 47
setseed() external function, 47
setws() external function, 47
Show 'About..." window command, 409
Show fields command, 410
Show OMNIS maximized command, 410
Show OMNIS minimized command, 411
Show OMNIS normal command, 411
Show Toolbar command, 412
shufflelist() external function, 48
Signal error command, 412
sin() function, 48
Single file find command, 413
SMTPSend external command, 528
Sort list command, 414
Sound bell command, 414
Split path name external command, 530
SQL

command, 415
SQL error code

sys(131), 53
SQL error text

sys(132), 53
sqr() function, 48
Start program maximized command, 416
Start program minimized command, 416
Start program normal command, 417
Start session command, 417
Status events, 91
stddevc() external function, 48
strpbrk() external function, 49
strspn() external function, 49
strtok() external function, 49
style() function, 50
Subscribe field command, 418
Subscribe now command, 419
Substring

mid() function, 37
Swap lists command, 419
Swap selected and saved command, 420
Switch command, 421
Syntax, functions, 7
sys() function, 51
System date, #D, 73
System information

sys() function, 51
System time, #T, 81

565

566

Tab pane events, 91
Tab panes

Methods, 122
Tab strip events, 91
Table classes

Methods, 106
Table Instance methods, 117
tan() function, 54
Task Classes

Methods, 106
TCPAccept external command, 531
TCPAddr2Name external command, 531
TCPBInd external command, 532
TCPBIlock external command, 532
TCPClose external command, 533
TCPConnect external command, 533
TCPGetMyAddr external command, 534
TCPGetMyPort external command, 534
TCPGetRemoteAddr external command, 535
TCPListen external command, 535
TCPName2Addr external command, 536
TCPPing external command, 536
TCPReceive external command, 537
TCPSend external command, 538
TCPSocket external command, 538
Test check data log command, 423
Test clipboard command, 424
Test data with search class command, 425
Test for a current record command, 425
Test for a unique index value command, 426
Test for field enabled command, 426
Test for field visible command, 427
Test for menu installed command, 427
Test for menu line checked command, 428
Test for menu line enabled command, 428
Test for only one user command, 429
Test for program open command, 430
Test for valid calculation command, 430
Test for window open command, 431
Test if file exists command, 431
Test if list line selected command, 432
Test if running in background command, 433
Text

command, 434
textsize() external function, 54
tim() function, 54
Time

tim() function, 54
Toolbar Classes

Methods, 104
tot() function, 55
totc() function, 55
Trace off command, 435
Trace on command, 435
Translate input/output command, 436
Transmit text to port command, 436
Transmit text to print file command, 437
Tree list events, 92
Tree lists
Methods, 120
trim() function, 56
truergb() function, 56
Truncate file external command, 539

Uncheck menu line command, 438
Unload error handler command, 438
Unload event handler command, 439
Unload external routine command, 439
Until break command, 440
Until calculation command, 441
Until flag false command, 441
Until flag true command, 442
Update data dictionary command, 442
Update files command, 443
Update files if flag set command, 445
Update statement, 56
updatenames() function, 56
upp() function, 57
Upper case

jst() function, 31

upp() function, 57
Use event recipient command, 445
UUDecode external command, 539
UUEncode external command, 540

Variable menu command, 446

Wait for semaphores command, 448
Web commands

Error codes, 546, 548
WebDevError external command, 540
Where clause, 57
wherenames() function, 57
While calculation command, 449
While flag false command, 449
While flag true command, 450
Window Classes

Methods, 102

Index

Index

Window events, 93

Window instance methods, 119

Window instance object methods, 120
WinSOCK error codes, 546

Working message command, 450

Write entire file external command, 542
Write file as binary external command, 543

Write file as character external command,

543
WriteBinFile external command, 541

XOR selected and saved command, 451

Yes/No message command, 453

567

OMNIS
Refe rence

Yersion?2

How to use this manual

The on-line documentation is designed to make the task of identifying and accessing
information about OMNIS Studio as easy and intuitive as possible.

You can navigate this document, or find topics, in a number of different ways.

Bookmarks
[E Bookmarks mark each topic in a document. To view the bookmarks in this
— document, click on the Bookmark icon on the Acrobat toolbar or select the

View>>Bookmarks and Pagemenu item.

Click on an arrow icoil* to open or close a topic, and click on a topic name or double-click a
page icorl] to move directly to a topic.

Thumbnalils

HE Thumbnails are small images of each page in the document. To view the
Thumbnails in this document click on the Thumbnails button on the Acrobat
toolbar, or select theiew>>Thumbnails and Pagemenu item.

You can click on a thumbnail to jump to that page. Also you can adjust the view of the current
page by moving and/or sizing the gray page-view box shown on the current thumbnail.

Links

Links in this document connect related information or take you to a specific location in the
document. Links are indicated wiltue italictext. To jump to a related topic, move the
pointer over a linked area (the pointer changes to a pointing finger) and simply click your

mouse. Try it!
44 To return to your last view or
location, click on thé&o back

button on the Acrobat toolbar.

Browsing

You can use the Browse buttons on the Acrobat toolbar to
TIERE RTINS move back and forth through the document on a page by
page basis. You can also click on the Backto return
to your last view or location.

Find

You can find a text string using tA@ols>>Find menu item. To find the next occurrence of
the text you can use tA@ols>>Find Again option. If you reach the end of the document, you
can use the Ctrl-Home key to go to the beginning and continue your find.

Search

If you have the Acrobat Search plug-in (available undelltdws>>Searchmenu in some

versions of Acrobat Exchange and Reader), you can use the Studio Index to perform full-text
searches of the entire OMNIS Studio on-line documentation set. Searching the Studio Index is
much faster than using tiénd command, which reads every word on every page in the

current document only.

To Search the Studio Index, sel@cobls>>Search>>Indexeso

locate the Studio Index (Studio.pdx) on the OMNIS CD. Next, select hﬁ]
Tools>>Search>>Queryto define your search text: you can use
Word Stemming, Match Case, Sounds Like, wildcards, and so on
(refer to the Acrobat Search.pdf file for details about specifying a query). In the Search

Results window, double-click on a document name (the first one probably contains the most
references). Acrobat opens the document and highlights the text. To go to the next or previous
occurrence of the text, use the Search Next or Search Previous button on the Acrobat toolbar.

== EZ]

Grabbing Text from the Screen

e You can cut and paste text from this document into the clipboard using the
""" Text tool. For example, you could copy a code segment and paste it into the
OMNIS method editor.

Getting Help

For more information about using Acrobat Reader see the PDF documents installed with the
Reader files, or select tliéelp menu on the main Reader menu bar.

Start manual

	OMNIS Studio Reference
	About This Manual
	Chapter 1 -- Functions
	Syntax
	Functions
	FileOps External Functions
	FileOps External function Error Codes

	FontOps External Functions

	Chapter 2 - Hash Variables
	About the Hash Variables
	Hash Variables

	Chapter 3 -- Events
	About the Event Codes
	Event Parameters
	Field Events
	Grid Events
	Headed List Box Events
	Icon Array Events
	Key Events
	Modify Report Field Events
	Mouse Events
	Scroll Events
	Status Events
	Tab Pane and Tab Strip Events
	Tree List Events
	Window Events

	Chapter 4 -- Methods
	Common
	$Root
	Group
	OMNIS Modes
	OMNIS Preferences
	Printing Devices
	Window Class
	Menu Class
	Toolbar Class
	Report Class
	Task Class
	Table Class
	Object Class
	List Variable
	External Components
	Method Lines
	Instance
	Report Instance
	Table Instance
	Window Instance
	Window Instance Object

	Chapter 5 -- Commands
	About the Commands
	Commands

	Chapter 6 -- External Commands
	FileOps External Command Error Codes
	Web Command Error Codes

	Index
	How to use this manual
	Bookmarks
	Thumbnails
	Links
	Browsing
	Find
	Search
	Grabbing text from the screen
	Getting Help
	Start manual

